MPTRAC
mptrac.c
Go to the documentation of this file.
1/*
2 This file is part of MPTRAC.
3
4 MPTRAC is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
8
9 MPTRAC is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with MPTRAC. If not, see <http://www.gnu.org/licenses/>.
16
17 Copyright (C) 2013-2025 Forschungszentrum Juelich GmbH
18*/
19
25#include "mptrac.h"
26
27#ifdef KPP
28#include "kpp_chem.h"
29#endif
30
32static gsl_rng *rng[NTHREADS];
33
35static uint64_t rng_ctr;
36
38#ifdef CURAND
39static curandGenerator_t rng_curand;
40#endif
41
42/*****************************************************************************/
43
44#ifdef MPI
46 void *data,
47 size_t N) {
48
49#define CHUNK_SIZE 2147483647
50
51 /* Broadcast the size of the data first... */
52 MPI_Bcast(&N, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD);
53
54 /* Calculate the number of chunks... */
55 const size_t num_chunks = (N + CHUNK_SIZE - 1) / CHUNK_SIZE;
56
57 /* Loop over chunks... */
58 for (size_t i = 0; i < num_chunks; i++) {
59
60 /* Determine the start and end indices for the current chunk... */
61 const size_t start = i * CHUNK_SIZE;
62 const size_t end = (start + CHUNK_SIZE > N) ? N : start + CHUNK_SIZE;
63 const size_t chunk_size = end - start;
64
65 /* Broadcast the current chunk... */
66 MPI_Bcast((char *) data + start, (int) chunk_size, MPI_BYTE, 0,
67 MPI_COMM_WORLD);
68 }
69}
70#endif
71
72/*****************************************************************************/
73
75 const double *x,
76 double *z,
77 double *lon,
78 double *lat) {
79
80 const double radius = NORM(x);
81
82 *lat = RAD2DEG(asin(x[2] / radius));
83 *lon = RAD2DEG(atan2(x[1], x[0]));
84 *z = radius - RE;
85}
86
87/*****************************************************************************/
88
89double clim_oh(
90 const ctl_t *ctl,
91 const clim_t *clim,
92 const double t,
93 const double lon,
94 const double lat,
95 const double p) {
96
97 /* Set SZA threshold... */
98 const double sza_thresh = DEG2RAD(85.), cos_sza_thresh = cos(sza_thresh);
99
100 /* Get OH data from climatology... */
101 const double oh = clim_zm(&clim->oh, t, lat, p);
102
103 /* Apply diurnal correction... */
104 if (ctl->oh_chem_beta > 0) {
105 double sza = sza_calc(t, lon, lat);
106 if (sza <= sza_thresh)
107 return oh * exp(-ctl->oh_chem_beta / cos(sza));
108 else
109 return oh * exp(-ctl->oh_chem_beta / cos_sza_thresh);
110 } else
111 return oh;
112}
113
114/*****************************************************************************/
115
117 const ctl_t *ctl,
118 clim_t *clim) {
119
120 /* Set SZA threshold... */
121 const double sza_thresh = DEG2RAD(85.), cos_sza_thresh = cos(sza_thresh);
122
123 /* Loop over climatology data points... */
124 for (int it = 0; it < clim->oh.ntime; it++)
125 for (int iz = 0; iz < clim->oh.np; iz++)
126 for (int iy = 0; iy < clim->oh.nlat; iy++) {
127
128 /* Init... */
129 int n = 0;
130 double sum = 0;
131
132 /* Integrate day/night correction factor over longitude... */
133 for (double lon = -180; lon < 180; lon += 1.0) {
134 double sza = sza_calc(clim->oh.time[it], lon, clim->oh.lat[iy]);
135 if (sza <= sza_thresh)
136 sum += exp(-ctl->oh_chem_beta / cos(sza));
137 else
138 sum += exp(-ctl->oh_chem_beta / cos_sza_thresh);
139 n++;
140 }
141
142 /* Apply scaling factor to OH data... */
143 clim->oh.vmr[it][iz][iy] /= (sum / (double) n);
144 }
145}
146
147/*****************************************************************************/
148
150 const double rate[CP][CSZA][CO3],
151 const clim_photo_t *photo,
152 const double p,
153 const double sza,
154 const double o3c) {
155
156 /* Check pressure range... */
157 double p_help = p;
158 if (p < photo->p[photo->np - 1])
159 p_help = photo->p[photo->np - 1];
160 else if (p > photo->p[0])
161 p_help = photo->p[0];
162
163 /* Check sza range... */
164 double sza_help = sza;
165 if (sza < photo->sza[0])
166 sza_help = photo->sza[0];
167 else if (sza > photo->sza[photo->nsza - 1])
168 sza_help = photo->sza[photo->nsza - 1];
169
170 /* Check ozone column range... */
171 double o3c_help = o3c;
172 if (o3c < photo->o3c[0])
173 o3c_help = photo->o3c[0];
174 else if (o3c > photo->o3c[photo->no3c - 1])
175 o3c_help = photo->o3c[photo->no3c - 1];
176
177 /* Get indices... */
178 const int ip = locate_irr(photo->p, photo->np, p_help);
179 const int isza = locate_reg(photo->sza, photo->nsza, sza_help);
180 const int io3c = locate_reg(photo->o3c, photo->no3c, o3c_help);
181
182 /* Interpolate photolysis rate... */
183 double aux00 = LIN(photo->p[ip], rate[ip][isza][io3c],
184 photo->p[ip + 1], rate[ip + 1][isza][io3c], p_help);
185 double aux01 = LIN(photo->p[ip], rate[ip][isza][io3c + 1],
186 photo->p[ip + 1], rate[ip + 1][isza][io3c + 1], p_help);
187 double aux10 = LIN(photo->p[ip], rate[ip][isza + 1][io3c],
188 photo->p[ip + 1], rate[ip + 1][isza + 1][io3c], p_help);
189 double aux11 = LIN(photo->p[ip], rate[ip][isza + 1][io3c + 1],
190 photo->p[ip + 1], rate[ip + 1][isza + 1][io3c + 1],
191 p_help);
192 aux00 = LIN(photo->o3c[io3c], aux00, photo->o3c[io3c + 1], aux01, o3c_help);
193 aux11 = LIN(photo->o3c[io3c], aux10, photo->o3c[io3c + 1], aux11, o3c_help);
194 aux00 = LIN(photo->sza[isza], aux00, photo->sza[isza + 1], aux11, sza_help);
195 return MAX(aux00, 0.0);
196}
197
198/*****************************************************************************/
199
201 const clim_t *clim,
202 const double t,
203 const double lat) {
204
205 /* Get seconds since begin of year... */
206 double sec = FMOD(t, 365.25 * 86400.);
207 while (sec < 0)
208 sec += 365.25 * 86400.;
209
210 /* Get indices... */
211 const int isec = locate_irr(clim->tropo_time, clim->tropo_ntime, sec);
212 const int ilat = locate_reg(clim->tropo_lat, clim->tropo_nlat, lat);
213
214 /* Interpolate tropopause pressure... */
215 const double p0 = LIN(clim->tropo_lat[ilat],
216 clim->tropo[isec][ilat],
217 clim->tropo_lat[ilat + 1],
218 clim->tropo[isec][ilat + 1], lat);
219 const double p1 = LIN(clim->tropo_lat[ilat],
220 clim->tropo[isec + 1][ilat],
221 clim->tropo_lat[ilat + 1],
222 clim->tropo[isec + 1][ilat + 1], lat);
223 return LIN(clim->tropo_time[isec], p0, clim->tropo_time[isec + 1], p1, sec);
224}
225
226/*****************************************************************************/
227
229 clim_t *clim) {
230
231 /* Write info... */
232 LOG(1, "Initialize tropopause data...");
233
234 /* Set time [s]... */
235 clim->tropo_ntime = 12;
236 double tropo_time[12] = {
237 1209600.00, 3888000.00, 6393600.00,
238 9072000.00, 11664000.00, 14342400.00,
239 16934400.00, 19612800.00, 22291200.00,
240 24883200.00, 27561600.00, 30153600.00
241 };
242 memcpy(clim->tropo_time, tropo_time, sizeof(clim->tropo_time));
243
244 /* Set latitudes [deg]... */
245 clim->tropo_nlat = 73;
246 double tropo_lat[73] = {
247 -90, -87.5, -85, -82.5, -80, -77.5, -75, -72.5, -70, -67.5,
248 -65, -62.5, -60, -57.5, -55, -52.5, -50, -47.5, -45, -42.5,
249 -40, -37.5, -35, -32.5, -30, -27.5, -25, -22.5, -20, -17.5,
250 -15, -12.5, -10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10, 12.5,
251 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5,
252 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5,
253 75, 77.5, 80, 82.5, 85, 87.5, 90
254 };
255 memcpy(clim->tropo_lat, tropo_lat, sizeof(clim->tropo_lat));
256
257 /* Set tropopause pressure [hPa] (NCEP/NCAR Reanalysis 1)... */
258 double tropo[12][73] = {
259 {324.1, 325.6, 325, 324.3, 322.5, 319.7, 314, 307.2, 301.8, 299.6,
260 297.1, 292.2, 285.6, 276.1, 264, 248.9, 231.9, 213.5, 194.4,
261 175.3, 157, 140.4, 126.7, 116.3, 109.5, 105.4, 103, 101.4, 100.4,
262 99.69, 99.19, 98.84, 98.56, 98.39, 98.39, 98.42, 98.44, 98.54,
263 98.68, 98.81, 98.89, 98.96, 99.12, 99.65, 101.4, 105.4, 113.5, 128,
264 152.1, 184.7, 214, 234.1, 247.3, 255.8, 262.6, 267.7, 271.7, 275,
265 277.2, 279, 280.1, 280.4, 280.6, 280.1, 279.3, 278.3, 276.8, 275.8,
266 275.3, 275.6, 275.4, 274.1, 273.5},
267 {337.3, 338.7, 337.8, 336.4, 333, 328.8, 321.1, 312.6, 306.6, 303.7,
268 300.2, 293.8, 285.4, 273.8, 259.6, 242.7, 224.4, 205.2, 186, 167.5,
269 150.3, 135, 122.8, 113.9, 108.2, 104.7, 102.5, 101.1, 100.2, 99.42,
270 98.88, 98.52, 98.25, 98.09, 98.07, 98.1, 98.12, 98.2, 98.25, 98.27,
271 98.26, 98.27, 98.36, 98.79, 100.2, 104.2, 113.7, 131.2, 159.5, 193,
272 220.4, 238.1, 250.2, 258.1, 264.7, 269.7, 273.7, 277.3, 280.2, 282.8,
273 284.9, 286.5, 288.1, 288.8, 289, 288.5, 287.2, 286.3, 286.1, 287.2,
274 287.5, 286.2, 285.8},
275 {335, 336, 335.7, 335.1, 332.3, 328.1, 320.6, 311.8, 305.1, 301.9,
276 297.6, 290, 280.4, 268.3, 254.6, 239.6, 223.9, 207.9, 192.2, 176.9,
277 161.7, 146.4, 132.2, 120.6, 112.3, 107.2, 104.3, 102.4, 101.3,
278 100.4, 99.86, 99.47, 99.16, 98.97, 98.94, 98.97, 99, 99.09, 99.2,
279 99.31, 99.35, 99.41, 99.51, 99.86, 101.1, 104.9, 114.3, 131, 156.8,
280 186.3, 209.3, 224.6, 236.8, 246.3, 254.9, 262.3, 268.8, 274.8,
281 279.9, 284.6, 288.6, 291.6, 294.9, 297.5, 299.8, 301.8, 303.1,
282 304.3, 304.9, 306, 306.6, 306.2, 306},
283 {306.2, 306.7, 305.7, 307.1, 307.3, 306.4, 301.8, 296.2, 292.4,
284 290.3, 287.1, 280.9, 273.4, 264.3, 254.1, 242.8, 231, 219, 207.2,
285 195.5, 183.3, 169.7, 154.7, 138.7, 124.1, 113.6, 107.8, 104.7,
286 102.8, 101.7, 100.9, 100.4, 100, 99.79, 99.7, 99.66, 99.68, 99.79,
287 99.94, 100.2, 100.5, 100.9, 101.4, 102.1, 103.4, 107, 115.2, 129.1,
288 148.7, 171, 190.8, 205.6, 218.4, 229.4, 239.6, 248.6, 256.5,
289 263.7, 270.3, 276.6, 282.6, 288.1, 294.5, 300.4, 306.3, 311.4,
290 315.1, 318.3, 320.3, 322.2, 322.8, 321.5, 321.1},
291 {266.5, 264.9, 260.8, 261, 262, 263, 261.3, 259.7, 259.2, 259.8,
292 260.1, 258.6, 256.7, 253.6, 249.5, 243.9, 237.4, 230, 222.1, 213.9,
293 205, 194.4, 180.4, 161.8, 140.7, 122.9, 112.1, 106.7, 104.1, 102.7,
294 101.8, 101.4, 101.1, 101, 101, 101, 101.1, 101.2, 101.5, 101.9,
295 102.4, 103, 103.8, 104.9, 106.8, 110.1, 115.6, 124, 135.2, 148.9,
296 165.2, 181.3, 198, 211.8, 223.5, 233.8, 242.9, 251.5, 259, 266.2,
297 273.1, 279.2, 286.2, 292.8, 299.6, 306, 311.1, 315.5, 318.8, 322.6,
298 325.3, 325.8, 325.8},
299 {220.1, 218.1, 210.8, 207.2, 207.6, 210.5, 211.4, 213.5, 217.3,
300 222.4, 227.9, 232.8, 237.4, 240.8, 242.8, 243, 241.5, 238.6, 234.2,
301 228.5, 221, 210.7, 195.1, 172.9, 147.8, 127.6, 115.6, 109.9, 107.1,
302 105.7, 105, 104.8, 104.8, 104.9, 105, 105.1, 105.3, 105.5, 105.8,
303 106.4, 107, 107.6, 108.1, 108.8, 110, 111.8, 114.2, 117.4, 121.6,
304 127.9, 137.3, 151.2, 169.5, 189, 205.8, 218.9, 229.1, 237.8, 245,
305 251.5, 257.1, 262.3, 268.2, 274, 280.4, 286.7, 292.4, 297.9, 302.9,
306 308.5, 312.2, 313.1, 313.3},
307 {187.4, 184.5, 173.3, 166.1, 165.4, 167.8, 169.6, 173.6, 179.6,
308 187.9, 198.9, 210, 220.5, 229.2, 235.7, 239.9, 241.8, 241.6, 239.6,
309 235.8, 229.4, 218.6, 200.9, 175.9, 149.4, 129.4, 118.3, 113.1,
310 110.8, 109.7, 109.3, 109.4, 109.7, 110, 110.2, 110.4, 110.5, 110.7,
311 111, 111.4, 111.8, 112.1, 112.3, 112.7, 113.2, 113.9, 115, 116.4,
312 117.9, 120.4, 124.1, 130.9, 142.2, 159.6, 179.6, 198.5, 212.9,
313 224.2, 232.7, 239.1, 243.8, 247.7, 252.4, 257.3, 263.2, 269.5,
314 275.4, 281.1, 286.3, 292, 296.3, 298.2, 298.8},
315 {166, 166.4, 155.7, 148.3, 147.1, 149, 152.1, 157, 163.6, 172.4,
316 185.3, 199.2, 212.6, 224, 233.2, 239.6, 243.3, 244.6, 243.6, 240.3,
317 233.9, 222.6, 203.7, 177, 149.5, 129.7, 119, 114, 111.7, 110.7,
318 110.3, 110.3, 110.6, 110.9, 111.1, 111.3, 111.5, 111.6, 111.9,
319 112.2, 112.5, 112.6, 112.8, 113, 113.4, 114, 115.1, 116.5, 118.3,
320 120.9, 124.4, 130.2, 139.4, 154.6, 173.8, 193.1, 208.1, 220.4,
321 230.1, 238.2, 244.7, 249.5, 254.5, 259.3, 264.5, 269.4, 273.7,
322 278.2, 282.6, 287.4, 290.9, 292.5, 293},
323 {171.9, 172.8, 166.2, 162.3, 161.4, 162.5, 165.2, 169.6, 175.3,
324 183.1, 193.8, 205.9, 218.3, 229.6, 238.5, 244.3, 246.9, 246.7,
325 243.8, 238.4, 230.2, 217.9, 199.6, 174.9, 148.9, 129.8, 119.5,
326 114.8, 112.3, 110.9, 110.3, 110.1, 110.2, 110.3, 110.4, 110.5,
327 110.6, 110.8, 111, 111.4, 111.8, 112, 112.2, 112.4, 112.9, 113.6,
328 114.7, 116.3, 118.4, 121.9, 127.1, 136.1, 149.8, 168.4, 186.9,
329 203.3, 217, 229.1, 238.7, 247, 254, 259.3, 264.3, 268.3, 272.5,
330 276.6, 280.4, 284.4, 288.4, 293.3, 297.2, 298.7, 299.1},
331 {191.6, 192.2, 189, 188.1, 190.2, 193.7, 197.8, 202.9, 208.5,
332 215.6, 224.2, 233.1, 241.2, 247.3, 250.8, 251.3, 248.9, 244.2,
333 237.3, 228.4, 217.2, 202.9, 184.5, 162.5, 140.7, 124.8, 116.2,
334 111.8, 109.4, 107.9, 107, 106.7, 106.6, 106.6, 106.7, 106.7,
335 106.8, 107, 107.4, 108, 108.7, 109.3, 109.8, 110.4, 111.2,
336 112.4, 114.2, 116.9, 121.1, 127.9, 139.3, 155.2, 173.6, 190.7,
337 206.1, 220.1, 232.3, 243, 251.8, 259.2, 265.7, 270.6, 275.3,
338 279.3, 283.3, 286.9, 289.7, 292.8, 296.1, 300.5, 303.9, 304.8,
339 305.1},
340 {241.5, 239.6, 236.8, 237.4, 239.4, 242.3, 244.2, 246.4, 249.2,
341 253.6, 258.6, 262.7, 264.8, 264.2, 260.6, 254.1, 245.5, 235.3,
342 223.9, 211.7, 198.3, 183.1, 165.6, 147.1, 130.5, 118.7, 111.9,
343 108.1, 105.8, 104.3, 103.4, 102.8, 102.5, 102.4, 102.5, 102.5,
344 102.5, 102.7, 103.1, 103.8, 104.6, 105.4, 106.1, 107, 108.2,
345 109.9, 112.8, 117.5, 126, 140.4, 161, 181.9, 201.2, 216.8, 230.4,
346 241.8, 251.4, 259.9, 266.9, 272.8, 277.4, 280.4, 282.9, 284.6,
347 286.1, 287.4, 288.3, 289.5, 290.9, 294.2, 296.9, 297.5, 297.6},
348 {301.2, 300.3, 296.6, 295.4, 295, 294.3, 291.2, 287.4, 284.9, 284.7,
349 284.1, 281.5, 277.1, 270.4, 261.7, 250.6, 237.6, 223.1, 207.9, 192,
350 175.8, 158.8, 142.1, 127.6, 116.8, 109.9, 106, 103.6, 102.1, 101.1,
351 100.4, 99.96, 99.6, 99.37, 99.32, 99.32, 99.31, 99.46, 99.77, 100.2,
352 100.7, 101.3, 101.8, 102.7, 104.1, 106.8, 111.9, 121, 136.7, 160,
353 186.9, 209.9, 228.1, 241.2, 251.5, 259.5, 265.7, 270.9, 274.8, 278,
354 280.3, 281.8, 283, 283.3, 283.7, 283.8, 283, 282.2, 281.2, 281.4,
355 281.7, 281.1, 281.2}
356 };
357 memcpy(clim->tropo, tropo, sizeof(clim->tropo));
358
359 /* Get range... */
360 double tropomin = 1e99, tropomax = -1e99;
361 for (int it = 0; it < clim->tropo_ntime; it++)
362 for (int iy = 0; iy < clim->tropo_nlat; iy++) {
363 tropomin = MIN(tropomin, clim->tropo[it][iy]);
364 tropomax = MAX(tropomax, clim->tropo[it][iy]);
365 }
366
367 /* Write info... */
368 LOG(2, "Number of time steps: %d", clim->tropo_ntime);
369 LOG(2, "Time steps: %.2f, %.2f ... %.2f s",
370 clim->tropo_time[0], clim->tropo_time[1],
371 clim->tropo_time[clim->tropo_ntime - 1]);
372 LOG(2, "Number of latitudes: %d", clim->tropo_nlat);
373 LOG(2, "Latitudes: %g, %g ... %g deg",
374 clim->tropo_lat[0], clim->tropo_lat[1],
375 clim->tropo_lat[clim->tropo_nlat - 1]);
376 LOG(2, "Tropopause altitude range: %g ... %g hPa", Z(tropomax),
377 Z(tropomin));
378 LOG(2, "Tropopause pressure range: %g ... %g hPa", tropomin, tropomax);
379}
380
381/*****************************************************************************/
382
383double clim_ts(
384 const clim_ts_t *ts,
385 const double t) {
386
387 /* Interpolate... */
388 if (t <= ts->time[0])
389 return ts->vmr[0];
390 else if (t >= ts->time[ts->ntime - 1])
391 return ts->vmr[ts->ntime - 1];
392 else {
393 int idx = locate_irr(ts->time, ts->ntime, t);
394 return LIN(ts->time[idx], ts->vmr[idx],
395 ts->time[idx + 1], ts->vmr[idx + 1], t);
396 }
397}
398
399/*****************************************************************************/
400
401double clim_zm(
402 const clim_zm_t *zm,
403 const double t,
404 const double lat,
405 const double p) {
406
407 /* Get seconds since begin of year... */
408 double sec = FMOD(t, 365.25 * 86400.);
409 while (sec < 0)
410 sec += 365.25 * 86400.;
411
412 /* Check pressure range... */
413 double p_help = p;
414 if (p < zm->p[zm->np - 1])
415 p_help = zm->p[zm->np - 1];
416 else if (p > zm->p[0])
417 p_help = zm->p[0];
418
419 /* Check latitude range... */
420 double lat_help = lat;
421 if (lat < zm->lat[0])
422 lat_help = zm->lat[0];
423 else if (lat > zm->lat[zm->nlat - 1])
424 lat_help = zm->lat[zm->nlat - 1];
425
426 /* Get indices... */
427 const int isec = locate_irr(zm->time, zm->ntime, sec);
428 const int ilat = locate_reg(zm->lat, zm->nlat, lat_help);
429 const int ip = locate_irr(zm->p, zm->np, p_help);
430
431 /* Interpolate climatology data... */
432 double aux00 = LIN(zm->p[ip], zm->vmr[isec][ip][ilat],
433 zm->p[ip + 1], zm->vmr[isec][ip + 1][ilat], p_help);
434 double aux01 = LIN(zm->p[ip], zm->vmr[isec][ip][ilat + 1],
435 zm->p[ip + 1], zm->vmr[isec][ip + 1][ilat + 1], p_help);
436 double aux10 = LIN(zm->p[ip], zm->vmr[isec + 1][ip][ilat],
437 zm->p[ip + 1], zm->vmr[isec + 1][ip + 1][ilat], p_help);
438 double aux11 = LIN(zm->p[ip], zm->vmr[isec + 1][ip][ilat + 1],
439 zm->p[ip + 1], zm->vmr[isec + 1][ip + 1][ilat + 1],
440 p_help);
441 aux00 = LIN(zm->lat[ilat], aux00, zm->lat[ilat + 1], aux01, lat_help);
442 aux11 = LIN(zm->lat[ilat], aux10, zm->lat[ilat + 1], aux11, lat_help);
443 aux00 = LIN(zm->time[isec], aux00, zm->time[isec + 1], aux11, sec);
444
445 return MAX(aux00, 0.0);
446}
447
448/*****************************************************************************/
449
450#ifdef CMS
451void compress_cms(
452 const ctl_t *ctl,
453 const char *varname,
454 float *array,
455 const size_t nx,
456 const size_t ny,
457 const size_t np,
458 const int decompress,
459 FILE *inout) {
460
461 /* Set lon-lat grid... */
462 const size_t nxy = nx * ny;
463 double lon[EX], lat[EY];
464 for (size_t ix = 0; ix < nx; ix++)
465 lon[ix] = 360. * (double) ix / ((double) nx - 1.);
466 for (size_t iy = 0; iy < ny; iy++)
467 lat[iy] = -(180. * (double) iy / ((double) ny - 1.) - 90.);
468
469 /* Set multiscale parameters... */
470 const char domain[] = "[0.0, 360.0]x[-90.0, 90.0]";
471 const int Nd0_x = 6;
472 const int Nd0_y = 3;
473 const int max_level_grid = 7;
474 cms_param_t *cms_param
475 = cms_set_parameters(nx, ny, max_level_grid, Nd0_x, Nd0_y, domain);
476
477 /* Init... */
478 double cr = 0, t_coars = 0, t_eval = 0;
479
480 /* Read compressed stream and decompress array... */
481 if (decompress) {
482
483 /* Loop over levels... */
484 for (size_t ip = 0; ip < np; ip++) {
485
486 /* Initialize multiscale module... */
487 cms_module_t *cms_ptr = cms_init(cms_param);
488
489 /* Read binary data... */
490 cms_sol_t *cms_sol = cms_read_sol(cms_ptr, inout);
491
492 /* Evaluate... */
493#pragma omp parallel for default(shared)
494 for (size_t ix = 0; ix < nx; ix++)
495 for (size_t iy = 0; iy < ny; iy++) {
496 double val, x[] = { lon[ix], lat[iy] };
497 cms_eval(cms_ptr, cms_sol, x, &val);
498 array[ARRAY_3D(ix, iy, ny, ip, np)] = (float) val;
499 }
500
501 /* Calculate mean compression ratio... */
502 cr += cms_compression_rate(cms_ptr, cms_sol) / (double) np;
503
504 /* Free... */
505 cms_delete_sol(cms_sol);
506 cms_delete_module(cms_ptr);
507 }
508
509 /* Write info... */
510 LOG(2, "Read 3-D variable: %s (cms, RATIO= %g)", varname, cr);
511 }
512
513 /* Compress array and output compressed stream... */
514 else {
515
516 /* Init... */
517 cms_module_t *cms_ptr[EP];
518 cms_sol_t *cms_sol[EP];
519
520 /* Loop over batches... */
521 const size_t dip = (ctl->met_cms_batch <= 0
522 ? (size_t) omp_get_max_threads()
523 : (size_t) ctl->met_cms_batch);
524 for (size_t ip0 = 0; ip0 < np; ip0 += dip) {
525
526 /* Measure time... */
527 double t0 = omp_get_wtime();
528
529 /* Loop over levels... */
530#pragma omp parallel for default(shared)
531 for (size_t ip = ip0; ip < MIN(ip0 + dip, np); ip++) {
532
533 /* Allocate... */
534 float *tmp_arr;
535 ALLOC(tmp_arr, float,
536 nxy);
537
538 /* Copy level data... */
539 for (size_t ix = 0; ix < nx; ++ix)
540 for (size_t iy = 0; iy < ny; ++iy)
541 tmp_arr[ARRAY_2D(ix, iy, ny)] =
542 array[ARRAY_3D(ix, iy, ny, ip, np)];
543
544 /* Initialize multiscale module... */
545 cms_ptr[ip] = cms_init(cms_param);
546
547 /* Create solution pointer... */
548 cms_sol[ip] = cms_read_arr(cms_ptr[ip], tmp_arr, lon, lat, nx, ny);
549
550 /* Set eps threshold value... */
551 if (strcasecmp(varname, "Z") == 0)
552 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_z);
553 else if (strcasecmp(varname, "T") == 0)
554 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_t);
555 else if (strcasecmp(varname, "U") == 0)
556 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_u);
557 else if (strcasecmp(varname, "V") == 0)
558 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_v);
559 else if (strcasecmp(varname, "W") == 0)
560 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_w);
561 else if (strcasecmp(varname, "PV") == 0)
562 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_pv);
563 else if (strcasecmp(varname, "H2O") == 0)
564 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_h2o);
565 else if (strcasecmp(varname, "O3") == 0)
566 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_o3);
567 else if (strcasecmp(varname, "LWC") == 0)
568 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_lwc);
569 else if (strcasecmp(varname, "RWC") == 0)
570 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_rwc);
571 else if (strcasecmp(varname, "IWC") == 0)
572 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_iwc);
573 else if (strcasecmp(varname, "SWC") == 0)
574 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_swc);
575 else if (strcasecmp(varname, "CC") == 0)
576 cms_set_eps(cms_ptr[ip], ctl->met_cms_eps_cc);
577 else
578 ERRMSG("Variable name unknown!");
579
580 /* Coarsening... */
581 cms_coarsening(cms_ptr[ip], cms_sol[ip],
582 (unsigned int) ctl->met_cms_heur);
583
584 /* Free... */
585 free(tmp_arr);
586 }
587
588 /* Measure time... */
589 t_coars += (omp_get_wtime() - t0);
590
591 /* Loop over levels... */
592 for (size_t ip = ip0; ip < MIN(ip0 + dip, np); ip++) {
593
594 /* Allocate... */
595 double *tmp_cms, *tmp_org, *tmp_diff;
596 ALLOC(tmp_cms, double,
597 nxy);
598 ALLOC(tmp_org, double,
599 nxy);
600 ALLOC(tmp_diff, double,
601 nxy);
602
603 /* Measure time... */
604 t0 = omp_get_wtime();
605
606 /* Evaluate... */
607#pragma omp parallel for default(shared)
608 for (size_t ix = 0; ix < nx; ix++)
609 for (size_t iy = 0; iy < ny; iy++) {
610 size_t idx = ARRAY_2D(ix, iy, ny);
611 double x[] = { lon[ix], lat[iy] };
612 cms_eval(cms_ptr[ip], cms_sol[ip], x, &tmp_cms[idx]);
613 tmp_org[idx] = array[ARRAY_3D(ix, iy, ny, ip, np)];
614 tmp_diff[idx] = tmp_cms[idx] - tmp_org[idx];
615 }
616
617 /* Measure time... */
618 t_eval += (omp_get_wtime() - t0);
619
620 /* Write info... */
621 LOG(2,
622 "cmultiscale: var= %s / lev= %lu / ratio= %g / rho= %g"
623 " / mean= %g / sd= %g / min= %g / max= %g", varname, ip,
624 cms_compression_rate(cms_ptr[ip], cms_sol[ip]),
625 gsl_stats_correlation(tmp_cms, 1, tmp_org, 1, nxy),
626 gsl_stats_mean(tmp_diff, 1, nxy), gsl_stats_sd(tmp_diff, 1, nxy),
627 gsl_stats_min(tmp_diff, 1, nxy), gsl_stats_max(tmp_diff, 1, nxy));
628
629 /* Calculate mean compression ratio... */
630 cr += cms_compression_rate(cms_ptr[ip], cms_sol[ip]) / (double) np;
631
632 /* Save binary data... */
633 cms_save_sol(cms_sol[ip], inout);
634
635 /* Free... */
636 cms_delete_sol(cms_sol[ip]);
637 cms_delete_module(cms_ptr[ip]);
638 free(tmp_cms);
639 free(tmp_org);
640 free(tmp_diff);
641 }
642 }
643
644 /* Write info... */
645 LOG(2, "Write 3-D variable: %s"
646 " (cms, RATIO= %g, T_COARS= %g s, T_EVAL= %g s)",
647 varname, cr, t_coars, t_eval);
648 }
649
650 /* Free... */
651 cms_delete_param(cms_param);
652}
653#endif
654
655/*****************************************************************************/
656
658 const char *varname,
659 float *array,
660 const size_t nxy,
661 const size_t nz,
662 const int decompress,
663 FILE *inout) {
664
665 double min[EP], max[EP], off[EP], scl[EP];
666
667 unsigned short *sarray;
668
669 /* Allocate... */
670 ALLOC(sarray, unsigned short,
671 nxy * nz);
672
673 /* Read compressed stream and decompress array... */
674 if (decompress) {
675
676 /* Write info... */
677 LOG(2, "Read 3-D variable: %s (pck, RATIO= %g)",
678 varname, (double) sizeof(float) / (double) sizeof(unsigned short));
679
680 /* Read data... */
681 FREAD(&scl, double,
682 nz,
683 inout);
684 FREAD(&off, double,
685 nz,
686 inout);
687 FREAD(sarray, unsigned short,
688 nxy * nz,
689 inout);
690
691 /* Convert to float... */
692#pragma omp parallel for default(shared)
693 for (size_t ixy = 0; ixy < nxy; ixy++)
694 for (size_t iz = 0; iz < nz; iz++)
695 array[ixy * nz + iz]
696 = (float) (sarray[ixy * nz + iz] * scl[iz] + off[iz]);
697 }
698
699 /* Compress array and output compressed stream... */
700 else {
701
702 /* Write info... */
703 LOG(2, "Write 3-D variable: %s (pck, RATIO= %g)",
704 varname, (double) sizeof(float) / (double) sizeof(unsigned short));
705
706 /* Get range... */
707 for (size_t iz = 0; iz < nz; iz++) {
708 min[iz] = array[iz];
709 max[iz] = array[iz];
710 }
711 for (size_t ixy = 1; ixy < nxy; ixy++)
712 for (size_t iz = 0; iz < nz; iz++) {
713 if (array[ixy * nz + iz] < min[iz])
714 min[iz] = array[ixy * nz + iz];
715 if (array[ixy * nz + iz] > max[iz])
716 max[iz] = array[ixy * nz + iz];
717 }
718
719 /* Get offset and scaling factor... */
720 for (size_t iz = 0; iz < nz; iz++) {
721 scl[iz] = (max[iz] - min[iz]) / 65533.;
722 off[iz] = min[iz];
723 }
724
725 /* Convert to short... */
726#pragma omp parallel for default(shared)
727 for (size_t ixy = 0; ixy < nxy; ixy++)
728 for (size_t iz = 0; iz < nz; iz++)
729 if (scl[iz] != 0)
730 sarray[ixy * nz + iz] = (unsigned short)
731 ((array[ixy * nz + iz] - off[iz]) / scl[iz] + .5);
732 else
733 sarray[ixy * nz + iz] = 0;
734
735 /* Write data... */
736 FWRITE(&scl, double,
737 nz,
738 inout);
739 FWRITE(&off, double,
740 nz,
741 inout);
742 FWRITE(sarray, unsigned short,
743 nxy * nz,
744 inout);
745 }
746
747 /* Free... */
748 free(sarray);
749}
750
751/*****************************************************************************/
752
753#ifdef ZFP
754void compress_zfp(
755 const char *varname,
756 float *array,
757 const int nx,
758 const int ny,
759 const int nz,
760 const int precision,
761 const double tolerance,
762 const int decompress,
763 FILE *inout) {
764
765 zfp_field *field; /* array meta data */
766 zfp_stream *zfp; /* compressed stream */
767 void *buffer; /* storage for compressed stream */
768 size_t bufsize; /* byte size of compressed buffer */
769 bitstream *stream; /* bit stream to write to or read from */
770 size_t zfpsize; /* byte size of compressed stream */
771
772 /* Allocate meta data for the 3D array a[nz][ny][nx]... */
773 const zfp_type type = zfp_type_float;
774 field = zfp_field_3d(array, type, (uint) nx, (uint) ny, (uint) nz);
775
776 /* Allocate meta data for a compressed stream... */
777 zfp = zfp_stream_open(NULL);
778
779 /* Set compression mode... */
780 int actual_prec = 0;
781 double actual_tol = 0;
782 if (precision > 0)
783 actual_prec = (int) zfp_stream_set_precision(zfp, (uint) precision);
784 else if (tolerance > 0)
785 actual_tol = zfp_stream_set_accuracy(zfp, tolerance);
786 else
787 ERRMSG("Set precision or tolerance!");
788
789 /* Allocate buffer for compressed data... */
790 bufsize = zfp_stream_maximum_size(zfp, field);
791 buffer = malloc(bufsize);
792
793 /* Associate bit stream with allocated buffer... */
794 stream = stream_open(buffer, bufsize);
795 zfp_stream_set_bit_stream(zfp, stream);
796 zfp_stream_rewind(zfp);
797
798 /* Read compressed stream and decompress array... */
799 if (decompress) {
800 FREAD(&zfpsize, size_t,
801 1,
802 inout);
803 if (fread(buffer, 1, zfpsize, inout) != zfpsize)
804 ERRMSG("Error while reading zfp data!");
805 if (!zfp_decompress(zfp, field)) {
806 ERRMSG("Decompression failed!");
807 }
808 LOG(2, "Read 3-D variable: %s "
809 "(zfp, PREC= %d, TOL= %g, RATIO= %g)",
810 varname, actual_prec, actual_tol,
811 ((double) (nx * ny * nz)) / (double) zfpsize);
812 }
813
814 /* Compress array and output compressed stream... */
815 else {
816 zfpsize = zfp_compress(zfp, field);
817 if (!zfpsize) {
818 ERRMSG("Compression failed!");
819 } else {
820 FWRITE(&zfpsize, size_t,
821 1,
822 inout);
823 if (fwrite(buffer, 1, zfpsize, inout) != zfpsize)
824 ERRMSG("Error while writing zfp data!");
825 }
826 LOG(2, "Write 3-D variable: %s "
827 "(zfp, PREC= %d, TOL= %g, RATIO= %g)",
828 varname, actual_prec, actual_tol,
829 ((double) (nx * ny * nz)) / (double) zfpsize);
830 }
831
832 /* Free... */
833 zfp_field_free(field);
834 zfp_stream_close(zfp);
835 stream_close(stream);
836 free(buffer);
837}
838#endif
839
840/*****************************************************************************/
841
842#ifdef ZSTD
843void compress_zstd(
844 const char *varname,
845 float *array,
846 const size_t n,
847 const int decompress,
848 FILE *inout) {
849
850 /* Get buffer sizes... */
851 size_t uncomprLen = n * sizeof(float);
852 size_t comprLen = ZSTD_compressBound(uncomprLen);
853 size_t compsize;
854
855 /* Allocate... */
856 char *compr = (char *) calloc((uint) comprLen, 1);
857 char *uncompr = (char *) array;
858
859 /* Read compressed stream and decompress array... */
860 if (decompress) {
861 FREAD(&comprLen, size_t,
862 1,
863 inout);
864 if (fread(compr, 1, comprLen, inout) != comprLen)
865 ERRMSG("Error while reading zstd data!");
866 compsize = ZSTD_decompress(uncompr, uncomprLen, compr, comprLen);
867 if (ZSTD_isError(compsize)) {
868 ERRMSG("Decompression failed!");
869 }
870 LOG(2, "Read 3-D variable: %s (zstd, RATIO= %g)",
871 varname, ((double) uncomprLen) / (double) comprLen)
872 }
873
874 /* Compress array and output compressed stream... */
875 else {
876 compsize = ZSTD_compress(compr, comprLen, uncompr, uncomprLen, 0);
877 if (ZSTD_isError(compsize)) {
878 ERRMSG("Compression failed!");
879 } else {
880 FWRITE(&compsize, size_t,
881 1,
882 inout);
883 if (fwrite(compr, 1, compsize, inout) != compsize)
884 ERRMSG("Error while writing zstd data!");
885 }
886 LOG(2, "Write 3-D variable: %s (zstd, RATIO= %g)",
887 varname, ((double) uncomprLen) / (double) compsize);
888 }
889
890 /* Free... */
891 free(compr);
892}
893#endif
894
895/*****************************************************************************/
896
898 const int year,
899 const int mon,
900 const int day,
901 int *doy) {
902
903 const int
904 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
905 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
906
907 /* Get day of year... */
908 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0))
909 *doy = d0l[mon - 1] + day - 1;
910 else
911 *doy = d0[mon - 1] + day - 1;
912}
913
914/*****************************************************************************/
915
917 const int year,
918 const int doy,
919 int *mon,
920 int *day) {
921
922 const int
923 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
924 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
925
926 int i;
927
928 /* Get month and day... */
929 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) {
930 for (i = 11; i > 0; i--)
931 if (d0l[i] <= doy)
932 break;
933 *mon = i + 1;
934 *day = doy - d0l[i] + 1;
935 } else {
936 for (i = 11; i > 0; i--)
937 if (d0[i] <= doy)
938 break;
939 *mon = i + 1;
940 *day = doy - d0[i] + 1;
941 }
942}
943
944/*****************************************************************************/
945
947 double *fcReal,
948 double *fcImag,
949 const int n) {
950
951 double data[2 * EX];
952
953 /* Check size... */
954 if (n > EX)
955 ERRMSG("Too many data points!");
956
957 /* Allocate... */
958 gsl_fft_complex_wavetable *wavetable =
959 gsl_fft_complex_wavetable_alloc((size_t) n);
960 gsl_fft_complex_workspace *workspace =
961 gsl_fft_complex_workspace_alloc((size_t) n);
962
963 /* Set data (real, complex)... */
964 for (int i = 0; i < n; i++) {
965 data[2 * i] = fcReal[i];
966 data[2 * i + 1] = fcImag[i];
967 }
968
969 /* Calculate FFT... */
970 gsl_fft_complex_forward(data, 1, (size_t) n, wavetable, workspace);
971
972 /* Copy data... */
973 for (int i = 0; i < n; i++) {
974 fcReal[i] = data[2 * i];
975 fcImag[i] = data[2 * i + 1];
976 }
977
978 /* Free... */
979 gsl_fft_complex_wavetable_free(wavetable);
980 gsl_fft_complex_workspace_free(workspace);
981}
982
983/*****************************************************************************/
984
986 const double z,
987 const double lon,
988 const double lat,
989 double *x) {
990
991 const double radius = z + RE;
992 const double latrad = DEG2RAD(lat);
993 const double lonrad = DEG2RAD(lon);
994 const double coslat = cos(latrad);
995
996 x[0] = radius * coslat * cos(lonrad);
997 x[1] = radius * coslat * sin(lonrad);
998 x[2] = radius * sin(latrad);
999}
1000
1001/*****************************************************************************/
1002
1004 const ctl_t *ctl,
1005 const double t,
1006 const int direct,
1007 const char *metbase,
1008 const double dt_met,
1009 char *filename) {
1010
1011 char repl[LEN];
1012
1013 double t6, r;
1014
1015 int year, mon, day, hour, min, sec;
1016
1017 /* Round time to fixed intervals... */
1018 if (direct == -1)
1019 t6 = floor(t / dt_met) * dt_met;
1020 else
1021 t6 = ceil(t / dt_met) * dt_met;
1022
1023 /* Decode time... */
1024 jsec2time(t6, &year, &mon, &day, &hour, &min, &sec, &r);
1025
1026 /* Set filename of MPTRAC meteo files... */
1027 if (ctl->met_clams == 0) {
1028 if (ctl->met_type == 0)
1029 sprintf(filename, "%s_YYYY_MM_DD_HH.nc", metbase);
1030 else if (ctl->met_type == 1)
1031 sprintf(filename, "%s_YYYY_MM_DD_HH.bin", metbase);
1032 else if (ctl->met_type == 2)
1033 sprintf(filename, "%s_YYYY_MM_DD_HH.pck", metbase);
1034 else if (ctl->met_type == 3)
1035 sprintf(filename, "%s_YYYY_MM_DD_HH.zfp", metbase);
1036 else if (ctl->met_type == 4)
1037 sprintf(filename, "%s_YYYY_MM_DD_HH.zstd", metbase);
1038 else if (ctl->met_type == 5)
1039 sprintf(filename, "%s_YYYY_MM_DD_HH.cms", metbase);
1040 sprintf(repl, "%d", year);
1041 get_met_replace(filename, "YYYY", repl);
1042 sprintf(repl, "%02d", mon);
1043 get_met_replace(filename, "MM", repl);
1044 sprintf(repl, "%02d", day);
1045 get_met_replace(filename, "DD", repl);
1046 sprintf(repl, "%02d", hour);
1047 get_met_replace(filename, "HH", repl);
1048 }
1049
1050 /* Set filename of CLaMS meteo files... */
1051 else {
1052 sprintf(filename, "%s_YYMMDDHH.nc", metbase);
1053 sprintf(repl, "%d", year);
1054 get_met_replace(filename, "YYYY", repl);
1055 sprintf(repl, "%02d", year % 100);
1056 get_met_replace(filename, "YY", repl);
1057 sprintf(repl, "%02d", mon);
1058 get_met_replace(filename, "MM", repl);
1059 sprintf(repl, "%02d", day);
1060 get_met_replace(filename, "DD", repl);
1061 sprintf(repl, "%02d", hour);
1062 get_met_replace(filename, "HH", repl);
1063 }
1064}
1065
1066/*****************************************************************************/
1067
1069 char *orig,
1070 char *search,
1071 char *repl) {
1072
1073 char buffer[LEN];
1074
1075 /* Iterate... */
1076 for (int i = 0; i < 3; i++) {
1077
1078 /* Replace sub-string... */
1079 char *ch;
1080 if (!(ch = strstr(orig, search)))
1081 return;
1082 strncpy(buffer, orig, (size_t) (ch - orig));
1083 buffer[ch - orig] = 0;
1084 sprintf(buffer + (ch - orig), "%s%s", repl, ch + strlen(search));
1085 orig[0] = 0;
1086 strcpy(orig, buffer);
1087 }
1088}
1089
1090/*****************************************************************************/
1091
1093 const int met_tropo,
1094 ctl_t *ctl,
1095 clim_t *clim,
1096 met_t *met,
1097 const double *lons,
1098 const int nx,
1099 const double *lats,
1100 const int ny,
1101 double *pt,
1102 double *zt,
1103 double *tt,
1104 double *qt,
1105 double *o3t,
1106 double *ps,
1107 double *zs) {
1108
1110
1111 ctl->met_tropo = met_tropo;
1112 read_met_tropo(ctl, clim, met);
1113#pragma omp parallel for default(shared) private(ci,cw)
1114 for (int ix = 0; ix < nx; ix++)
1115 for (int iy = 0; iy < ny; iy++) {
1116 intpol_met_space_2d(met, met->pt, lons[ix], lats[iy],
1117 &pt[iy * nx + ix], ci, cw, 1);
1118 intpol_met_space_2d(met, met->ps, lons[ix], lats[iy],
1119 &ps[iy * nx + ix], ci, cw, 0);
1120 intpol_met_space_2d(met, met->zs, lons[ix], lats[iy],
1121 &zs[iy * nx + ix], ci, cw, 0);
1122 intpol_met_space_3d(met, met->z, pt[iy * nx + ix], lons[ix],
1123 lats[iy], &zt[iy * nx + ix], ci, cw, 1);
1124 intpol_met_space_3d(met, met->t, pt[iy * nx + ix], lons[ix],
1125 lats[iy], &tt[iy * nx + ix], ci, cw, 0);
1126 intpol_met_space_3d(met, met->h2o, pt[iy * nx + ix], lons[ix],
1127 lats[iy], &qt[iy * nx + ix], ci, cw, 0);
1128 intpol_met_space_3d(met, met->o3, pt[iy * nx + ix], lons[ix],
1129 lats[iy], &o3t[iy * nx + ix], ci, cw, 0);
1130 }
1131}
1132
1133/*****************************************************************************/
1134
1136 const met_t *met0,
1137 float heights0[EX][EY][EP],
1138 float array0[EX][EY][EP],
1139 const met_t *met1,
1140 float heights1[EX][EY][EP],
1141 float array1[EX][EY][EP],
1142 const double ts,
1143 const double height,
1144 const double lon,
1145 const double lat,
1146 double *var,
1147 int *ci,
1148 double *cw,
1149 const int init) {
1150
1151 if (init) {
1152
1153 /* Check longitude... */
1154 double lon2 = FMOD(lon, 360.);
1155 if (lon2 < met0->lon[0])
1156 lon2 += 360;
1157 else if (lon2 > met0->lon[met0->nx - 1])
1158 lon2 -= 360;
1159
1160 /* Get horizontal indizes... */
1161 ci[0] = locate_irr(met0->lon, met0->nx, lon2);
1162 ci[1] = locate_irr(met0->lat, met0->ny, lat);
1163
1164 /* Locate the vertical indizes for each edge of the column... */
1165 int ind[2][4];
1166 locate_vert(heights0, met0->npl, ci[0], ci[1], height, ind[0]);
1167 locate_vert(heights1, met1->npl, ci[0], ci[1], height, ind[1]);
1168
1169 /* Find minimum and maximum indizes... */
1170 ci[2] = ind[0][0];
1171 int k_max = ind[0][0];
1172 for (int i = 0; i < 2; i++)
1173 for (int j = 0; j < 4; j++) {
1174 if (ci[2] > ind[i][j])
1175 ci[2] = ind[i][j];
1176 if (k_max < ind[i][j])
1177 k_max = ind[i][j];
1178 }
1179
1180 /* Get weighting factors for time, longitude and latitude... */
1181 cw[3] = (ts - met0->time) / (met1->time - met0->time);
1182 cw[0] = (lon2 - met0->lon[ci[0]]) /
1183 (met0->lon[ci[0] + 1] - met0->lon[ci[0]]);
1184 cw[1] = (lat - met0->lat[ci[1]]) /
1185 (met0->lat[ci[1] + 1] - met0->lat[ci[1]]);
1186
1187 /* Start determiniation of the altitude weighting factor... */
1188 double height_top, height_bot;
1189 double height00, height01, height10, height11, height0, height1;
1190
1191 /* Interpolate in time at the lowest level... */
1192 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2]]
1193 - heights0[ci[0]][ci[1]][ci[2]])
1194 + heights0[ci[0]][ci[1]][ci[2]];
1195 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2]]
1196 - heights0[ci[0]][ci[1] + 1][ci[2]])
1197 + heights0[ci[0]][ci[1] + 1][ci[2]];
1198 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2]]
1199 - heights0[ci[0] + 1][ci[1]][ci[2]])
1200 + heights0[ci[0] + 1][ci[1]][ci[2]];
1201 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2]]
1202 - heights0[ci[0] + 1][ci[1] + 1][ci[2]])
1203 + heights0[ci[0] + 1][ci[1] + 1][ci[2]];
1204
1205 /* Interpolate in latitude direction... */
1206 height0 = cw[1] * (height01 - height00) + height00;
1207 height1 = cw[1] * (height11 - height10) + height10;
1208
1209 /* Interpolate in longitude direction... */
1210 height_bot = cw[0] * (height1 - height0) + height0;
1211
1212 /* Interpolate in time at the upper level... */
1213 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
1214 - heights0[ci[0]][ci[1]][ci[2] + 1])
1215 + heights0[ci[0]][ci[1]][ci[2] + 1];
1216 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
1217 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
1218 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
1219 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
1220 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
1221 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
1222 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1223 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1224 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1225
1226 /* Interpolate in latitude direction... */
1227 height0 = cw[1] * (height01 - height00) + height00;
1228 height1 = cw[1] * (height11 - height10) + height10;
1229
1230 /* Interpolate in longitude direction... */
1231 height_top = cw[0] * (height1 - height0) + height0;
1232
1233 /* Search at higher levels if height is not in box... */
1234 while (((heights0[0][0][0] > heights0[0][0][1]) &&
1235 ((height_bot <= height) || (height_top > height))
1236 && (height_bot >= height) && (ci[2] < k_max))
1237 ||
1238 ((heights0[0][0][0] < heights0[0][0][1]) &&
1239 ((height_bot >= height) || (height_top < height))
1240 && (height_bot <= height) && (ci[2] < k_max))
1241 ) {
1242
1243 ci[2]++;
1244 height_bot = height_top;
1245
1246 /* Interpolate in time at the next level... */
1247 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
1248 - heights0[ci[0]][ci[1]][ci[2] + 1])
1249 + heights0[ci[0]][ci[1]][ci[2] + 1];
1250 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
1251 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
1252 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
1253 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
1254 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
1255 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
1256 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1257 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1258 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1259
1260 /* Interpolate in latitude direction... */
1261 height0 = cw[1] * (height01 - height00) + height00;
1262 height1 = cw[1] * (height11 - height10) + height10;
1263
1264 /* Interpolate in longitude direction... */
1265 height_top = cw[0] * (height1 - height0) + height0;
1266 }
1267
1268 /* Get vertical weighting factors... */
1269 cw[2] = (height - height_bot)
1270 / (height_top - height_bot);
1271 }
1272
1273 /* Calculate the needed array values... */
1274 double array000 = cw[3] * (array1[ci[0]][ci[1]][ci[2]]
1275 - array0[ci[0]][ci[1]][ci[2]])
1276 + array0[ci[0]][ci[1]][ci[2]];
1277 double array100 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2]]
1278 - array0[ci[0] + 1][ci[1]][ci[2]])
1279 + array0[ci[0] + 1][ci[1]][ci[2]];
1280 double array010 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2]]
1281 - array0[ci[0]][ci[1] + 1][ci[2]])
1282 + array0[ci[0]][ci[1] + 1][ci[2]];
1283 double array110 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2]]
1284 - array0[ci[0] + 1][ci[1] + 1][ci[2]])
1285 + array0[ci[0] + 1][ci[1] + 1][ci[2]];
1286 double array001 = cw[3] * (array1[ci[0]][ci[1]][ci[2] + 1]
1287 - array0[ci[0]][ci[1]][ci[2] + 1])
1288 + array0[ci[0]][ci[1]][ci[2] + 1];
1289 double array101 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2] + 1]
1290 - array0[ci[0] + 1][ci[1]][ci[2] + 1])
1291 + array0[ci[0] + 1][ci[1]][ci[2] + 1];
1292 double array011 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2] + 1]
1293 - array0[ci[0]][ci[1] + 1][ci[2] + 1])
1294 + array0[ci[0]][ci[1] + 1][ci[2] + 1];
1295 double array111 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1296 - array0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1297 + array0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1298
1299 double array00 = cw[0] * (array100 - array000) + array000;
1300 double array10 = cw[0] * (array110 - array010) + array010;
1301 double array01 = cw[0] * (array101 - array001) + array001;
1302 double array11 = cw[0] * (array111 - array011) + array011;
1303
1304 double aux0 = cw[1] * (array10 - array00) + array00;
1305 double aux1 = cw[1] * (array11 - array01) + array01;
1306
1307 /* Interpolate vertically... */
1308 *var = cw[2] * (aux1 - aux0) + aux0;
1309}
1310
1311/*****************************************************************************/
1312
1314 const met_t *met,
1315 float array[EX][EY][EP],
1316 const double p,
1317 const double lon,
1318 const double lat,
1319 double *var,
1320 int *ci,
1321 double *cw,
1322 const int init) {
1323
1324 /* Initialize interpolation... */
1325 if (init) {
1326
1327 /* Check longitude... */
1328 double lon2 = FMOD(lon, 360.);
1329 if (lon2 < met->lon[0])
1330 lon2 += 360;
1331 else if (lon2 > met->lon[met->nx - 1])
1332 lon2 -= 360;
1333
1334 /* Get interpolation indices... */
1335 ci[0] = locate_irr(met->p, met->np, p);
1336 ci[1] = locate_reg(met->lon, met->nx, lon2);
1337 ci[2] = locate_reg(met->lat, met->ny, lat);
1338
1339 /* Get interpolation weights... */
1340 cw[0] = (met->p[ci[0] + 1] - p)
1341 / (met->p[ci[0] + 1] - met->p[ci[0]]);
1342 cw[1] = (met->lon[ci[1] + 1] - lon2)
1343 / (met->lon[ci[1] + 1] - met->lon[ci[1]]);
1344 cw[2] = (met->lat[ci[2] + 1] - lat)
1345 / (met->lat[ci[2] + 1] - met->lat[ci[2]]);
1346 }
1347
1348 /* Interpolate vertically... */
1349 double aux00 =
1350 cw[0] * (array[ci[1]][ci[2]][ci[0]] - array[ci[1]][ci[2]][ci[0] + 1])
1351 + array[ci[1]][ci[2]][ci[0] + 1];
1352 double aux01 =
1353 cw[0] * (array[ci[1]][ci[2] + 1][ci[0]] -
1354 array[ci[1]][ci[2] + 1][ci[0] + 1])
1355 + array[ci[1]][ci[2] + 1][ci[0] + 1];
1356 double aux10 =
1357 cw[0] * (array[ci[1] + 1][ci[2]][ci[0]] -
1358 array[ci[1] + 1][ci[2]][ci[0] + 1])
1359 + array[ci[1] + 1][ci[2]][ci[0] + 1];
1360 double aux11 =
1361 cw[0] * (array[ci[1] + 1][ci[2] + 1][ci[0]] -
1362 array[ci[1] + 1][ci[2] + 1][ci[0] + 1])
1363 + array[ci[1] + 1][ci[2] + 1][ci[0] + 1];
1364
1365 /* Interpolate horizontally... */
1366 aux00 = cw[2] * (aux00 - aux01) + aux01;
1367 aux11 = cw[2] * (aux10 - aux11) + aux11;
1368 *var = cw[1] * (aux00 - aux11) + aux11;
1369}
1370
1371/*****************************************************************************/
1372
1374 const met_t *met,
1375 float zs[EX][EY][EP],
1376 float array[EX][EY][EP],
1377 const double z,
1378 const double lon,
1379 const double lat,
1380 double *var) {
1381
1382 /* Check longitude... */
1383 double lon2 = FMOD(lon, 360.);
1384 if (lon2 < met->lon[0])
1385 lon2 += 360;
1386 else if (lon2 > met->lon[met->nx - 1])
1387 lon2 -= 360;
1388
1389 /* Get horizontal indices... */
1390 int ix = locate_reg(met->lon, met->nx, lon2);
1391 int iy = locate_reg(met->lat, met->ny, lat);
1392
1393 /* Interpolate vertically... */
1394 int iz = locate_irr_float(zs[ix][iy], met->npl, z, 0);
1395 double aux00;
1396 if (z >= zs[ix][iy][iz + 1])
1397 aux00 = array[ix][iy][iz + 1];
1398 else if (z <= zs[ix][iy][iz])
1399 aux00 = array[ix][iy][iz];
1400 else
1401 aux00 = LIN(zs[ix][iy][iz], array[ix][iy][iz],
1402 zs[ix][iy][iz + 1], array[ix][iy][iz + 1], z);
1403
1404 iz = locate_irr_float(zs[ix][iy + 1], met->npl, z, iz);
1405 double aux01;
1406 if (z >= zs[ix][iy + 1][iz + 1])
1407 aux01 = array[ix][iy + 1][iz + 1];
1408 else if (z <= zs[ix][iy + 1][iz])
1409 aux01 = array[ix][iy + 1][iz];
1410 else
1411 aux01 = LIN(zs[ix][iy + 1][iz], array[ix][iy + 1][iz],
1412 zs[ix][iy + 1][iz + 1], array[ix][iy + 1][iz + 1], z);
1413
1414 iz = locate_irr_float(zs[ix + 1][iy], met->npl, z, iz);
1415 double aux10;
1416 if (z >= zs[ix + 1][iy][iz + 1])
1417 aux10 = array[ix + 1][iy][iz + 1];
1418 else if (z <= zs[ix + 1][iy][iz])
1419 aux10 = array[ix + 1][iy][iz];
1420 else
1421 aux10 = LIN(zs[ix + 1][iy][iz], array[ix + 1][iy][iz],
1422 zs[ix + 1][iy][iz + 1], array[ix + 1][iy][iz + 1], z);
1423
1424 iz = locate_irr_float(zs[ix + 1][iy + 1], met->npl, z, iz);
1425 double aux11;
1426 if (z >= zs[ix + 1][iy + 1][iz + 1])
1427 aux11 = array[ix + 1][iy + 1][iz + 1];
1428 else if (z <= zs[ix + 1][iy + 1][iz])
1429 aux11 = array[ix + 1][iy + 1][iz];
1430 else
1431 aux11 = LIN(zs[ix + 1][iy + 1][iz], array[ix + 1][iy + 1][iz],
1432 zs[ix + 1][iy + 1][iz + 1], array[ix + 1][iy + 1][iz + 1], z);
1433
1434 /* Interpolate horizontally... */
1435 double aux0 = LIN(met->lat[iy], aux00, met->lat[iy + 1], aux01, lat);
1436 double aux1 = LIN(met->lat[iy], aux10, met->lat[iy + 1], aux11, lat);
1437 *var = LIN(met->lon[ix], aux0, met->lon[ix + 1], aux1, lon2);
1438}
1439
1440/*****************************************************************************/
1441
1443 const met_t *met,
1444 float array[EX][EY],
1445 const double lon,
1446 const double lat,
1447 double *var,
1448 int *ci,
1449 double *cw,
1450 const int init) {
1451
1452 /* Initialize interpolation... */
1453 if (init) {
1454
1455 /* Check longitude... */
1456 double lon2 = FMOD(lon, 360.);
1457 if (lon2 < met->lon[0])
1458 lon2 += 360;
1459 else if (lon2 > met->lon[met->nx - 1])
1460 lon2 -= 360;
1461
1462 /* Get interpolation indices... */
1463 ci[1] = locate_reg(met->lon, met->nx, lon2);
1464 ci[2] = locate_reg(met->lat, met->ny, lat);
1465
1466 /* Get interpolation weights... */
1467 cw[1] = (met->lon[ci[1] + 1] - lon2)
1468 / (met->lon[ci[1] + 1] - met->lon[ci[1]]);
1469 cw[2] = (met->lat[ci[2] + 1] - lat)
1470 / (met->lat[ci[2] + 1] - met->lat[ci[2]]);
1471 }
1472
1473 /* Set variables... */
1474 double aux00 = array[ci[1]][ci[2]];
1475 double aux01 = array[ci[1]][ci[2] + 1];
1476 double aux10 = array[ci[1] + 1][ci[2]];
1477 double aux11 = array[ci[1] + 1][ci[2] + 1];
1478
1479 /* Interpolate horizontally... */
1480 if (isfinite(aux00) && isfinite(aux01)
1481 && isfinite(aux10) && isfinite(aux11)) {
1482 aux00 = cw[2] * (aux00 - aux01) + aux01;
1483 aux11 = cw[2] * (aux10 - aux11) + aux11;
1484 *var = cw[1] * (aux00 - aux11) + aux11;
1485 } else {
1486 if (cw[2] < 0.5) {
1487 if (cw[1] < 0.5)
1488 *var = aux11;
1489 else
1490 *var = aux01;
1491 } else {
1492 if (cw[1] < 0.5)
1493 *var = aux10;
1494 else
1495 *var = aux00;
1496 }
1497 }
1498}
1499
1500/*****************************************************************************/
1501
1503 const met_t *met0,
1504 float array0[EX][EY][EP],
1505 const met_t *met1,
1506 float array1[EX][EY][EP],
1507 const double ts,
1508 const double p,
1509 const double lon,
1510 const double lat,
1511 double *var,
1512 int *ci,
1513 double *cw,
1514 const int init) {
1515
1516 double var0, var1;
1517
1518 /* Spatial interpolation... */
1519 intpol_met_space_3d(met0, array0, p, lon, lat, &var0, ci, cw, init);
1520 intpol_met_space_3d(met1, array1, p, lon, lat, &var1, ci, cw, 0);
1521
1522 /* Get weighting factor... */
1523 const double wt = (met1->time - ts) / (met1->time - met0->time);
1524
1525 /* Interpolate... */
1526 *var = wt * (var0 - var1) + var1;
1527}
1528
1529/*****************************************************************************/
1530
1532 const met_t *met0,
1533 float zs0[EX][EY][EP],
1534 float array0[EX][EY][EP],
1535 const met_t *met1,
1536 float zs1[EX][EY][EP],
1537 float array1[EX][EY][EP],
1538 const double ts,
1539 const double p,
1540 const double lon,
1541 const double lat,
1542 double *var) {
1543
1544 double var0, var1;
1545
1546 /* Spatial interpolation... */
1547 intpol_met_space_3d_ml(met0, zs0, array0, p, lon, lat, &var0);
1548 intpol_met_space_3d_ml(met1, zs1, array1, p, lon, lat, &var1);
1549
1550 /* Interpolate... */
1551 *var = LIN(met0->time, var0, met1->time, var1, ts);
1552}
1553
1554/*****************************************************************************/
1555
1557 const met_t *met0,
1558 float array0[EX][EY],
1559 const met_t *met1,
1560 float array1[EX][EY],
1561 const double ts,
1562 const double lon,
1563 const double lat,
1564 double *var,
1565 int *ci,
1566 double *cw,
1567 const int init) {
1568
1569 double var0, var1;
1570
1571 /* Spatial interpolation... */
1572 intpol_met_space_2d(met0, array0, lon, lat, &var0, ci, cw, init);
1573 intpol_met_space_2d(met1, array1, lon, lat, &var1, ci, cw, 0);
1574
1575 /* Get weighting factor... */
1576 const double wt = (met1->time - ts) / (met1->time - met0->time);
1577
1578 /* Interpolate... */
1579 if (isfinite(var0) && isfinite(var1))
1580 *var = wt * (var0 - var1) + var1;
1581 else if (wt < 0.5)
1582 *var = var1;
1583 else
1584 *var = var0;
1585}
1586
1587/*****************************************************************************/
1588
1590 const double time0,
1591 float array0[EX][EY],
1592 const double time1,
1593 float array1[EX][EY],
1594 const double lons[EX],
1595 const double lats[EY],
1596 const int nlon,
1597 const int nlat,
1598 const double time,
1599 const double lon,
1600 const double lat,
1601 const int method,
1602 double *var,
1603 double *sigma) {
1604
1605 double aux0, aux1, aux00, aux01, aux10, aux11, mean = 0;
1606
1607 int n = 0;
1608
1609 /* Check longitude... */
1610 double lon2 = FMOD(lon, 360.);
1611 if (lon2 < lons[0])
1612 lon2 += 360;
1613 else if (lon2 > lons[nlon - 1])
1614 lon2 -= 360;
1615
1616 /* Get indices... */
1617 const int ix = locate_reg(lons, (int) nlon, lon2);
1618 const int iy = locate_reg(lats, (int) nlat, lat);
1619
1620 /* Calculate standard deviation... */
1621 *sigma = 0;
1622 for (int dx = 0; dx < 2; dx++)
1623 for (int dy = 0; dy < 2; dy++) {
1624 if (isfinite(array0[ix + dx][iy + dy])) {
1625 mean += array0[ix + dx][iy + dy];
1626 *sigma += SQR(array0[ix + dx][iy + dy]);
1627 n++;
1628 }
1629 if (isfinite(array1[ix + dx][iy + dy])) {
1630 mean += array1[ix + dx][iy + dy];
1631 *sigma += SQR(array1[ix + dx][iy + dy]);
1632 n++;
1633 }
1634 }
1635 if (n > 0)
1636 *sigma = sqrt(MAX(*sigma / n - SQR(mean / n), 0.0));
1637
1638 /* Linear interpolation... */
1639 if (method == 1 && isfinite(array0[ix][iy])
1640 && isfinite(array0[ix][iy + 1])
1641 && isfinite(array0[ix + 1][iy])
1642 && isfinite(array0[ix + 1][iy + 1])
1643 && isfinite(array1[ix][iy])
1644 && isfinite(array1[ix][iy + 1])
1645 && isfinite(array1[ix + 1][iy])
1646 && isfinite(array1[ix + 1][iy + 1])) {
1647
1648 aux00 = LIN(lons[ix], array0[ix][iy],
1649 lons[ix + 1], array0[ix + 1][iy], lon2);
1650 aux01 = LIN(lons[ix], array0[ix][iy + 1],
1651 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
1652 aux0 = LIN(lats[iy], aux00, lats[iy + 1], aux01, lat);
1653
1654 aux10 = LIN(lons[ix], array1[ix][iy],
1655 lons[ix + 1], array1[ix + 1][iy], lon2);
1656 aux11 = LIN(lons[ix], array1[ix][iy + 1],
1657 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
1658 aux1 = LIN(lats[iy], aux10, lats[iy + 1], aux11, lat);
1659
1660 *var = LIN(time0, aux0, time1, aux1, time);
1661 }
1662
1663 /* Nearest neighbor interpolation... */
1664 else {
1665 aux00 = NN(lons[ix], array0[ix][iy],
1666 lons[ix + 1], array0[ix + 1][iy], lon2);
1667 aux01 = NN(lons[ix], array0[ix][iy + 1],
1668 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
1669 aux0 = NN(lats[iy], aux00, lats[iy + 1], aux01, lat);
1670
1671 aux10 = NN(lons[ix], array1[ix][iy],
1672 lons[ix + 1], array1[ix + 1][iy], lon2);
1673 aux11 = NN(lons[ix], array1[ix][iy + 1],
1674 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
1675 aux1 = NN(lats[iy], aux10, lats[iy + 1], aux11, lat);
1676
1677 *var = NN(time0, aux0, time1, aux1, time);
1678 }
1679}
1680
1681/*****************************************************************************/
1682
1684 const double jsec,
1685 int *year,
1686 int *mon,
1687 int *day,
1688 int *hour,
1689 int *min,
1690 int *sec,
1691 double *remain) {
1692
1693 struct tm t0, *t1;
1694
1695 t0.tm_year = 100;
1696 t0.tm_mon = 0;
1697 t0.tm_mday = 1;
1698 t0.tm_hour = 0;
1699 t0.tm_min = 0;
1700 t0.tm_sec = 0;
1701
1702 const time_t jsec0 = (time_t) jsec + timegm(&t0);
1703 t1 = gmtime(&jsec0);
1704
1705 *year = t1->tm_year + 1900;
1706 *mon = t1->tm_mon + 1;
1707 *day = t1->tm_mday;
1708 *hour = t1->tm_hour;
1709 *min = t1->tm_min;
1710 *sec = t1->tm_sec;
1711 *remain = jsec - floor(jsec);
1712}
1713
1714/*****************************************************************************/
1715
1717 const double kz[EP],
1718 const double kw[EP],
1719 const int nk,
1720 const double p) {
1721
1722 /* Check number of data points... */
1723 if (nk < 2)
1724 return 1.0;
1725
1726 /* Get altitude... */
1727 const double z = Z(p);
1728
1729 /* Get weighting factor... */
1730 if (z < kz[0])
1731 return kw[0];
1732 else if (z > kz[nk - 1])
1733 return kw[nk - 1];
1734 else {
1735 int idx = locate_irr(kz, nk, z);
1736 return LIN(kz[idx], kw[idx], kz[idx + 1], kw[idx + 1], z);
1737 }
1738}
1739
1740/*****************************************************************************/
1741
1743 const double t,
1744 const double h2o) {
1745
1746 /*
1747 Calculate moist adiabatic lapse rate [K/km] from temperature [K]
1748 and water vapor volume mixing ratio [1].
1749
1750 Reference: https://en.wikipedia.org/wiki/Lapse_rate
1751 */
1752
1753 const double a = RA * SQR(t), r = SH(h2o) / (1. - SH(h2o));
1754
1755 return 1e3 * G0 * (a + LV * r * t) / (CPD * a + SQR(LV) * r * EPS);
1756}
1757
1758/*****************************************************************************/
1759
1761 ctl_t *ctl) {
1762
1763 if (0 == ctl->met_press_level_def) {
1764
1765 ctl->met_np = 138;
1766
1767 const double press[138] = {
1768 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
1769 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
1770 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
1771 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
1772 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1773 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
1774 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
1775 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
1776 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
1777 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
1778 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
1779 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
1780 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
1781 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
1782 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
1783 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
1784 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
1785 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
1786 1010.8487, 1013.2500, 1044.45
1787 };
1788
1789 for (int ip = 0; ip < ctl->met_np; ip++)
1790 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1791
1792 } else if (1 == ctl->met_press_level_def) {
1793
1794 ctl->met_np = 92;
1795
1796 const double press[92] = {
1797 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
1798 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
1799 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
1800 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
1801 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
1802 113.6382,
1803 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
1804 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
1805 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
1806 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
1807 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
1808 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
1809 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
1810 1007.4431, 1010.8487, 1013.2500, 1044.45
1811 };
1812
1813 for (int ip = 0; ip < ctl->met_np; ip++)
1814 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1815
1816 } else if (2 == ctl->met_press_level_def) {
1817
1818 ctl->met_np = 60;
1819
1820 const double press[60] = {
1821 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
1822 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
1823 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
1824 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
1825 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
1826 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
1827 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
1828 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1044.45
1829 };
1830
1831 for (int ip = 0; ip < ctl->met_np; ip++)
1832 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1833
1834 } else if (3 == ctl->met_press_level_def) {
1835
1836 ctl->met_np = 147;
1837
1838 const double press[147] = {
1839 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
1840 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
1841 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
1842 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
1843 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1844 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
1845 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
1846 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
1847 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
1848 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
1849 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
1850 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
1851 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
1852 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
1853 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
1854 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
1855 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
1856 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
1857 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73, 1028.85,
1858 1031.97,
1859 1035.09, 1038.21, 1041.33, 1044.45
1860 };
1861
1862 for (int ip = 0; ip < ctl->met_np; ip++)
1863 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1864
1865 } else if (4 == ctl->met_press_level_def) {
1866
1867 ctl->met_np = 101;
1868
1869 const double press[101] = {
1870 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
1871 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
1872 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
1873 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
1874 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
1875 113.6382,
1876 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
1877 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
1878 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
1879 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
1880 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
1881 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
1882 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
1883 1007.4431, 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73,
1884 1028.85, 1031.97,
1885 1035.09, 1038.21, 1041.33, 1044.45
1886 };
1887
1888 for (int ip = 0; ip < ctl->met_np; ip++)
1889 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1890
1891 } else if (5 == ctl->met_press_level_def) {
1892
1893 ctl->met_np = 62;
1894
1895 const double press[62] = {
1896 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
1897 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
1898 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
1899 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
1900 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
1901 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
1902 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
1903 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1034.86, 1039.65,
1904 1044.45
1905 };
1906
1907 for (int ip = 0; ip < ctl->met_np; ip++)
1908 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1909
1910 } else if (6 == ctl->met_press_level_def) {
1911
1912 ctl->met_np = 137;
1913
1914 const double press[137] = {
1915 0.01, 0.02, 0.031, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861,
1916 0.2499, 0.3299, 0.4288, 0.5496, 0.6952, 0.869, 1.0742,
1917 1.3143, 1.5928, 1.9134, 2.2797, 2.6954, 3.1642, 3.6898,
1918 4.2759, 4.9262, 5.6441, 6.4334, 7.2974, 8.2397, 9.2634,
1919 10.372, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945, 18.9752,
1920 20.761, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1921 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.199, 54.5299,
1922 57.9834, 61.5607, 65.2695, 69.1187, 73.1187, 77.281, 81.6182,
1923 86.145, 90.8774, 95.828, 101.005, 106.415, 112.068, 117.971,
1924 124.134, 130.564, 137.27, 144.262, 151.549, 159.14, 167.045,
1925 175.273, 183.834, 192.739, 201.997, 211.619, 221.615, 231.995,
1926 242.772, 253.955, 265.556, 277.585, 290.055, 302.976, 316.361,
1927 330.22, 344.566, 359.411, 374.767, 390.645, 407.058, 424.019,
1928 441.539, 459.632, 478.31, 497.584, 517.42, 537.72, 558.343,
1929 579.193, 600.167, 621.162, 642.076, 662.808, 683.262, 703.347,
1930 722.979, 742.086, 760.6, 778.466, 795.64, 812.085, 827.776,
1931 842.696, 856.838, 870.2, 882.791, 894.622, 905.712, 916.081,
1932 925.757, 934.767, 943.14, 950.908, 958.104, 965.299, 972.495,
1933 979.69, 986.886, 994.081, 1001.28, 1008.47, 1015.67, 1022.86,
1934 1030.06, 1037.25, 1044.45
1935 };
1936
1937 for (int ip = 0; ip < ctl->met_np; ip++)
1938 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1939
1940 } else if (7 == ctl->met_press_level_def) {
1941
1942 ctl->met_np = 59;
1943
1944 const double press[59] = {
1945 0.1, 0.2, 0.3843, 0.6365, 0.9564, 1.3448, 1.8058, 2.3478,
1946 2.985, 3.7397, 4.6462, 5.7565, 7.1322, 8.8366, 10.9483,
1947 13.5647, 16.8064, 20.8227, 25.7989, 31.9642, 39.6029, 49.0671,
1948 60.1802, 73.0663, 87.7274, 104.229, 122.614, 142.902, 165.089,
1949 189.147, 215.025, 242.652, 272.059, 303.217, 336.044, 370.407,
1950 406.133, 443.009, 480.791, 519.209, 557.973, 596.777, 635.306,
1951 673.24, 710.263, 746.063, 780.346, 812.83, 843.263, 871.42,
1952 897.112, 920.189, 940.551, 958.148, 975.744, 993.341, 1010.94,
1953 1028.53, 1046.13
1954 };
1955
1956 for (int ip = 0; ip < ctl->met_np; ip++)
1957 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
1958
1959 } else {
1960 ERRMSG("Use 0 for l137, 1 for l91, 2 for l60 or values between 3 and 7.")
1961 }
1962}
1963
1964/*****************************************************************************/
1965
1967 const double *xx,
1968 const int n,
1969 const double x) {
1970
1971 int ilo = 0;
1972 int ihi = n - 1;
1973 int i = (ihi + ilo) >> 1;
1974
1975 if (xx[i] < xx[i + 1])
1976 while (ihi > ilo + 1) {
1977 i = (ihi + ilo) >> 1;
1978 if (xx[i] > x)
1979 ihi = i;
1980 else
1981 ilo = i;
1982 } else
1983 while (ihi > ilo + 1) {
1984 i = (ihi + ilo) >> 1;
1985 if (xx[i] <= x)
1986 ihi = i;
1987 else
1988 ilo = i;
1989 }
1990
1991 return ilo;
1992}
1993
1994/*****************************************************************************/
1995
1997 const float *xx,
1998 const int n,
1999 const double x,
2000 const int ig) {
2001
2002 int ilo = 0;
2003 int ihi = n - 1;
2004 int i = (ihi + ilo) >> 1;
2005
2006 if (x >= xx[ig] && x < xx[ig + 1])
2007 return ig;
2008
2009 if (xx[i] < xx[i + 1])
2010 while (ihi > ilo + 1) {
2011 i = (ihi + ilo) >> 1;
2012 if (xx[i] > x)
2013 ihi = i;
2014 else
2015 ilo = i;
2016 } else
2017 while (ihi > ilo + 1) {
2018 i = (ihi + ilo) >> 1;
2019 if (xx[i] <= x)
2020 ihi = i;
2021 else
2022 ilo = i;
2023 }
2024
2025 return ilo;
2026}
2027
2028/*****************************************************************************/
2029
2031 const double *xx,
2032 const int n,
2033 const double x) {
2034
2035 /* Calculate index... */
2036 int i = (int) ((x - xx[0]) / (xx[1] - xx[0]));
2037
2038 /* Check range... */
2039 if (i < 0)
2040 return 0;
2041 else if (i > n - 2)
2042 return n - 2;
2043 else
2044 return i;
2045}
2046
2047/*****************************************************************************/
2048
2050 float profiles[EX][EY][EP],
2051 const int np,
2052 const int lon_ap_ind,
2053 const int lat_ap_ind,
2054 const double height_ap,
2055 int *ind) {
2056
2057 ind[0] = locate_irr_float(profiles[lon_ap_ind][lat_ap_ind],
2058 np, height_ap, 0);
2059 ind[1] = locate_irr_float(profiles[lon_ap_ind + 1][lat_ap_ind],
2060 np, height_ap, ind[0]);
2061 ind[2] = locate_irr_float(profiles[lon_ap_ind][lat_ap_ind + 1],
2062 np, height_ap, ind[1]);
2063 ind[3] = locate_irr_float(profiles[lon_ap_ind + 1][lat_ap_ind + 1],
2064 np, height_ap, ind[2]);
2065}
2066
2067/*****************************************************************************/
2068
2070 const ctl_t *ctl,
2071 const cache_t *cache,
2072 met_t *met0,
2073 met_t *met1,
2074 atm_t *atm) {
2075
2076 /* Set timer... */
2077 SELECT_TIMER("MODULE_ADVECT", "PHYSICS", NVTX_GPU);
2078
2079 /* Pressure coordinate... */
2080 if (ctl->advect_vert_coord == 0 || ctl->advect_vert_coord == 2) {
2081
2082 /* Loop over particles... */
2083 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2084
2085 /* Init... */
2087 double dts, u[4], um = 0, v[4], vm = 0, w[4], wm = 0,
2088 x[3] = { 0, 0, 0 };
2089
2090 /* Loop over integration nodes... */
2091 for (int i = 0; i < ctl->advect; i++) {
2092
2093 /* Set position... */
2094 if (i == 0) {
2095 dts = 0.0;
2096 x[0] = atm->lon[ip];
2097 x[1] = atm->lat[ip];
2098 x[2] = atm->p[ip];
2099 } else {
2100 dts = (i == 3 ? 1.0 : 0.5) * cache->dt[ip];
2101 x[0] = atm->lon[ip] + DX2DEG(dts * u[i - 1] / 1000., atm->lat[ip]);
2102 x[1] = atm->lat[ip] + DY2DEG(dts * v[i - 1] / 1000.);
2103 x[2] = atm->p[ip] + dts * w[i - 1];
2104 }
2105 const double tm = atm->time[ip] + dts;
2106
2107 /* Interpolate meteo data on pressure levels... */
2108 if (ctl->advect_vert_coord == 0) {
2109 intpol_met_time_3d(met0, met0->u, met1, met1->u,
2110 tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
2111 intpol_met_time_3d(met0, met0->v, met1, met1->v,
2112 tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
2113 intpol_met_time_3d(met0, met0->w, met1, met1->w,
2114 tm, x[2], x[0], x[1], &w[i], ci, cw, 0);
2115 }
2116
2117 /* Interpolate meteo data on model levels... */
2118 else {
2119 intpol_met_time_3d_ml(met0, met0->pl, met0->ul,
2120 met1, met1->pl, met1->ul,
2121 tm, x[2], x[0], x[1], &u[i]);
2122 intpol_met_time_3d_ml(met0, met0->pl, met0->vl,
2123 met1, met1->pl, met1->vl,
2124 tm, x[2], x[0], x[1], &v[i]);
2125 intpol_met_time_3d_ml(met0, met0->pl, met0->wl,
2126 met1, met1->pl, met1->wl,
2127 tm, x[2], x[0], x[1], &w[i]);
2128 }
2129
2130 /* Get mean wind... */
2131 double k = 1.0;
2132 if (ctl->advect == 2)
2133 k = (i == 0 ? 0.0 : 1.0);
2134 else if (ctl->advect == 4)
2135 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
2136 um += k * u[i];
2137 vm += k * v[i];
2138 wm += k * w[i];
2139 }
2140
2141 /* Set new position... */
2142 atm->time[ip] += cache->dt[ip];
2143 atm->lon[ip] += DX2DEG(cache->dt[ip] * um / 1000.,
2144 (ctl->advect == 2 ? x[1] : atm->lat[ip]));
2145 atm->lat[ip] += DY2DEG(cache->dt[ip] * vm / 1000.);
2146 atm->p[ip] += cache->dt[ip] * wm;
2147 }
2148 }
2149
2150 /* Zeta coordinate... */
2151 else if (ctl->advect_vert_coord == 1) {
2152
2153 /* Loop over particles... */
2154 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2155
2156 /* Convert pressure to zeta... */
2158
2159 // TODO: can we use intpol_met_time_3d_ml instead of intpol_met_4d_coord?
2160
2161 intpol_met_4d_coord(met0, met0->pl, met0->zetal, met1,
2162 met1->pl, met1->zetal, atm->time[ip], atm->p[ip],
2163 atm->lon[ip], atm->lat[ip],
2164 &atm->q[ctl->qnt_zeta][ip], ci, cw, 1);
2165
2166 /* Init... */
2167 double dts, u[4], um = 0, v[4], vm = 0, zeta_dot[4],
2168 zeta_dotm = 0, x[3] = { 0, 0, 0 };
2169
2170 /* Loop over integration nodes... */
2171 for (int i = 0; i < ctl->advect; i++) {
2172
2173 /* Set position... */
2174 if (i == 0) {
2175 dts = 0.0;
2176 x[0] = atm->lon[ip];
2177 x[1] = atm->lat[ip];
2178 x[2] = atm->q[ctl->qnt_zeta][ip];
2179 } else {
2180 dts = (i == 3 ? 1.0 : 0.5) * cache->dt[ip];
2181 x[0] = atm->lon[ip] + DX2DEG(dts * u[i - 1] / 1000., atm->lat[ip]);
2182 x[1] = atm->lat[ip] + DY2DEG(dts * v[i - 1] / 1000.);
2183 x[2] = atm->q[ctl->qnt_zeta][ip] + dts * zeta_dot[i - 1];
2184 }
2185 const double tm = atm->time[ip] + dts;
2186
2187 /* Interpolate meteo data... */
2188 intpol_met_4d_coord(met0, met0->zetal, met0->ul, met1, met1->zetal,
2189 met1->ul, tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
2190 intpol_met_4d_coord(met0, met0->zetal, met0->vl, met1, met0->zetal,
2191 met1->vl, tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
2192 intpol_met_4d_coord(met0, met0->zetal, met0->zeta_dotl, met1,
2193 met1->zetal, met1->zeta_dotl, tm, x[2], x[0],
2194 x[1], &zeta_dot[i], ci, cw, 0);
2195
2196 /* Get mean wind... */
2197 double k = 1.0;
2198 if (ctl->advect == 2)
2199 k = (i == 0 ? 0.0 : 1.0);
2200 else if (ctl->advect == 4)
2201 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
2202 um += k * u[i];
2203 vm += k * v[i];
2204 zeta_dotm += k * zeta_dot[i];
2205 }
2206
2207 /* Set new position... */
2208 atm->time[ip] += cache->dt[ip];
2209 atm->lon[ip] += DX2DEG(cache->dt[ip] * um / 1000.,
2210 (ctl->advect == 2 ? x[1] : atm->lat[ip]));
2211 atm->lat[ip] += DY2DEG(cache->dt[ip] * vm / 1000.);
2212 atm->q[ctl->qnt_zeta][ip] += cache->dt[ip] * zeta_dotm;
2213
2214 /* Check if zeta is below zero... */
2215 if (atm->q[ctl->qnt_zeta][ip] < 0)
2216 atm->q[ctl->qnt_zeta][ip] = 0; /* TODO: reflect particle, or skip this test (use module_position) */
2217
2218 /* Convert zeta to pressure... */
2219 intpol_met_4d_coord(met0, met0->zetal, met0->pl, met1, met1->zetal,
2220 met1->pl, atm->time[ip], atm->q[ctl->qnt_zeta][ip],
2221 atm->lon[ip], atm->lat[ip], &atm->p[ip], ci, cw, 1);
2222 }
2223 }
2224}
2225
2226/*****************************************************************************/
2227
2229 const ctl_t *ctl,
2230 const cache_t *cache,
2231 met_t *met0,
2232 met_t *met1,
2233 atm_t *atm) {
2234
2235 /* Check parameters... */
2236 if (ctl->advect_vert_coord != 1)
2237 return;
2238
2239 /* Set timer... */
2240 SELECT_TIMER("MODULE_ADVECT_INIT", "PHYSICS", NVTX_GPU);
2241
2242 /* Loop over particles... */
2243 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,met0,met1,atm)") {
2244
2245 /* Initialize pressure consistent with zeta... */
2247 intpol_met_4d_coord(met0, met0->zetal, met0->pl, met1, met1->zetal,
2248 met1->pl, atm->time[ip], atm->q[ctl->qnt_zeta][ip],
2249 atm->lon[ip], atm->lat[ip], &atm->p[ip], ci, cw, 1);
2250 }
2251}
2252
2253/*****************************************************************************/
2254
2256 const ctl_t *ctl,
2257 const cache_t *cache,
2258 const clim_t *clim,
2259 met_t *met0,
2260 met_t *met1,
2261 atm_t *atm) {
2262
2263 /* Set timer... */
2264 SELECT_TIMER("MODULE_BOUND_COND", "PHYSICS", NVTX_GPU);
2265
2266 /* Check quantity flags... */
2267 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0 && ctl->qnt_Cccl4
2268 && ctl->qnt_Cccl3f < 0 && ctl->qnt_Cccl2f2 < 0
2269 && ctl->qnt_Cn2o < 0 && ctl->qnt_Csf6 < 0 && ctl->qnt_aoa < 0)
2270 return;
2271
2272 /* Loop over particles... */
2273 PARTICLE_LOOP(0, atm->np, 1,
2274 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2275
2276 /* Check latitude and pressure range... */
2277 if (atm->lat[ip] < ctl->bound_lat0 || atm->lat[ip] > ctl->bound_lat1
2278 || atm->p[ip] > ctl->bound_p0 || atm->p[ip] < ctl->bound_p1)
2279 continue;
2280
2281 /* Check surface layer... */
2282 if (ctl->bound_dps > 0 || ctl->bound_dzs > 0
2283 || ctl->bound_zetas > 0 || ctl->bound_pbl) {
2284
2285 /* Get surface pressure... */
2286 double ps;
2288 INTPOL_2D(ps, 1);
2289
2290 /* Check pressure... */
2291 if (ctl->bound_dps > 0 && atm->p[ip] < ps - ctl->bound_dps)
2292 continue;
2293
2294 /* Check height... */
2295 if (ctl->bound_dzs > 0 && Z(atm->p[ip]) > Z(ps) + ctl->bound_dzs)
2296 continue;
2297
2298 /* Check zeta range... */
2299 if (ctl->bound_zetas > 0) {
2300 double t;
2301 INTPOL_3D(t, 1);
2302 if (ZETA(ps, atm->p[ip], t) > ctl->bound_zetas)
2303 continue;
2304 }
2305
2306 /* Check planetary boundary layer... */
2307 if (ctl->bound_pbl) {
2308 double pbl;
2309 INTPOL_2D(pbl, 0);
2310 if (atm->p[ip] < pbl)
2311 continue;
2312 }
2313 }
2314
2315 /* Set mass and volume mixing ratio... */
2316 if (ctl->qnt_m >= 0 && ctl->bound_mass >= 0)
2317 atm->q[ctl->qnt_m][ip] =
2318 ctl->bound_mass + ctl->bound_mass_trend * atm->time[ip];
2319 if (ctl->qnt_vmr >= 0 && ctl->bound_vmr >= 0)
2320 atm->q[ctl->qnt_vmr][ip] =
2321 ctl->bound_vmr + ctl->bound_vmr_trend * atm->time[ip];
2322
2323 /* Set CFC-10 volume mixing ratio... */
2324 if (ctl->qnt_Cccl4 >= 0 && ctl->clim_ccl4_timeseries[0] != '-')
2325 atm->q[ctl->qnt_Cccl4][ip] = clim_ts(&clim->ccl4, atm->time[ip]);
2326
2327 /* Set CFC-11 volume mixing ratio... */
2328 if (ctl->qnt_Cccl3f >= 0 && ctl->clim_ccl3f_timeseries[0] != '-')
2329 atm->q[ctl->qnt_Cccl3f][ip] = clim_ts(&clim->ccl3f, atm->time[ip]);
2330
2331 /* Set CFC-12 volume mixing ratio... */
2332 if (ctl->qnt_Cccl2f2 >= 0 && ctl->clim_ccl2f2_timeseries[0] != '-')
2333 atm->q[ctl->qnt_Cccl2f2][ip] = clim_ts(&clim->ccl2f2, atm->time[ip]);
2334
2335 /* Set N2O volume mixing ratio... */
2336 if (ctl->qnt_Cn2o >= 0 && ctl->clim_n2o_timeseries[0] != '-')
2337 atm->q[ctl->qnt_Cn2o][ip] = clim_ts(&clim->n2o, atm->time[ip]);
2338
2339 /* Set SF6 volume mixing ratio... */
2340 if (ctl->qnt_Csf6 >= 0 && ctl->clim_sf6_timeseries[0] != '-')
2341 atm->q[ctl->qnt_Csf6][ip] = clim_ts(&clim->sf6, atm->time[ip]);
2342
2343 /* Set age of air... */
2344 if (ctl->qnt_aoa >= 0)
2345 atm->q[ctl->qnt_aoa][ip] = atm->time[ip];
2346 }
2347}
2348
2349/*****************************************************************************/
2350
2352 const ctl_t *ctl,
2353 met_t *met0,
2354 met_t *met1,
2355 atm_t *atm,
2356 const double tt) {
2357
2358 /* Check quantities... */
2359 if (ctl->qnt_m < 0 || ctl->qnt_Cx < 0)
2360 return;
2361 if (ctl->molmass <= 0)
2362 ERRMSG("Molar mass is not defined!");
2363
2364 /* Set timer... */
2365 SELECT_TIMER("MODULE_CHEM_GRID", "PHYSICS", NVTX_GPU);
2366
2367 /* Allocate... */
2368 const int np = atm->np;
2369 const int nz = ctl->chemgrid_nz;
2370 const int nx = ctl->chemgrid_nx;
2371 const int ny = ctl->chemgrid_ny;
2372 const int ngrid = nx * ny * nz;
2373
2374 double *restrict const z = (double *) malloc((size_t) nz * sizeof(double));
2375 double *restrict const press =
2376 (double *) malloc((size_t) nz * sizeof(double));
2377 double *restrict const mass =
2378 (double *) calloc((size_t) ngrid, sizeof(double));
2379 double *restrict const area =
2380 (double *) malloc((size_t) ny * sizeof(double));
2381 double *restrict const lon =
2382 (double *) malloc((size_t) nx * sizeof(double));
2383 double *restrict const lat =
2384 (double *) malloc((size_t) ny * sizeof(double));
2385
2386 int *restrict const ixs = (int *) malloc((size_t) np * sizeof(int));
2387 int *restrict const iys = (int *) malloc((size_t) np * sizeof(int));
2388 int *restrict const izs = (int *) malloc((size_t) np * sizeof(int));
2389
2390 /* Set grid box size... */
2391 const double dz = (ctl->chemgrid_z1 - ctl->chemgrid_z0) / nz;
2392 const double dlon = (ctl->chemgrid_lon1 - ctl->chemgrid_lon0) / nx;
2393 const double dlat = (ctl->chemgrid_lat1 - ctl->chemgrid_lat0) / ny;
2394
2395 /* Set vertical coordinates... */
2396#ifdef _OPENACC
2397#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np],z[0:nz],press[0:nz],mass[0:ngrid],area[0:ny],lon[0:nx],lat[0:ny])
2398#pragma acc data present(ctl,met0,met1,atm,ixs,iys,izs,z,press,mass,area,lon,lat)
2399#pragma acc parallel loop independent gang vector
2400#else
2401#pragma omp parallel for default(shared)
2402#endif
2403 for (int iz = 0; iz < nz; iz++) {
2404 z[iz] = ctl->chemgrid_z0 + dz * (iz + 0.5);
2405 press[iz] = P(z[iz]);
2406 }
2407
2408 /* Set time interval for output... */
2409 const double t0 = tt - 0.5 * ctl->dt_mod;
2410 const double t1 = tt + 0.5 * ctl->dt_mod;
2411
2412 /* Get indices... */
2413#ifdef _OPENACC
2414#pragma acc parallel loop independent gang vector
2415#else
2416#pragma omp parallel for default(shared)
2417#endif
2418 for (int ip = 0; ip < np; ip++) {
2419 ixs[ip] = (int) ((atm->lon[ip] - ctl->chemgrid_lon0) / dlon);
2420 iys[ip] = (int) ((atm->lat[ip] - ctl->chemgrid_lat0) / dlat);
2421 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->chemgrid_z0) / dz);
2422 if (atm->time[ip] < t0 || atm->time[ip] > t1
2423 || ixs[ip] < 0 || ixs[ip] >= nx
2424 || iys[ip] < 0 || iys[ip] >= ny || izs[ip] < 0 || izs[ip] >= nz)
2425 izs[ip] = -1;
2426 }
2427
2428 /* Set horizontal coordinates... */
2429#ifdef _OPENACC
2430#pragma acc parallel loop independent gang vector
2431#else
2432#pragma omp parallel for default(shared)
2433#endif
2434 for (int ix = 0; ix < nx; ix++)
2435 lon[ix] = ctl->chemgrid_lon0 + dlon * (ix + 0.5);
2436#ifdef _OPENACC
2437#pragma acc parallel loop independent gang vector
2438#else
2439#pragma omp parallel for default(shared)
2440#endif
2441 for (int iy = 0; iy < ny; iy++) {
2442 lat[iy] = ctl->chemgrid_lat0 + dlat * (iy + 0.5);
2443 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
2444 }
2445
2446 /* Get mass per grid box... */
2447#ifdef _OPENACC
2448#pragma acc parallel loop independent gang vector
2449#endif
2450 for (int ip = 0; ip < np; ip++)
2451 if (izs[ip] >= 0)
2452#ifdef _OPENACC
2453#pragma acc atomic update
2454#endif
2455 mass[ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz)]
2456 += atm->q[ctl->qnt_m][ip];
2457
2458 /* Assign grid data to air parcels ... */
2459#ifdef _OPENACC
2460#pragma acc parallel loop independent gang vector
2461#else
2462#pragma omp parallel for default(shared)
2463#endif
2464 for (int ip = 0; ip < np; ip++)
2465 if (izs[ip] >= 0) {
2466
2467 /* Interpolate temperature... */
2468 double temp;
2470 intpol_met_time_3d(met0, met0->t, met1, met1->t, tt, press[izs[ip]],
2471 lon[ixs[ip]], lat[iys[ip]], &temp, ci, cw, 1);
2472
2473 /* Set mass... */
2474 const double m = mass[ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz)];
2475
2476 /* Calculate volume mixing ratio... */
2477 atm->q[ctl->qnt_Cx][ip] = MA / ctl->molmass * m
2478 / (RHO(press[izs[ip]], temp) * area[iys[ip]] * dz * 1e9);
2479 }
2480#ifdef _OPENACC
2481#pragma acc exit data delete(ixs,iys,izs,z,press,mass,area,lon,lat)
2482#endif
2483
2484 /* Free... */
2485 free(mass);
2486 free(lon);
2487 free(lat);
2488 free(area);
2489 free(z);
2490 free(press);
2491 free(ixs);
2492 free(iys);
2493 free(izs);
2494}
2495
2496/*****************************************************************************/
2497
2499 const ctl_t *ctl,
2500 const cache_t *cache,
2501 const clim_t *clim,
2502 met_t *met0,
2503 met_t *met1,
2504 atm_t *atm) {
2505
2506 /* Set timer... */
2507 SELECT_TIMER("MODULE_CHEM_INIT", "PHYSICS", NVTX_GPU);
2508
2509 /* Loop over particles... */
2510 PARTICLE_LOOP(0, atm->np, 0,
2511 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2512
2513 /* Set H2O and O3 using meteo data... */
2515 if (ctl->qnt_Ch2o >= 0) {
2516 double h2o;
2517 INTPOL_3D(h2o, 1);
2518 SET_ATM(qnt_Ch2o, h2o);
2519 }
2520 if (ctl->qnt_Co3 >= 0) {
2521 double o3;
2522 INTPOL_3D(o3, 1);
2523 SET_ATM(qnt_Co3, o3);
2524 }
2525
2526 /* Set radical species... */
2527 SET_ATM(qnt_Coh, clim_oh(ctl, clim, atm->time[ip],
2528 atm->lon[ip], atm->lat[ip], atm->p[ip]));
2529 SET_ATM(qnt_Cho2, clim_zm(&clim->ho2, atm->time[ip],
2530 atm->lat[ip], atm->p[ip]));
2531 SET_ATM(qnt_Ch2o2, clim_zm(&clim->h2o2, atm->time[ip],
2532 atm->lat[ip], atm->p[ip]));
2533 SET_ATM(qnt_Co1d, clim_zm(&clim->o1d, atm->time[ip],
2534 atm->lat[ip], atm->p[ip]));
2535 }
2536}
2537
2538/*****************************************************************************/
2539
2541 const ctl_t *ctl,
2542 cache_t *cache,
2543 met_t *met0,
2544 met_t *met1,
2545 atm_t *atm) {
2546
2547 /* Set timer... */
2548 SELECT_TIMER("MODULE_CONVECTION", "PHYSICS", NVTX_GPU);
2549
2550 /* Create random numbers... */
2551 module_rng(ctl, cache->rs, (size_t) atm->np, 0);
2552
2553 /* Loop over particles... */
2554 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2555
2556 /* Interpolate CAPE... */
2557 double ps;
2559 INTPOL_2D(ps, 1);
2560
2561 /* Initialize pressure range for vertical mixing... */
2562 double pbot = ps, ptop = ps;
2563
2564 /* Mixing in the PBL... */
2565 if (ctl->conv_mix_pbl) {
2566
2567 /* Interpolate PBL... */
2568 double pbl;
2569 INTPOL_2D(pbl, 0);
2570
2571 /* Set pressure range... */
2572 ptop = pbl - ctl->conv_pbl_trans * (ps - pbl);
2573 }
2574
2575 /* Convective mixing... */
2576 if (ctl->conv_cape >= 0) {
2577
2578 /* Interpolate CAPE, CIN, and equilibrium level... */
2579 double cape, cin, pel;
2580 INTPOL_2D(cape, 0);
2581 INTPOL_2D(cin, 0);
2582 INTPOL_2D(pel, 0);
2583
2584 /* Set pressure range... */
2585 if (isfinite(cape) && cape >= ctl->conv_cape
2586 && (ctl->conv_cin <= 0 || (isfinite(cin) && cin >= ctl->conv_cin)))
2587 ptop = GSL_MIN(ptop, pel);
2588 }
2589
2590 /* Apply vertical mixing... */
2591 if (ptop != pbot && atm->p[ip] >= ptop) {
2592
2593 /* Get density range... */
2594 double tbot, ttop;
2595 intpol_met_time_3d(met0, met0->t, met1, met1->t, atm->time[ip],
2596 pbot, atm->lon[ip], atm->lat[ip], &tbot, ci, cw, 1);
2597 intpol_met_time_3d(met0, met0->t, met1, met1->t, atm->time[ip],
2598 ptop, atm->lon[ip], atm->lat[ip], &ttop, ci, cw, 1);
2599 const double rhobot = pbot / tbot;
2600 const double rhotop = ptop / ttop;
2601
2602 /* Get new density... */
2603 const double rho = rhobot + (rhotop - rhobot) * cache->rs[ip];
2604
2605 /* Get pressure... */
2606 atm->p[ip] = LIN(rhobot, pbot, rhotop, ptop, rho);
2607 }
2608 }
2609}
2610
2611/*****************************************************************************/
2612
2614 const ctl_t *ctl,
2615 const cache_t *cache,
2616 const clim_t *clim,
2617 atm_t *atm) {
2618
2619 /* Set timer... */
2620 SELECT_TIMER("MODULE_DECAY", "PHYSICS", NVTX_GPU);
2621
2622 /* Check quantity flags... */
2623 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
2624 ERRMSG("Module needs quantity mass or volume mixing ratio!");
2625
2626 /* Loop over particles... */
2627 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,clim,atm)") {
2628
2629 /* Get weighting factor... */
2630 const double w = tropo_weight(clim, atm, ip);
2631
2632 /* Set lifetime... */
2633 const double tdec = w * ctl->tdec_trop + (1 - w) * ctl->tdec_strat;
2634
2635 /* Calculate exponential decay... */
2636 const double aux = exp(-cache->dt[ip] / tdec);
2637 if (ctl->qnt_m >= 0) {
2638 if (ctl->qnt_mloss_decay >= 0)
2639 atm->q[ctl->qnt_mloss_decay][ip]
2640 += atm->q[ctl->qnt_m][ip] * (1 - aux);
2641 atm->q[ctl->qnt_m][ip] *= aux;
2642 if (ctl->qnt_loss_rate >= 0)
2643 atm->q[ctl->qnt_loss_rate][ip] += 1. / tdec;
2644 }
2645 if (ctl->qnt_vmr >= 0)
2646 atm->q[ctl->qnt_vmr][ip] *= aux;
2647 }
2648}
2649
2650/*****************************************************************************/
2651
2653 const ctl_t *ctl,
2654 cache_t *cache,
2655 met_t *met0,
2656 met_t *met1,
2657 atm_t *atm) {
2658
2659 /* Set timer... */
2660 SELECT_TIMER("MODULE_DIFF_MESO", "PHYSICS", NVTX_GPU);
2661
2662 /* Create random numbers... */
2663 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
2664
2665 /* Loop over particles... */
2666 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2667
2668 /* Get indices... */
2669 const int ix = locate_reg(met0->lon, met0->nx, atm->lon[ip]);
2670 const int iy = locate_reg(met0->lat, met0->ny, atm->lat[ip]);
2671 const int iz = locate_irr(met0->p, met0->np, atm->p[ip]);
2672
2673 /* Get standard deviations of local wind data... */
2674 float umean = 0, usig = 0, vmean = 0, vsig = 0, wmean = 0, wsig = 0;
2675 for (int i = 0; i < 2; i++)
2676 for (int j = 0; j < 2; j++)
2677 for (int k = 0; k < 2; k++) {
2678 umean += met0->u[ix + i][iy + j][iz + k];
2679 usig += SQR(met0->u[ix + i][iy + j][iz + k]);
2680 vmean += met0->v[ix + i][iy + j][iz + k];
2681 vsig += SQR(met0->v[ix + i][iy + j][iz + k]);
2682 wmean += met0->w[ix + i][iy + j][iz + k];
2683 wsig += SQR(met0->w[ix + i][iy + j][iz + k]);
2684
2685 umean += met1->u[ix + i][iy + j][iz + k];
2686 usig += SQR(met1->u[ix + i][iy + j][iz + k]);
2687 vmean += met1->v[ix + i][iy + j][iz + k];
2688 vsig += SQR(met1->v[ix + i][iy + j][iz + k]);
2689 wmean += met1->w[ix + i][iy + j][iz + k];
2690 wsig += SQR(met1->w[ix + i][iy + j][iz + k]);
2691 }
2692 usig = usig / 16.f - SQR(umean / 16.f);
2693 usig = (usig > 0 ? sqrtf(usig) : 0);
2694 vsig = vsig / 16.f - SQR(vmean / 16.f);
2695 vsig = (vsig > 0 ? sqrtf(vsig) : 0);
2696 wsig = wsig / 16.f - SQR(wmean / 16.f);
2697 wsig = (wsig > 0 ? sqrtf(wsig) : 0);
2698
2699 /* Set temporal correlations for mesoscale fluctuations... */
2700 const double r = 1 - 2 * fabs(cache->dt[ip]) / ctl->dt_met;
2701 const double r2 = sqrt(1 - r * r);
2702
2703 /* Calculate horizontal mesoscale wind fluctuations... */
2704 if (ctl->turb_mesox > 0) {
2705 cache->uvwp[ip][0] =
2706 (float) (r * cache->uvwp[ip][0] +
2707 r2 * cache->rs[3 * ip] * ctl->turb_mesox * usig);
2708 atm->lon[ip] +=
2709 DX2DEG(cache->uvwp[ip][0] * cache->dt[ip] / 1000., atm->lat[ip]);
2710
2711 cache->uvwp[ip][1] =
2712 (float) (r * cache->uvwp[ip][1] +
2713 r2 * cache->rs[3 * ip + 1] * ctl->turb_mesox * vsig);
2714 atm->lat[ip] += DY2DEG(cache->uvwp[ip][1] * cache->dt[ip] / 1000.);
2715 }
2716
2717 /* Calculate vertical mesoscale wind fluctuations... */
2718 if (ctl->turb_mesoz > 0) {
2719 cache->uvwp[ip][2] =
2720 (float) (r * cache->uvwp[ip][2] +
2721 r2 * cache->rs[3 * ip + 2] * ctl->turb_mesoz * wsig);
2722 atm->p[ip] += cache->uvwp[ip][2] * cache->dt[ip];
2723 }
2724 }
2725}
2726
2727/*****************************************************************************/
2728
2730 const ctl_t *ctl,
2731 cache_t *cache,
2732 met_t *met0,
2733 met_t *met1,
2734 atm_t *atm) {
2735
2736 /* Set timer... */
2737 SELECT_TIMER("MODULE_DIFF_PBL", "PHYSICS", NVTX_GPU);
2738
2739 /* Create random numbers... */
2740 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
2741
2742 /* Loop over particles... */
2743 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2744
2745 double dsigw_dz = 0.0, sig_u = 0.25, sig_w = 0.1,
2746 tau_u = 300., tau_w = 100.;
2747
2748 /* Get surface and PBL pressure... */
2749 double pbl, ps;
2751 INTPOL_2D(ps, 1);
2752 INTPOL_2D(pbl, 0);
2753
2754 /* Boundary layer... */
2755 if (atm->p[ip] >= pbl) {
2756
2757 /* Calculate heights... */
2758 const double p = MIN(atm->p[ip], ps);
2759 const double zs = Z(ps);
2760 const double z = 1e3 * (Z(p) - zs);
2761 const double zi = 1e3 * (Z(pbl) - zs);
2762 const double zratio = z / zi;
2763
2764 /* Calculate friction velocity... */
2765 double ess, nss, h2o, t;
2766 INTPOL_2D(ess, 0);
2767 INTPOL_2D(nss, 0);
2768 INTPOL_3D(t, 1);
2769 INTPOL_3D(h2o, 0);
2770 const double rho = RHO(p, TVIRT(t, h2o));
2771 const double tau = sqrt(SQR(ess) + SQR(nss));
2772 const double ustar = sqrt(tau / rho);
2773
2774 /* Get surface sensible heat flux... */
2775 double shf;
2776 INTPOL_2D(shf, 1);
2777
2778 /* Stable or neutral conditions... */
2779 if (shf <= 0) {
2780
2781 /* Calcalute turbulent velocity variances... */
2782 sig_u = 1e-2 + 2.0 * ustar * (1.0 - zratio);
2783 sig_w = 1e-2 + 1.3 * ustar * (1.0 - zratio);
2784
2785 /* Calculate derivative dsig_w/dz... */
2786 dsigw_dz = -1.3 * ustar / zi;
2787
2788 /* Calcalute Lagrangian timescales... */
2789 tau_u = 0.07 * zi / sig_u * sqrt(zratio);
2790 tau_w = 0.1 * zi / sig_w * pow(zratio, 0.8);
2791 }
2792
2793 /* Unstable conditions... */
2794 else {
2795
2796 /* Convective velocity... */
2797 const double wstar =
2798 pow(G0 / THETAVIRT(p, t, h2o) * shf / (rho * CPD) * zi, 1. / 3.);
2799
2800 /* Calcalute turbulent velocity variances... */
2801 sig_u = 1e-2
2802 + sqrt(0.4 * SQR(wstar) + (5.0 - 4.0 * zratio) * SQR(ustar));
2803 sig_w = 1e-2 + sqrt(1.2 * SQR(wstar) * (1.0 - 0.9 * zratio)
2804 * pow(zratio, 2.0 / 3.0)
2805 + (1.8 - 1.4 * zratio) * SQR(ustar));
2806
2807 /* Calculate derivative dsig_w/dz... */
2808 dsigw_dz = 0.5 / sig_w / zi * (-1.4 * SQR(ustar) + SQR(wstar)
2809 * (0.8 *
2810 pow(MAX(zratio, 1e-3), -1.0 / 3.0)
2811 - 1.8 * pow(zratio, 2.0 / 3.0)));
2812
2813 /* Calcalute Lagrangian timescales... */
2814 const double C0 = 3.0; // TODO: typically 3...6, NAME model uses 3?
2815 const double eps =
2816 (1.5 - 1.2 * pow(zratio, 1.0 / 3.0)) * SQR(wstar) * wstar / zi
2817 + SQR(ustar) * ustar * (1.0 - 0.8 * zratio) / (KARMAN * z);
2818 tau_u = 2 * SQR(sig_u) / (C0 * eps);
2819 tau_w = 2 * SQR(sig_w) / (C0 * eps);
2820 }
2821 }
2822
2823 /* Set minimum values... */
2824 sig_u = MAX(sig_u, 0.25);
2825 sig_w = MAX(sig_w, 0.1);
2826 tau_u = MAX(tau_u, 300.);
2827 tau_w = MAX(tau_w, 100.);
2828
2829 /* Update perturbations... */
2830 const double ru = exp(-fabs(cache->dt[ip]) / tau_u);
2831 const double ru2 = sqrt(1.0 - SQR(ru));
2832 cache->uvwp[ip][0]
2833 = (float) (cache->uvwp[ip][0] * ru + ru2 * cache->rs[3 * ip]);
2834 cache->uvwp[ip][1]
2835 = (float) (cache->uvwp[ip][1] * ru + ru2 * cache->rs[3 * ip + 1]);
2836
2837 const double rw = exp(-fabs(cache->dt[ip]) / tau_w);
2838 const double rw2 = sqrt(1.0 - SQR(rw));
2839 cache->uvwp[ip][2]
2840 = (float) (cache->uvwp[ip][2] * rw + rw2 * cache->rs[3 * ip + 2]
2841 + sig_w * dsigw_dz * cache->dt[ip]); // TODO: check approx for density correction?
2842
2843 /* Calculate new air parcel position... */
2844 atm->lon[ip] +=
2845 DX2DEG(cache->uvwp[ip][0] * cache->dt[ip] / 1000., atm->lat[ip]);
2846 atm->lat[ip] += DY2DEG(cache->uvwp[ip][1] * cache->dt[ip] / 1000.);
2847 atm->p[ip] +=
2848 DZ2DP(cache->uvwp[ip][2] * cache->dt[ip] / 1000., atm->p[ip]);
2849 }
2850}
2851
2852/*****************************************************************************/
2853
2855 const ctl_t *ctl,
2856 cache_t *cache,
2857 const clim_t *clim,
2858 met_t *met0,
2859 met_t *met1,
2860 atm_t *atm) {
2861
2862 /* Set timer... */
2863 SELECT_TIMER("MODULE_DIFF_TURB", "PHYSICS", NVTX_GPU);
2864
2865 /* Create random numbers... */
2866 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
2867
2868 /* Loop over particles... */
2869 PARTICLE_LOOP(0, atm->np, 1,
2870 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2871
2872 /* Get PBL and surface pressure... */
2873 double pbl, ps;
2875 INTPOL_2D(pbl, 1);
2876 INTPOL_2D(ps, 0);
2877
2878 /* Get weighting factors... */
2879 const double wpbl = pbl_weight(ctl, atm, ip, pbl, ps);
2880 const double wtrop = tropo_weight(clim, atm, ip) * (1.0 - wpbl);
2881 const double wstrat = 1.0 - wpbl - wtrop;
2882
2883 /* Set diffusivity... */
2884 const double dx = wpbl * ctl->turb_dx_pbl + wtrop * ctl->turb_dx_trop
2885 + wstrat * ctl->turb_dx_strat;
2886 const double dz = wpbl * ctl->turb_dz_pbl + wtrop * ctl->turb_dz_trop
2887 + wstrat * ctl->turb_dz_strat;
2888
2889 /* Horizontal turbulent diffusion... */
2890 if (dx > 0) {
2891 const double sigma = sqrt(2.0 * dx * fabs(cache->dt[ip])) / 1000.;
2892 atm->lon[ip] += DX2DEG(cache->rs[3 * ip] * sigma, atm->lat[ip]);
2893 atm->lat[ip] += DY2DEG(cache->rs[3 * ip + 1] * sigma);
2894 }
2895
2896 /* Vertical turbulent diffusion... */
2897 if (dz > 0) {
2898 const double sigma = sqrt(2.0 * dz * fabs(cache->dt[ip])) / 1000.;
2899 atm->p[ip] += DZ2DP(cache->rs[3 * ip + 2] * sigma, atm->p[ip]);
2900 }
2901 }
2902}
2903
2904/*****************************************************************************/
2905
2907 const ctl_t *ctl,
2908 const cache_t *cache,
2909 met_t *met0,
2910 met_t *met1,
2911 atm_t *atm) {
2912
2913 /* Set timer... */
2914 SELECT_TIMER("MODULE_DRY_DEPO", "PHYSICS", NVTX_GPU);
2915
2916 /* Check quantity flags... */
2917 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
2918 ERRMSG("Module needs quantity mass or volume mixing ratio!");
2919
2920 /* Loop over particles... */
2921 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2922
2923 /* Get surface pressure... */
2924 double ps;
2926 INTPOL_2D(ps, 1);
2927
2928 /* Check whether particle is above the surface layer... */
2929 if (atm->p[ip] < ps - ctl->dry_depo_dp)
2930 continue;
2931
2932 /* Set depth of surface layer... */
2933 const double dz = 1000. * (Z(ps - ctl->dry_depo_dp) - Z(ps));
2934
2935 /* Calculate sedimentation velocity for particles... */
2936 double v_dep;
2937 if (ctl->qnt_rp > 0 && ctl->qnt_rhop > 0) {
2938
2939 /* Get temperature... */
2940 double t;
2941 INTPOL_3D(t, 1);
2942
2943 /* Set deposition velocity... */
2944 v_dep = sedi(atm->p[ip], t, atm->q[ctl->qnt_rp][ip],
2945 atm->q[ctl->qnt_rhop][ip]);
2946 }
2947
2948 /* Use explicit sedimentation velocity for gases... */
2949 else
2950 v_dep = ctl->dry_depo_vdep;
2951
2952 /* Calculate loss of mass based on deposition velocity... */
2953 const double aux = exp(-cache->dt[ip] * v_dep / dz);
2954 if (ctl->qnt_m >= 0) {
2955 if (ctl->qnt_mloss_dry >= 0)
2956 atm->q[ctl->qnt_mloss_dry][ip]
2957 += atm->q[ctl->qnt_m][ip] * (1 - aux);
2958 atm->q[ctl->qnt_m][ip] *= aux;
2959 if (ctl->qnt_loss_rate >= 0)
2960 atm->q[ctl->qnt_loss_rate][ip] += v_dep / dz;
2961 }
2962 if (ctl->qnt_vmr >= 0)
2963 atm->q[ctl->qnt_vmr][ip] *= aux;
2964 }
2965}
2966
2967/*****************************************************************************/
2968
2970 const ctl_t *ctl,
2971 const cache_t *cache,
2972 const clim_t *clim,
2973 met_t *met0,
2974 met_t *met1,
2975 atm_t *atm) {
2976
2977 /* Set timer... */
2978 SELECT_TIMER("MODULE_H2O2_CHEM", "PHYSICS", NVTX_GPU);
2979
2980 /* Check quantity flags... */
2981 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
2982 ERRMSG("Module needs quantity mass or volume mixing ratio!");
2983
2984 /* Parameter of SO2 correction... */
2985 const double a = 3.12541941e-06;
2986 const double b = -5.72532259e-01;
2987 const double low = pow(1. / a, 1. / b);
2988
2989 /* Loop over particles... */
2990 PARTICLE_LOOP(0, atm->np, 1,
2991 "acc data present(ctl,cache,ctl,met0,met1,atm)") {
2992
2993 /* Check whether particle is inside cloud... */
2994 double lwc, rwc;
2996 INTPOL_3D(lwc, 1);
2997 INTPOL_3D(rwc, 0);
2998 if (!(lwc > 0 || rwc > 0))
2999 continue;
3000
3001 /* Get temperature... */
3002 double t;
3003 INTPOL_3D(t, 0);
3004
3005 /* Get molecular density... */
3006 const double M = MOLEC_DENS(atm->p[ip], t);
3007
3008 /* Reaction rate (Berglen et al., 2004)... */
3009 const double k = 9.1e7 * exp(-29700. / RI * (1. / t - 1. / 298.15)); /* (Maass, 1999), unit: M^(-2) */
3010
3011 /* Henry constant of SO2... */
3012 const double H_SO2 =
3013 1.3e-2 * exp(2900. * (1. / t - 1. / 298.15)) * RI * t;
3014 const double K_1S = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15)); /* unit: mol/L */
3015
3016 /* Henry constant of H2O2... */
3017 const double H_h2o2 =
3018 8.3e2 * exp(7600. * (1. / t - 1. / 298.15)) * RI * t;
3019
3020 /* Correction factor for high SO2 concentration
3021 (if qnt_Cx is defined, the correction is switched on)... */
3022 double cor = 1.0;
3023 if (ctl->qnt_Cx >= 0)
3024 cor = atm->q[ctl->qnt_Cx][ip] >
3025 low ? a * pow(atm->q[ctl->qnt_Cx][ip], b) : 1;
3026
3027 const double h2o2 = H_h2o2
3028 * clim_zm(&clim->h2o2, atm->time[ip], atm->lat[ip], atm->p[ip])
3029 * M * cor * 1000. / AVO; /* unit: mol/L */
3030
3031 /* Volume water content in cloud [m^3 m^(-3)]... */
3032 const double rho_air = atm->p[ip] / (RI * t) * MA / 10.;
3033 const double CWC = (lwc + rwc) * rho_air / 1e3;
3034
3035 /* Calculate exponential decay (Rolph et al., 1992)... */
3036 const double rate_coef = k * K_1S * h2o2 * H_SO2 * CWC;
3037 const double aux = exp(-cache->dt[ip] * rate_coef);
3038 if (ctl->qnt_m >= 0) {
3039 if (ctl->qnt_mloss_h2o2 >= 0)
3040 atm->q[ctl->qnt_mloss_h2o2][ip] += atm->q[ctl->qnt_m][ip] * (1 - aux);
3041 atm->q[ctl->qnt_m][ip] *= aux;
3042 if (ctl->qnt_loss_rate >= 0)
3043 atm->q[ctl->qnt_loss_rate][ip] += rate_coef;
3044 }
3045 if (ctl->qnt_vmr >= 0)
3046 atm->q[ctl->qnt_vmr][ip] *= aux;
3047 }
3048}
3049
3050/*****************************************************************************/
3051
3053 const ctl_t *ctl,
3054 cache_t *cache,
3055 met_t *met0,
3056 met_t *met1,
3057 atm_t *atm) {
3058
3059 double t;
3060
3061 /* Set timer... */
3062 SELECT_TIMER("MODULE_ISOSURF_INIT", "PHYSICS", NVTX_GPU);
3063
3064 /* Save pressure... */
3065 if (ctl->isosurf == 1) {
3066 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,atm)") {
3067 cache->iso_var[ip] = atm->p[ip];
3068 }
3069 }
3070
3071 /* Save density... */
3072 else if (ctl->isosurf == 2) {
3073 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,met0,met1,atm)") {
3075 INTPOL_3D(t, 1);
3076 cache->iso_var[ip] = atm->p[ip] / t;
3077 }
3078 }
3079
3080 /* Save potential temperature... */
3081 else if (ctl->isosurf == 3) {
3082 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,met0,met1,atm)") {
3084 INTPOL_3D(t, 1);
3085 cache->iso_var[ip] = THETA(atm->p[ip], t);
3086 }
3087 }
3088
3089 /* Read balloon pressure data... */
3090 else if (ctl->isosurf == 4) {
3091
3092 /* Write info... */
3093 LOG(1, "Read balloon pressure data: %s", ctl->balloon);
3094
3095 /* Open file... */
3096 FILE *in;
3097 if (!(in = fopen(ctl->balloon, "r")))
3098 ERRMSG("Cannot open file!");
3099
3100 /* Read pressure time series... */
3101 char line[LEN];
3102 while (fgets(line, LEN, in))
3103 if (sscanf(line, "%lg %lg", &(cache->iso_ts[cache->iso_n]),
3104 &(cache->iso_ps[cache->iso_n])) == 2)
3105 if ((++cache->iso_n) > NP)
3106 ERRMSG("Too many data points!");
3107
3108 /* Check number of points... */
3109 if (cache->iso_n < 1)
3110 ERRMSG("Could not read any data!");
3111
3112 /* Close file... */
3113 fclose(in);
3114
3115 /* Update of cache data on device... */
3116 mptrac_update_device(NULL, cache, NULL, NULL, NULL, NULL);
3117 }
3118}
3119
3120/*****************************************************************************/
3121
3123 const ctl_t *ctl,
3124 const cache_t *cache,
3125 met_t *met0,
3126 met_t *met1,
3127 atm_t *atm) {
3128
3129 /* Set timer... */
3130 SELECT_TIMER("MODULE_ISOSURF", "PHYSICS", NVTX_GPU);
3131
3132 /* Loop over particles... */
3133 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,cache,met0,met1,atm)") {
3134
3135 /* Init... */
3136 double t;
3138
3139 /* Restore pressure... */
3140 if (ctl->isosurf == 1)
3141 atm->p[ip] = cache->iso_var[ip];
3142
3143 /* Restore density... */
3144 else if (ctl->isosurf == 2) {
3145 INTPOL_3D(t, 1);
3146 atm->p[ip] = cache->iso_var[ip] * t;
3147 }
3148
3149 /* Restore potential temperature... */
3150 else if (ctl->isosurf == 3) {
3151 INTPOL_3D(t, 1);
3152 atm->p[ip] = 1000. * pow(cache->iso_var[ip] / t, -1. / 0.286);
3153 }
3154
3155 /* Interpolate pressure... */
3156 else if (ctl->isosurf == 4) {
3157 if (atm->time[ip] <= cache->iso_ts[0])
3158 atm->p[ip] = cache->iso_ps[0];
3159 else if (atm->time[ip] >= cache->iso_ts[cache->iso_n - 1])
3160 atm->p[ip] = cache->iso_ps[cache->iso_n - 1];
3161 else {
3162 int idx = locate_irr(cache->iso_ts, cache->iso_n, atm->time[ip]);
3163 atm->p[ip] = LIN(cache->iso_ts[idx], cache->iso_ps[idx],
3164 cache->iso_ts[idx + 1], cache->iso_ps[idx + 1],
3165 atm->time[ip]);
3166 }
3167 }
3168 }
3169}
3170
3171/*****************************************************************************/
3172
3173#ifdef KPP
3174void module_kpp_chem(
3175 ctl_t *ctl,
3176 cache_t *cache,
3177 clim_t *clim,
3178 met_t *met0,
3179 met_t *met1,
3180 atm_t *atm) {
3181
3182 /* Set timer... */
3183 SELECT_TIMER("MODULE_KPP_CHEM", "PHYSICS", NVTX_GPU);
3184
3185 const int nvar = NVAR, nfix = NFIX, nreact = NREACT;
3186 double rtol[1] = { 1.0e-3 };
3187 double atol[1] = { 1.0 };
3188
3189 /* Loop over particles... */
3190#ifdef _OPENACC
3191#pragma acc data copy(rtol,atol,nvar,nfix,nreact)
3192#endif
3193 PARTICLE_LOOP(0, atm->np, 1,
3194 "acc data present(ctl,cache,clim,met0,met1,atm) ") {
3195
3196 /* Initialize... */
3197 double var[nvar], fix[nfix], rconst[nreact];
3198 for (int i = 0; i < nvar; i++)
3199 var[i] = 0.0;
3200 for (int i = 0; i < nfix; i++)
3201 fix[i] = 0.0;
3202 for (int i = 0; i < nreact; i++)
3203 rconst[i] = 0.0;
3204 kpp_chem_initialize(ctl, clim, met0, met1, atm, var, fix, rconst, ip);
3205
3206 /* Integrate... */
3207 double rpar[20];
3208 int ipar[20];
3209 for (int i = 0; i < 20; i++) {
3210 ipar[i] = 0;
3211 rpar[i] = 0.0;
3212 }
3213 ipar[0] = 0; /* 0: F=F(y), i.e. independent of t (autonomous); 0:F=F(t,y), i.e. depends on t (non-autonomous) */
3214 ipar[1] = 1; /* 0: NVAR-dimentional vector of tolerances; 1:scalar tolerances */
3215 ipar[3] = 4; /* choice of the method:Rodas3 */
3216 Rosenbrock(var, fix, rconst, 0, ctl->dt_kpp,
3217 atol, rtol, &FunTemplate, &JacTemplate, rpar, ipar);
3218
3219 /* Save results.. */
3220 kpp_chem_output2atm(atm, ctl, met0, met1, var, ip);
3221 }
3222}
3223#endif
3224
3225/*****************************************************************************/
3226
3228 const ctl_t *ctl,
3229 const cache_t *cache,
3230 const clim_t *clim,
3231 met_t *met0,
3232 met_t *met1,
3233 atm_t *atm) {
3234
3235 /* Set timer... */
3236 SELECT_TIMER("MODULE_METEO", "PHYSICS", NVTX_GPU);
3237
3238 /* Check quantity flags... */
3239 if (ctl->qnt_tsts >= 0)
3240 if (ctl->qnt_tice < 0 || ctl->qnt_tnat < 0)
3241 ERRMSG("Need T_ice and T_NAT to calculate T_STS!");
3242
3243 /* Loop over particles... */
3244 PARTICLE_LOOP(0, atm->np, 0,
3245 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3246
3247 double ps, ts, zs, us, vs, ess, nss, shf, lsm, sst, pbl, pt, pct, pcb, cl,
3248 plcl, plfc, pel, cape, cin, o3c, pv, t, tt, u, v, w, h2o, h2ot, o3, lwc,
3249 rwc, iwc, swc, cc, z, zt;
3250
3251 /* Interpolate meteo data... */
3253 INTPOL_TIME_ALL(atm->time[ip], atm->p[ip], atm->lon[ip], atm->lat[ip]);
3254
3255 /* Set quantities... */
3256 SET_ATM(qnt_ps, ps);
3257 SET_ATM(qnt_ts, ts);
3258 SET_ATM(qnt_zs, zs);
3259 SET_ATM(qnt_us, us);
3260 SET_ATM(qnt_vs, vs);
3261 SET_ATM(qnt_ess, ess);
3262 SET_ATM(qnt_nss, nss);
3263 SET_ATM(qnt_shf, shf);
3264 SET_ATM(qnt_lsm, lsm);
3265 SET_ATM(qnt_sst, sst);
3266 SET_ATM(qnt_pbl, pbl);
3267 SET_ATM(qnt_pt, pt);
3268 SET_ATM(qnt_tt, tt);
3269 SET_ATM(qnt_zt, zt);
3270 SET_ATM(qnt_h2ot, h2ot);
3271 SET_ATM(qnt_zg, z);
3272 SET_ATM(qnt_p, atm->p[ip]);
3273 SET_ATM(qnt_t, t);
3274 SET_ATM(qnt_rho, RHO(atm->p[ip], t));
3275 SET_ATM(qnt_u, u);
3276 SET_ATM(qnt_v, v);
3277 SET_ATM(qnt_w, w);
3278 SET_ATM(qnt_h2o, h2o);
3279 SET_ATM(qnt_o3, o3);
3280 SET_ATM(qnt_lwc, lwc);
3281 SET_ATM(qnt_rwc, rwc);
3282 SET_ATM(qnt_iwc, iwc);
3283 SET_ATM(qnt_swc, swc);
3284 SET_ATM(qnt_cc, cc);
3285 SET_ATM(qnt_pct, pct);
3286 SET_ATM(qnt_pcb, pcb);
3287 SET_ATM(qnt_cl, cl);
3288 SET_ATM(qnt_plcl, plcl);
3289 SET_ATM(qnt_plfc, plfc);
3290 SET_ATM(qnt_pel, pel);
3291 SET_ATM(qnt_cape, cape);
3292 SET_ATM(qnt_cin, cin);
3293 SET_ATM(qnt_o3c, o3c);
3294 SET_ATM(qnt_hno3,
3295 clim_zm(&clim->hno3, atm->time[ip], atm->lat[ip], atm->p[ip]));
3296 SET_ATM(qnt_oh, clim_oh(ctl, clim, atm->time[ip],
3297 atm->lon[ip], atm->lat[ip], atm->p[ip]));
3298 SET_ATM(qnt_h2o2, clim_zm(&clim->h2o2, atm->time[ip],
3299 atm->lat[ip], atm->p[ip]));
3300 SET_ATM(qnt_ho2, clim_zm(&clim->ho2, atm->time[ip],
3301 atm->lat[ip], atm->p[ip]));
3302 SET_ATM(qnt_o1d, clim_zm(&clim->o1d, atm->time[ip],
3303 atm->lat[ip], atm->p[ip]));
3304 SET_ATM(qnt_vh, sqrt(u * u + v * v));
3305 SET_ATM(qnt_vz, -1e3 * H0 / atm->p[ip] * w);
3306 SET_ATM(qnt_psat, PSAT(t));
3307 SET_ATM(qnt_psice, PSICE(t));
3308 SET_ATM(qnt_pw, PW(atm->p[ip], h2o));
3309 SET_ATM(qnt_sh, SH(h2o));
3310 SET_ATM(qnt_rh, RH(atm->p[ip], t, h2o));
3311 SET_ATM(qnt_rhice, RHICE(atm->p[ip], t, h2o));
3312 SET_ATM(qnt_theta, THETA(atm->p[ip], t));
3313 SET_ATM(qnt_zeta, atm->q[ctl->qnt_zeta][ip]);
3314 SET_ATM(qnt_zeta_d, ZETA(ps, atm->p[ip], t));
3315 SET_ATM(qnt_tvirt, TVIRT(t, h2o));
3316 SET_ATM(qnt_lapse, lapse_rate(t, h2o));
3317 SET_ATM(qnt_pv, pv);
3318 SET_ATM(qnt_tdew, TDEW(atm->p[ip], h2o));
3319 SET_ATM(qnt_tice, TICE(atm->p[ip], h2o));
3320 SET_ATM(qnt_tnat,
3321 nat_temperature(atm->p[ip], h2o,
3322 clim_zm(&clim->hno3, atm->time[ip],
3323 atm->lat[ip], atm->p[ip])));
3324 SET_ATM(qnt_tsts,
3325 0.5 * (atm->q[ctl->qnt_tice][ip] + atm->q[ctl->qnt_tnat][ip]));
3326 }
3327}
3328
3329/*****************************************************************************/
3330
3332 const ctl_t *ctl,
3333 const clim_t *clim,
3334 atm_t *atm,
3335 const double t) {
3336
3337 /* Set timer... */
3338 SELECT_TIMER("MODULE_MIXING", "PHYSICS", NVTX_GPU);
3339
3340 /* Allocate... */
3341 const int np = atm->np;
3342 int *restrict const ixs = (int *) malloc((size_t) np * sizeof(int));
3343 int *restrict const iys = (int *) malloc((size_t) np * sizeof(int));
3344 int *restrict const izs = (int *) malloc((size_t) np * sizeof(int));
3345
3346 /* Set grid box size... */
3347 const double dz = (ctl->mixing_z1 - ctl->mixing_z0) / ctl->mixing_nz;
3348 const double dlon = (ctl->mixing_lon1 - ctl->mixing_lon0) / ctl->mixing_nx;
3349 const double dlat = (ctl->mixing_lat1 - ctl->mixing_lat0) / ctl->mixing_ny;
3350
3351 /* Set time interval... */
3352 const double t0 = t - 0.5 * ctl->dt_mod;
3353 const double t1 = t + 0.5 * ctl->dt_mod;
3354
3355 /* Get indices... */
3356#ifdef _OPENACC
3357#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np])
3358#pragma acc data present(ctl,clim,atm,ixs,iys,izs)
3359#pragma acc parallel loop independent gang vector
3360#else
3361#pragma omp parallel for default(shared)
3362#endif
3363 for (int ip = 0; ip < np; ip++) {
3364 ixs[ip] = (int) ((atm->lon[ip] - ctl->mixing_lon0) / dlon);
3365 iys[ip] = (int) ((atm->lat[ip] - ctl->mixing_lat0) / dlat);
3366 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->mixing_z0) / dz);
3367 if (atm->time[ip] < t0 || atm->time[ip] > t1
3368 || ixs[ip] < 0 || ixs[ip] >= ctl->mixing_nx
3369 || iys[ip] < 0 || iys[ip] >= ctl->mixing_ny
3370 || izs[ip] < 0 || izs[ip] >= ctl->mixing_nz)
3371 izs[ip] = -1;
3372 }
3373
3374 /* Calculate interparcel mixing... */
3375 if (ctl->qnt_m >= 0)
3376 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_m);
3377 if (ctl->qnt_vmr >= 0)
3378 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_vmr);
3379 if (ctl->qnt_Ch2o >= 0)
3380 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Ch2o);
3381 if (ctl->qnt_Co3 >= 0)
3382 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Co3);
3383 if (ctl->qnt_Cco >= 0)
3384 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cco);
3385 if (ctl->qnt_Coh >= 0)
3386 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Coh);
3387 if (ctl->qnt_Ch >= 0)
3388 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Ch);
3389 if (ctl->qnt_Cho2 >= 0)
3390 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cho2);
3391 if (ctl->qnt_Ch2o2 >= 0)
3392 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Ch2o2);
3393 if (ctl->qnt_Co1d >= 0)
3394 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Co1d);
3395 if (ctl->qnt_Co3p >= 0)
3396 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Co3p);
3397 if (ctl->qnt_Cccl4 >= 0)
3398 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cccl4);
3399 if (ctl->qnt_Cccl3f >= 0)
3400 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cccl3f);
3401 if (ctl->qnt_Cccl2f2 >= 0)
3402 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cccl2f2);
3403 if (ctl->qnt_Cn2o >= 0)
3404 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Cn2o);
3405 if (ctl->qnt_Csf6 >= 0)
3406 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_Csf6);
3407 if (ctl->qnt_aoa >= 0)
3408 module_mixing_help(ctl, clim, atm, ixs, iys, izs, ctl->qnt_aoa);
3409
3410 /* Free... */
3411#ifdef _OPENACC
3412#pragma acc exit data delete(ixs,iys,izs)
3413#endif
3414 free(ixs);
3415 free(iys);
3416 free(izs);
3417}
3418
3419/*****************************************************************************/
3420
3422 const ctl_t *ctl,
3423 const clim_t *clim,
3424 atm_t *atm,
3425 const int *ixs,
3426 const int *iys,
3427 const int *izs,
3428 const int qnt_idx) {
3429
3430 /* Allocate... */
3431 const int np = atm->np;
3432 const int ngrid = ctl->mixing_nx * ctl->mixing_ny * ctl->mixing_nz;
3433 double *restrict const cmean =
3434 (double *) malloc((size_t) ngrid * sizeof(double));
3435 int *restrict const count = (int *) malloc((size_t) ngrid * sizeof(int));
3436
3437 /* Init... */
3438#ifdef _OPENACC
3439#pragma acc enter data create(cmean[0:ngrid],count[0:ngrid])
3440#pragma acc data present(ctl,clim,atm,ixs,iys,izs,cmean,count)
3441#pragma acc parallel loop independent gang vector
3442#else
3443#ifdef __NVCOMPILER
3444#pragma novector
3445#endif
3446#pragma omp parallel for
3447#endif
3448 for (int i = 0; i < ngrid; i++) {
3449 count[i] = 0;
3450 cmean[i] = 0;
3451 }
3452
3453 /* Loop over particles... */
3454#ifdef _OPENACC
3455#pragma acc parallel loop independent gang vector
3456#endif
3457 for (int ip = 0; ip < np; ip++)
3458 if (izs[ip] >= 0) {
3459 int idx = ARRAY_3D
3460 (ixs[ip], iys[ip], ctl->mixing_ny, izs[ip], ctl->mixing_nz);
3461#ifdef _OPENACC
3462#pragma acc atomic update
3463#endif
3464 cmean[idx] += atm->q[qnt_idx][ip];
3465#ifdef _OPENACC
3466#pragma acc atomic update
3467#endif
3468 count[idx]++;
3469 }
3470#ifdef _OPENACC
3471#pragma acc parallel loop independent gang vector
3472#else
3473#ifdef __NVCOMPILER
3474#pragma novector
3475#endif
3476#pragma omp parallel for
3477#endif
3478 for (int i = 0; i < ngrid; i++)
3479 if (count[i] > 0)
3480 cmean[i] /= count[i];
3481
3482 /* Calculate interparcel mixing... */
3483#ifdef _OPENACC
3484#pragma acc parallel loop independent gang vector
3485#else
3486#pragma omp parallel for
3487#endif
3488 for (int ip = 0; ip < np; ip++)
3489 if (izs[ip] >= 0) {
3490
3491 /* Set mixing parameter... */
3492 double mixparam = 1.0;
3493 if (ctl->mixing_trop < 1 || ctl->mixing_strat < 1) {
3494 double w = tropo_weight(clim, atm, ip);
3495 mixparam = w * ctl->mixing_trop + (1 - w) * ctl->mixing_strat;
3496 }
3497
3498 /* Adjust quantity... */
3499 atm->q[qnt_idx][ip] +=
3500 (cmean
3501 [ARRAY_3D(ixs[ip], iys[ip], ctl->mixing_ny, izs[ip], ctl->mixing_nz)]
3502 - atm->q[qnt_idx][ip]) * mixparam;
3503 }
3504
3505 /* Free... */
3506#ifdef _OPENACC
3507#pragma acc exit data delete(cmean,count)
3508#endif
3509 free(cmean);
3510 free(count);
3511}
3512
3513/*****************************************************************************/
3514
3516 const ctl_t *ctl,
3517 const cache_t *cache,
3518 const clim_t *clim,
3519 met_t *met0,
3520 met_t *met1,
3521 atm_t *atm) {
3522
3523 /* Set timer... */
3524 SELECT_TIMER("MODULE_OH_CHEM", "PHYSICS", NVTX_GPU);
3525
3526 /* Check quantity flags... */
3527 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
3528 ERRMSG("Module needs quantity mass or volume mixing ratio!");
3529
3530 /* Parameter of SO2 correction... */
3531 const double a = 4.71572206e-08;
3532 const double b = -8.28782867e-01;
3533 const double low = pow(1. / a, 1. / b);
3534
3535 /* Loop over particles... */
3536 PARTICLE_LOOP(0, atm->np, 1,
3537 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3538
3539 /* Get temperature... */
3540 double t;
3542 INTPOL_3D(t, 1);
3543
3544 /* Calculate molecular density... */
3545 const double M = MOLEC_DENS(atm->p[ip], t);
3546
3547 /* Use constant reaction rate... */
3548 double k = NAN;
3549 if (ctl->oh_chem_reaction == 1)
3550 k = ctl->oh_chem[0];
3551
3552 /* Calculate bimolecular reaction rate... */
3553 else if (ctl->oh_chem_reaction == 2)
3554 k = ctl->oh_chem[0] * exp(-ctl->oh_chem[1] / t);
3555
3556 /* Calculate termolecular reaction rate... */
3557 if (ctl->oh_chem_reaction == 3) {
3558
3559 /* Calculate rate coefficient for X + OH + M -> XOH + M
3560 (JPL Publication 19-05) ... */
3561 const double k0 =
3562 ctl->oh_chem[0] * (ctl->oh_chem[1] !=
3563 0 ? pow(298. / t, ctl->oh_chem[1]) : 1.);
3564 const double ki =
3565 ctl->oh_chem[2] * (ctl->oh_chem[3] !=
3566 0 ? pow(298. / t, ctl->oh_chem[3]) : 1.);
3567 const double c = log10(k0 * M / ki);
3568 k = k0 * M / (1. + k0 * M / ki) * pow(0.6, 1. / (1. + c * c));
3569 }
3570
3571 /* Correction factor for high SO2 concentration
3572 (if qnt_Cx is defined, the correction is switched on)... */
3573 double cor = 1;
3574 if (ctl->qnt_Cx >= 0)
3575 cor =
3576 atm->q[ctl->qnt_Cx][ip] >
3577 low ? a * pow(atm->q[ctl->qnt_Cx][ip], b) : 1;
3578
3579 /* Calculate exponential decay... */
3580 const double rate_coef =
3581 k * clim_oh(ctl, clim, atm->time[ip], atm->lon[ip],
3582 atm->lat[ip], atm->p[ip]) * M * cor;
3583 const double aux = exp(-cache->dt[ip] * rate_coef);
3584 if (ctl->qnt_m >= 0) {
3585 if (ctl->qnt_mloss_oh >= 0)
3586 atm->q[ctl->qnt_mloss_oh][ip]
3587 += atm->q[ctl->qnt_m][ip] * (1 - aux);
3588 atm->q[ctl->qnt_m][ip] *= aux;
3589 if (ctl->qnt_loss_rate >= 0)
3590 atm->q[ctl->qnt_loss_rate][ip] += rate_coef;
3591 }
3592 if (ctl->qnt_vmr >= 0)
3593 atm->q[ctl->qnt_vmr][ip] *= aux;
3594 }
3595}
3596
3597/*****************************************************************************/
3598
3600 const cache_t *cache,
3601 met_t *met0,
3602 met_t *met1,
3603 atm_t *atm) {
3604
3605 /* Set timer... */
3606 SELECT_TIMER("MODULE_POSITION", "PHYSICS", NVTX_GPU);
3607
3608 /* Loop over particles... */
3609 PARTICLE_LOOP(0, atm->np, 1, "acc data present(cache,met0,met1,atm)") {
3610
3611 /* Init... */
3612 double ps;
3614
3615 /* Calculate modulo... */
3616 atm->lon[ip] = FMOD(atm->lon[ip], 360.);
3617 atm->lat[ip] = FMOD(atm->lat[ip], 360.);
3618
3619 /* Check latitude... */
3620 while (atm->lat[ip] < -90 || atm->lat[ip] > 90) {
3621 if (atm->lat[ip] > 90) {
3622 atm->lat[ip] = 180 - atm->lat[ip];
3623 atm->lon[ip] += 180;
3624 }
3625 if (atm->lat[ip] < -90) {
3626 atm->lat[ip] = -180 - atm->lat[ip];
3627 atm->lon[ip] += 180;
3628 }
3629 }
3630
3631 /* Check longitude... */
3632 while (atm->lon[ip] < -180)
3633 atm->lon[ip] += 360;
3634 while (atm->lon[ip] >= 180)
3635 atm->lon[ip] -= 360;
3636
3637 /* Check pressure... */
3638 if (atm->p[ip] < met0->p[met0->np - 1]) {
3639 // TODO: add reflection: atm->p[ip] = 2. * met0->p[met0->np - 1] - atm->p[ip];
3640 atm->p[ip] = met0->p[met0->np - 1];
3641 } else if (atm->p[ip] > 300.) {
3642 INTPOL_2D(ps, 1);
3643 // TODO: add reflection: if (atm->p[ip] > ps)
3644 // atm->p[ip] = 2. * ps - atm->p[ip];
3645 if (atm->p[ip] > ps)
3646 atm->p[ip] = ps;
3647 }
3648 }
3649}
3650
3651/*****************************************************************************/
3652
3654 const int ntask) {
3655
3656 /* Initialize GSL random number generators... */
3657 gsl_rng_env_setup();
3658 if (omp_get_max_threads() > NTHREADS)
3659 ERRMSG("Too many threads!");
3660 for (int i = 0; i < NTHREADS; i++) {
3661 rng[i] = gsl_rng_alloc(gsl_rng_default);
3662 gsl_rng_set(rng[i], gsl_rng_default_seed
3663 + (long unsigned) (ntask * NTHREADS + i));
3664 }
3665
3666 /* Initialize cuRAND random number generators... */
3667#ifdef CURAND
3668 if (curandCreateGenerator(&rng_curand, CURAND_RNG_PSEUDO_DEFAULT) !=
3669 CURAND_STATUS_SUCCESS)
3670 ERRMSG("Cannot create random number generator!");
3671 if (curandSetPseudoRandomGeneratorSeed(rng_curand, ntask) !=
3672 CURAND_STATUS_SUCCESS)
3673 ERRMSG("Cannot set seed for random number generator!");
3674 if (curandSetStream
3675 (rng_curand,
3676 (cudaStream_t) acc_get_cuda_stream(acc_async_sync)) !=
3677 CURAND_STATUS_SUCCESS)
3678 ERRMSG("Cannot set stream for random number generator!");
3679#endif
3680}
3681
3682/*****************************************************************************/
3683
3685 const ctl_t *ctl,
3686 double *rs,
3687 const size_t n,
3688 const int method) {
3689
3690 /* Use GSL random number generators... */
3691 if (ctl->rng_type == 0) {
3692
3693 /* Uniform distribution... */
3694 if (method == 0) {
3695#pragma omp parallel for default(shared)
3696 for (size_t i = 0; i < n; ++i)
3697 rs[i] = gsl_rng_uniform(rng[omp_get_thread_num()]);
3698 }
3699
3700 /* Normal distribution... */
3701 else if (method == 1) {
3702#pragma omp parallel for default(shared)
3703 for (size_t i = 0; i < n; ++i)
3704 rs[i] = gsl_ran_gaussian_ziggurat(rng[omp_get_thread_num()], 1.0);
3705 }
3706
3707 /* Update of random numbers on device... */
3708#ifdef _OPENACC
3709 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
3710#pragma acc update device(rs[:n])
3711#endif
3712 }
3713
3714 /* Use Squares random number generator (Widynski, 2022)... */
3715 else if (ctl->rng_type == 1) {
3716
3717 /* Set key (don't change this!)... */
3718 const uint64_t key = 0xc8e4fd154ce32f6d;
3719
3720 /* Uniform distribution... */
3721#ifdef _OPENACC
3722#pragma acc data present(rs)
3723#pragma acc parallel loop independent gang vector
3724#else
3725#pragma omp parallel for default(shared)
3726#endif
3727 for (size_t i = 0; i < n + 1; ++i) {
3728 uint64_t r, t, x, y, z;
3729 y = x = (rng_ctr + i) * key;
3730 z = y + key;
3731 x = x * x + y;
3732 x = (x >> 32) | (x << 32);
3733 x = x * x + z;
3734 x = (x >> 32) | (x << 32);
3735 x = x * x + y;
3736 x = (x >> 32) | (x << 32);
3737 t = x = x * x + z;
3738 x = (x >> 32) | (x << 32);
3739 r = t ^ ((x * x + y) >> 32);
3740 rs[i] = (double) r / (double) UINT64_MAX;
3741 }
3742 rng_ctr += n + 1;
3743
3744 /* Normal distribution... */
3745 if (method == 1) {
3746#ifdef _OPENACC
3747#pragma acc parallel loop independent gang vector
3748#else
3749#pragma omp parallel for default(shared)
3750#endif
3751 for (size_t i = 0; i < n; i += 2) {
3752 const double r = sqrt(-2.0 * log(rs[i]));
3753 const double phi = 2.0 * M_PI * rs[i + 1];
3754 rs[i] = r * cosf((float) phi);
3755 rs[i + 1] = r * sinf((float) phi);
3756 }
3757 }
3758 }
3759
3760 /* Use cuRAND random number generators... */
3761 else if (ctl->rng_type == 2) {
3762#ifdef CURAND
3763#pragma acc host_data use_device(rs)
3764 {
3765
3766 /* Uniform distribution... */
3767 if (method == 0) {
3768 if (curandGenerateUniformDouble(rng_curand, rs, (n < 4 ? 4 : n)) !=
3769 CURAND_STATUS_SUCCESS)
3770 ERRMSG("Cannot create random numbers!");
3771 }
3772
3773 /* Normal distribution... */
3774 else if (method == 1) {
3775 if (curandGenerateNormalDouble
3776 (rng_curand, rs, (n < 4 ? 4 : n), 0.0,
3777 1.0) != CURAND_STATUS_SUCCESS)
3778 ERRMSG("Cannot create random numbers!");
3779 }
3780 }
3781#else
3782 ERRMSG("MPTRAC was compiled without cuRAND!");
3783#endif
3784 }
3785}
3786
3787/*****************************************************************************/
3788
3790 const ctl_t *ctl,
3791 const cache_t *cache,
3792 met_t *met0,
3793 met_t *met1,
3794 atm_t *atm) {
3795
3796 /* Set timer... */
3797 SELECT_TIMER("MODULE_SEDI", "PHYSICS", NVTX_GPU);
3798
3799 /* Loop over particles... */
3800 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3801
3802 /* Get temperature... */
3803 double t;
3805 INTPOL_3D(t, 1);
3806
3807 /* Sedimentation velocity... */
3808 const double v_s = sedi(atm->p[ip], t, atm->q[ctl->qnt_rp][ip],
3809 atm->q[ctl->qnt_rhop][ip]);
3810
3811 /* Calculate pressure change... */
3812 atm->p[ip] += DZ2DP(v_s * cache->dt[ip] / 1000., atm->p[ip]);
3813 }
3814}
3815
3816/*****************************************************************************/
3817
3819 const ctl_t *ctl,
3820 met_t *met0,
3821 atm_t *atm) {
3822
3823 /* Set timer... */
3824 SELECT_TIMER("MODULE_SORT", "PHYSICS", NVTX_GPU);
3825
3826 /* Allocate... */
3827 const int np = atm->np;
3828 double *restrict const a = (double *) malloc((size_t) np * sizeof(double));
3829 int *restrict const p = (int *) malloc((size_t) np * sizeof(int));
3830
3831#ifdef _OPENACC
3832#pragma acc enter data create(a[0:np],p[0:np])
3833#pragma acc data present(ctl,met0,atm,a,p)
3834#endif
3835
3836 /* Get box index... */
3837#ifdef _OPENACC
3838#pragma acc parallel loop independent gang vector
3839#else
3840#pragma omp parallel for default(shared)
3841#endif
3842 for (int ip = 0; ip < np; ip++) {
3843 a[ip] =
3844 (double) ((locate_reg(met0->lon, met0->nx, atm->lon[ip]) * met0->ny +
3845 locate_reg(met0->lat, met0->ny, atm->lat[ip]))
3846 * met0->np + locate_irr(met0->p, met0->np, atm->p[ip]));
3847 p[ip] = ip;
3848 }
3849
3850 /* Sorting... */
3851#ifdef _OPENACC
3852#pragma acc host_data use_device(a,p)
3853#endif
3854#ifdef THRUST
3855 thrustSortWrapper(a, np, p);
3856#else
3857 ERRMSG("MPTRAC was compiled without Thrust library!");
3858#endif
3859
3860 /* Sort data... */
3861 module_sort_help(atm->time, p, np);
3862 module_sort_help(atm->p, p, np);
3863 module_sort_help(atm->lon, p, np);
3864 module_sort_help(atm->lat, p, np);
3865 for (int iq = 0; iq < ctl->nq; iq++)
3866 module_sort_help(atm->q[iq], p, np);
3867
3868 /* Free... */
3869#ifdef _OPENACC
3870#pragma acc exit data delete(a,p)
3871#endif
3872 free(a);
3873 free(p);
3874}
3875
3876/*****************************************************************************/
3877
3879 double *a,
3880 const int *p,
3881 const int np) {
3882
3883 /* Allocate... */
3884 double *restrict const help =
3885 (double *) malloc((size_t) np * sizeof(double));
3886
3887 /* Reordering of array... */
3888#ifdef _OPENACC
3889#pragma acc enter data create(help[0:np])
3890#pragma acc data present(a,p,help)
3891#pragma acc parallel loop independent gang vector
3892#else
3893#pragma omp parallel for default(shared)
3894#endif
3895 for (int ip = 0; ip < np; ip++)
3896 help[ip] = a[p[ip]];
3897#ifdef _OPENACC
3898#pragma acc parallel loop independent gang vector
3899#else
3900#pragma omp parallel for default(shared)
3901#endif
3902 for (int ip = 0; ip < np; ip++)
3903 a[ip] = help[ip];
3904
3905 /* Free... */
3906#ifdef _OPENACC
3907#pragma acc exit data delete(help)
3908#endif
3909 free(help);
3910}
3911
3912/*****************************************************************************/
3913
3915 const ctl_t *ctl,
3916 cache_t *cache,
3917 met_t *met0,
3918 atm_t *atm,
3919 const double t) {
3920
3921 /* Set timer... */
3922 SELECT_TIMER("MODULE_TIMESTEPS", "PHYSICS", NVTX_GPU);
3923
3924 const double latmin = gsl_stats_min(met0->lat, 1, (size_t) met0->ny),
3925 latmax = gsl_stats_max(met0->lat, 1, (size_t) met0->ny);
3926
3927 const int local =
3928 (fabs(met0->lon[met0->nx - 1] - met0->lon[0] - 360.0) >= 0.01);
3929
3930 /* Loop over particles... */
3931 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,cache,met0,atm)") {
3932
3933 /* Set time step for each air parcel... */
3934 if ((ctl->direction * (atm->time[ip] - ctl->t_start) >= 0
3935 && ctl->direction * (atm->time[ip] - ctl->t_stop) <= 0
3936 && ctl->direction * (atm->time[ip] - t) < 0))
3937 cache->dt[ip] = t - atm->time[ip];
3938 else
3939 cache->dt[ip] = 0.0;
3940
3941 /* Check horizontal boundaries of local meteo data... */
3942 if (local && (atm->lon[ip] <= met0->lon[0]
3943 || atm->lon[ip] >= met0->lon[met0->nx - 1]
3944 || atm->lat[ip] <= latmin || atm->lat[ip] >= latmax))
3945 cache->dt[ip] = 0.0;
3946 }
3947}
3948
3949/*****************************************************************************/
3950
3952 ctl_t *ctl,
3953 const atm_t *atm) {
3954
3955 /* Set timer... */
3956 SELECT_TIMER("MODULE_TIMESTEPS_INIT", "PHYSICS", NVTX_GPU);
3957
3958 /* Set start time... */
3959 if (ctl->direction == 1) {
3960 ctl->t_start = gsl_stats_min(atm->time, 1, (size_t) atm->np);
3961 if (ctl->t_stop > 1e99)
3962 ctl->t_stop = gsl_stats_max(atm->time, 1, (size_t) atm->np);
3963 } else {
3964 ctl->t_start = gsl_stats_max(atm->time, 1, (size_t) atm->np);
3965 if (ctl->t_stop > 1e99)
3966 ctl->t_stop = gsl_stats_min(atm->time, 1, (size_t) atm->np);
3967 }
3968
3969 /* Check time interval... */
3970 if (ctl->direction * (ctl->t_stop - ctl->t_start) <= 0)
3971 ERRMSG("Nothing to do! Check T_STOP and DIRECTION!");
3972
3973 /* Round start time... */
3974 if (ctl->direction == 1)
3975 ctl->t_start = floor(ctl->t_start / ctl->dt_mod) * ctl->dt_mod;
3976 else
3977 ctl->t_start = ceil(ctl->t_start / ctl->dt_mod) * ctl->dt_mod;
3978}
3979
3980/*****************************************************************************/
3981
3983 const ctl_t *ctl,
3984 const cache_t *cache,
3985 const clim_t *clim,
3986 met_t *met0,
3987 met_t *met1,
3988 atm_t *atm) {
3989
3990 /* Set timer... */
3991 SELECT_TIMER("MODULE_TRACER_CHEM", "PHYSICS", NVTX_GPU);
3992
3993 /* Loop over particles... */
3994 PARTICLE_LOOP(0, atm->np, 1,
3995 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3996
3997 /* Get temperature... */
3998 double t;
4000 INTPOL_3D(t, 1);
4001
4002 /* Get molecular density... */
4003 const double M = MOLEC_DENS(atm->p[ip], t);
4004
4005 /* Get total column ozone... */
4006 double o3c;
4007 INTPOL_2D(o3c, 1);
4008
4009 /* Get solar zenith angle... */
4010 const double sza = sza_calc(atm->time[ip], atm->lon[ip], atm->lat[ip]);
4011
4012 /* Get O(1D) volume mixing ratio... */
4013 const double o1d =
4014 clim_zm(&clim->o1d, atm->time[ip], atm->lat[ip], atm->p[ip]);
4015
4016 /* Reactions for CFC-10... */
4017 if (ctl->qnt_Cccl4 >= 0) {
4018 const double K_o1d = ARRHENIUS(3.30e-10, 0, t) * o1d * M;
4019 const double K_hv = clim_photo(clim->photo.ccl4, &(clim->photo),
4020 atm->p[ip], sza, o3c);
4021 atm->q[ctl->qnt_Cccl4][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4022 }
4023
4024 /* Reactions for CFC-11... */
4025 if (ctl->qnt_Cccl3f >= 0) {
4026 const double K_o1d = ARRHENIUS(2.30e-10, 0, t) * o1d * M;
4027 const double K_hv = clim_photo(clim->photo.ccl3f, &(clim->photo),
4028 atm->p[ip], sza, o3c);
4029 atm->q[ctl->qnt_Cccl3f][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4030 }
4031
4032 /* Reactions for CFC-12... */
4033 if (ctl->qnt_Cccl2f2 >= 0) {
4034 const double K_o1d = ARRHENIUS(1.40e-10, -25, t) * o1d * M;
4035 const double K_hv = clim_photo(clim->photo.ccl2f2, &(clim->photo),
4036 atm->p[ip], sza, o3c);
4037 atm->q[ctl->qnt_Cccl2f2][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4038 }
4039
4040 /* Reactions for N2O... */
4041 if (ctl->qnt_Cn2o >= 0) {
4042 const double K_o1d = ARRHENIUS(1.19e-10, -20, t) * o1d * M;
4043 const double K_hv = clim_photo(clim->photo.n2o, &(clim->photo),
4044 atm->p[ip], sza, o3c);
4045 atm->q[ctl->qnt_Cn2o][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4046 }
4047 }
4048}
4049
4050/*****************************************************************************/
4051
4053 const ctl_t *ctl,
4054 const cache_t *cache,
4055 met_t *met0,
4056 met_t *met1,
4057 atm_t *atm) {
4058
4059 /* Set timer... */
4060 SELECT_TIMER("MODULE_WET_DEPO", "PHYSICS", NVTX_GPU);
4061
4062 /* Check quantity flags... */
4063 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
4064 ERRMSG("Module needs quantity mass or volume mixing ratio!");
4065
4066 /* Loop over particles... */
4067 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
4068
4069 /* Check whether particle is below cloud top... */
4070 double pct;
4072 INTPOL_2D(pct, 1);
4073 if (!isfinite(pct) || atm->p[ip] <= pct)
4074 continue;
4075
4076 /* Get cloud bottom pressure... */
4077 double pcb;
4078 INTPOL_2D(pcb, 0);
4079
4080 /* Estimate precipitation rate (Pisso et al., 2019)... */
4081 double cl;
4082 INTPOL_2D(cl, 0);
4083 const double Is =
4084 pow(1. / ctl->wet_depo_pre[0] * cl, 1. / ctl->wet_depo_pre[1]);
4085 if (Is < 0.01)
4086 continue;
4087
4088 /* Check whether particle is inside or below cloud... */
4089 double lwc, rwc, iwc, swc;
4090 INTPOL_3D(lwc, 1);
4091 INTPOL_3D(rwc, 0);
4092 INTPOL_3D(iwc, 0);
4093 INTPOL_3D(swc, 0);
4094 const int inside = (lwc > 0 || rwc > 0 || iwc > 0 || swc > 0);
4095
4096 /* Get temperature... */
4097 double t;
4098 INTPOL_3D(t, 0);
4099
4100 /* Calculate in-cloud scavenging coefficient... */
4101 double lambda = 0;
4102 if (inside) {
4103
4104 /* Calculate retention factor... */
4105 double eta;
4106 if (t > 273.15)
4107 eta = 1;
4108 else if (t <= 238.15)
4109 eta = ctl->wet_depo_ic_ret_ratio;
4110 else
4111 eta = LIN(273.15, 1, 238.15, ctl->wet_depo_ic_ret_ratio, t);
4112
4113 /* Use exponential dependency for particles (Bakels et al., 2024)... */
4114 if (ctl->wet_depo_ic_a > 0)
4115 lambda = ctl->wet_depo_ic_a * pow(Is, ctl->wet_depo_ic_b) * eta;
4116
4117 /* Use Henry's law for gases... */
4118 else if (ctl->wet_depo_ic_h[0] > 0) {
4119
4120 /* Get Henry's constant (Burkholder et al., 2019; Sander, 2023)... */
4121 double h = ctl->wet_depo_ic_h[0]
4122 * exp(ctl->wet_depo_ic_h[1] * (1. / t - 1. / 298.15));
4123
4124 /* Use effective Henry's constant for SO2
4125 (Berglen, 2004; Simpson, 2012)... */
4126 if (ctl->wet_depo_so2_ph > 0) {
4127 const double H_ion = pow(10., -ctl->wet_depo_so2_ph);
4128 const double K_1 = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15));
4129 const double K_2 = 6e-8 * exp(1.12e3 * (1. / t - 1. / 298.15));
4130 h *= (1. + K_1 / H_ion + K_1 * K_2 / SQR(H_ion));
4131 }
4132
4133 /* Estimate depth of cloud layer... */
4134 const double dz = 1e3 * (Z(pct) - Z(pcb));
4135
4136 /* Calculate scavenging coefficient... */
4137 lambda = h * RI * t * Is / 3.6e6 / dz * eta;
4138 }
4139 }
4140
4141 /* Calculate below-cloud scavenging coefficient... */
4142 else {
4143
4144 /* Calculate retention factor... */
4145 double eta;
4146 if (t > 270)
4147 eta = 1;
4148 else
4149 eta = ctl->wet_depo_bc_ret_ratio;
4150
4151 /* Use exponential dependency for particles (Bakels et al., 2024)... */
4152 if (ctl->wet_depo_bc_a > 0)
4153 lambda = ctl->wet_depo_bc_a * pow(Is, ctl->wet_depo_bc_b) * eta;
4154
4155 /* Use Henry's law for gases... */
4156 else if (ctl->wet_depo_bc_h[0] > 0) {
4157
4158 /* Get Henry's constant (Burkholder et al., 2019; Sander, 2023)... */
4159 const double h = ctl->wet_depo_bc_h[0]
4160 * exp(ctl->wet_depo_bc_h[1] * (1. / t - 1. / 298.15));
4161
4162 /* Estimate depth of cloud layer... */
4163 const double dz = 1e3 * (Z(pct) - Z(pcb));
4164
4165 /* Calculate scavenging coefficient... */
4166 lambda = h * RI * t * Is / 3.6e6 / dz * eta;
4167 }
4168 }
4169
4170 /* Calculate exponential decay of mass... */
4171 const double aux = exp(-cache->dt[ip] * lambda);
4172 if (ctl->qnt_m >= 0) {
4173 if (ctl->qnt_mloss_wet >= 0)
4174 atm->q[ctl->qnt_mloss_wet][ip]
4175 += atm->q[ctl->qnt_m][ip] * (1 - aux);
4176 atm->q[ctl->qnt_m][ip] *= aux;
4177 if (ctl->qnt_loss_rate >= 0)
4178 atm->q[ctl->qnt_loss_rate][ip] += lambda;
4179 }
4180 if (ctl->qnt_vmr >= 0)
4181 atm->q[ctl->qnt_vmr][ip] *= aux;
4182 }
4183}
4184
4185/*****************************************************************************/
4186
4188 ctl_t **ctl,
4189 cache_t **cache,
4190 clim_t **clim,
4191 met_t **met0,
4192 met_t **met1,
4193 atm_t **atm) {
4194
4195 /* Initialize GPU... */
4196#ifdef _OPENACC
4197 SELECT_TIMER("ACC_INIT", "INIT", NVTX_GPU);
4198 int rank = 0;
4199#ifdef MPI
4200 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
4201#endif
4202 if (acc_get_num_devices(acc_device_nvidia) <= 0)
4203 ERRMSG("Not running on a GPU device!");
4204 acc_set_device_num(rank % acc_get_num_devices(acc_device_nvidia),
4205 acc_device_nvidia);
4206 acc_device_t device_type = acc_get_device_type();
4207 acc_init(device_type);
4208#endif
4209
4210 /* Allocate... */
4211 SELECT_TIMER("ALLOC", "MEMORY", NVTX_CPU);
4212 ALLOC(*ctl, ctl_t, 1);
4213 ALLOC(*cache, cache_t, 1);
4214 ALLOC(*clim, clim_t, 1);
4215 ALLOC(*met0, met_t, 1);
4216 ALLOC(*met1, met_t, 1);
4217 ALLOC(*atm, atm_t, 1);
4218
4219 /* Create data region on GPU... */
4220#ifdef _OPENACC
4221 SELECT_TIMER("CREATE_DATA_REGION", "MEMORY", NVTX_GPU);
4222 ctl_t *ctlup = *ctl;
4223 cache_t *cacheup = *cache;
4224 clim_t *climup = *clim;
4225 met_t *met0up = *met0;
4226 met_t *met1up = *met1;
4227 atm_t *atmup = *atm;
4228#pragma acc enter data create(ctlup[:1],cacheup[:1],climup[:1],met0up[:1],met1up[:1],atmup[:1])
4229#endif
4230}
4231
4232/*****************************************************************************/
4233
4235 ctl_t *ctl,
4236 cache_t *cache,
4237 clim_t *clim,
4238 met_t *met0,
4239 met_t *met1,
4240 atm_t *atm) {
4241
4242 /* Delete data region on GPU... */
4243#ifdef _OPENACC
4244 SELECT_TIMER("DELETE_DATA_REGION", "MEMORY", NVTX_GPU);
4245#pragma acc exit data delete (ctl,cache,clim,met0,met1,atm)
4246#endif
4247
4248 /* Free... */
4249 SELECT_TIMER("FREE", "MEMORY", NVTX_CPU);
4250 free(atm);
4251 free(ctl);
4252 free(cache);
4253 free(clim);
4254 free(met0);
4255 free(met1);
4256}
4257
4258/*****************************************************************************/
4259
4261 ctl_t *ctl,
4262 clim_t *clim,
4263 const double t,
4264 met_t **met0,
4265 met_t **met1) {
4266
4267 static int init;
4268
4269 met_t *mets;
4270
4271 char cachefile[LEN], cmd[2 * LEN], filename[LEN];
4272
4273 /* Set timer... */
4274 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
4275
4276 /* Init... */
4277 if (t == ctl->t_start || !init) {
4278 init = 1;
4279
4280 /* Read meteo data... */
4281 get_met_help(ctl, t + (ctl->direction == -1 ? -1 : 0), -1,
4282 ctl->metbase, ctl->dt_met, filename);
4283 if (!mptrac_read_met(filename, ctl, clim, *met0))
4284 ERRMSG("Cannot open file!");
4285
4286 get_met_help(ctl, t + (ctl->direction == 1 ? 1 : 0), 1,
4287 ctl->metbase, ctl->dt_met, filename);
4288 if (!mptrac_read_met(filename, ctl, clim, *met1))
4289 ERRMSG("Cannot open file!");
4290
4291 /* Update GPU... */
4292 mptrac_update_device(NULL, NULL, NULL, met0, met1, NULL);
4293 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
4294
4295 /* Caching... */
4296 if (ctl->met_cache && t != ctl->t_stop) {
4297 get_met_help(ctl, t + 1.1 * ctl->dt_met * ctl->direction,
4298 ctl->direction, ctl->metbase, ctl->dt_met, cachefile);
4299 sprintf(cmd, "cat %s > /dev/null &", cachefile);
4300 LOG(1, "Caching: %s", cachefile);
4301 if (system(cmd) != 0)
4302 WARN("Caching command failed!");
4303 }
4304 }
4305
4306 /* Read new data for forward trajectories... */
4307 if (t > (*met1)->time) {
4308
4309 /* Pointer swap... */
4310 mets = *met1;
4311 *met1 = *met0;
4312 *met0 = mets;
4313
4314 /* Read new meteo data... */
4315 get_met_help(ctl, t, 1, ctl->metbase, ctl->dt_met, filename);
4316 if (!mptrac_read_met(filename, ctl, clim, *met1))
4317 ERRMSG("Cannot open file!");
4318
4319 /* Update GPU... */
4320 mptrac_update_device(NULL, NULL, NULL, NULL, met1, NULL);
4321 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
4322
4323 /* Caching... */
4324 if (ctl->met_cache && t != ctl->t_stop) {
4325 get_met_help(ctl, t + ctl->dt_met, 1, ctl->metbase, ctl->dt_met,
4326 cachefile);
4327 sprintf(cmd, "cat %s > /dev/null &", cachefile);
4328 LOG(1, "Caching: %s", cachefile);
4329 if (system(cmd) != 0)
4330 WARN("Caching command failed!");
4331 }
4332 }
4333
4334 /* Read new data for backward trajectories... */
4335 if (t < (*met0)->time) {
4336
4337 /* Pointer swap... */
4338 mets = *met1;
4339 *met1 = *met0;
4340 *met0 = mets;
4341
4342 /* Read new meteo data... */
4343 get_met_help(ctl, t, -1, ctl->metbase, ctl->dt_met, filename);
4344 if (!mptrac_read_met(filename, ctl, clim, *met0))
4345 ERRMSG("Cannot open file!");
4346
4347 /* Update GPU... */
4348 mptrac_update_device(NULL, NULL, NULL, met0, NULL, NULL);
4349 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
4350
4351 /* Caching... */
4352 if (ctl->met_cache && t != ctl->t_stop) {
4353 get_met_help(ctl, t - ctl->dt_met, -1, ctl->metbase, ctl->dt_met,
4354 cachefile);
4355 sprintf(cmd, "cat %s > /dev/null &", cachefile);
4356 LOG(1, "Caching: %s", cachefile);
4357 if (system(cmd) != 0)
4358 WARN("Caching command failed!");
4359 }
4360 }
4361
4362 /* Check that grids are consistent... */
4363 if ((*met0)->nx != 0 && (*met1)->nx != 0) {
4364 if ((*met0)->nx != (*met1)->nx
4365 || (*met0)->ny != (*met1)->ny || (*met0)->np != (*met1)->np)
4366 ERRMSG("Meteo grid dimensions do not match!");
4367 for (int ix = 0; ix < (*met0)->nx; ix++)
4368 if (fabs((*met0)->lon[ix] - (*met1)->lon[ix]) > 0.001)
4369 ERRMSG("Meteo grid longitudes do not match!");
4370 for (int iy = 0; iy < (*met0)->ny; iy++)
4371 if (fabs((*met0)->lat[iy] - (*met1)->lat[iy]) > 0.001)
4372 ERRMSG("Meteo grid latitudes do not match!");
4373 for (int ip = 0; ip < (*met0)->np; ip++)
4374 if (fabs((*met0)->p[ip] - (*met1)->p[ip]) > 0.001)
4375 ERRMSG("Meteo grid pressure levels do not match!");
4376 }
4377}
4378
4379/*****************************************************************************/
4380
4382 ctl_t *ctl,
4383 cache_t *cache,
4384 clim_t *clim,
4385 atm_t *atm,
4386 const int ntask) {
4387
4388 /* Initialize timesteps... */
4389 module_timesteps_init(ctl, atm);
4390
4391 /* Initialize random number generator... */
4392 module_rng_init(ntask);
4393
4394 /* Update GPU memory... */
4395 mptrac_update_device(ctl, cache, clim, NULL, NULL, atm);
4396}
4397
4398/*****************************************************************************/
4399
4401 const char *filename,
4402 const ctl_t *ctl,
4403 atm_t *atm) {
4404
4405 int result;
4406
4407 /* Set timer... */
4408 SELECT_TIMER("READ_ATM", "INPUT", NVTX_READ);
4409
4410 /* Init... */
4411 atm->np = 0;
4412
4413 /* Write info... */
4414 LOG(1, "Read atmospheric data: %s", filename);
4415
4416 /* Read ASCII data... */
4417 if (ctl->atm_type == 0)
4418 result = read_atm_asc(filename, ctl, atm);
4419
4420 /* Read binary data... */
4421 else if (ctl->atm_type == 1)
4422 result = read_atm_bin(filename, ctl, atm);
4423
4424 /* Read netCDF data... */
4425 else if (ctl->atm_type == 2)
4426 result = read_atm_nc(filename, ctl, atm);
4427
4428 /* Read CLaMS data... */
4429 else if (ctl->atm_type == 3 || ctl->atm_type == 4)
4430 result = read_atm_clams(filename, ctl, atm);
4431
4432 /* Error... */
4433 else
4434 ERRMSG("Atmospheric data type not supported!");
4435
4436 /* Check result... */
4437 if (result != 1)
4438 return 0;
4439
4440 /* Check number of air parcels... */
4441 if (atm->np < 1)
4442 ERRMSG("Can not read any data!");
4443
4444 /* Write info... */
4445 double mini, maxi;
4446 LOG(2, "Number of particles: %d", atm->np);
4447 gsl_stats_minmax(&mini, &maxi, atm->time, 1, (size_t) atm->np);
4448 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
4449 gsl_stats_minmax(&mini, &maxi, atm->p, 1, (size_t) atm->np);
4450 LOG(2, "Altitude range: %g ... %g km", Z(maxi), Z(mini));
4451 LOG(2, "Pressure range: %g ... %g hPa", maxi, mini);
4452 gsl_stats_minmax(&mini, &maxi, atm->lon, 1, (size_t) atm->np);
4453 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
4454 gsl_stats_minmax(&mini, &maxi, atm->lat, 1, (size_t) atm->np);
4455 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
4456 for (int iq = 0; iq < ctl->nq; iq++) {
4457 char msg[5 * LEN];
4458 sprintf(msg, "Quantity %s range: %s ... %s %s",
4459 ctl->qnt_name[iq], ctl->qnt_format[iq],
4460 ctl->qnt_format[iq], ctl->qnt_unit[iq]);
4461 gsl_stats_minmax(&mini, &maxi, atm->q[iq], 1, (size_t) atm->np);
4462 LOG(2, msg, mini, maxi);
4463 }
4464
4465 /* Return success... */
4466 return 1;
4467}
4468
4469/*****************************************************************************/
4470
4472 const ctl_t *ctl,
4473 clim_t *clim) {
4474
4475 /* Set timer... */
4476 SELECT_TIMER("READ_CLIM", "INPUT", NVTX_READ);
4477
4478 /* Init tropopause climatology... */
4479 clim_tropo_init(clim);
4480
4481 /* Read photolysis rates... */
4482 if (ctl->clim_photo[0] != '-')
4483 read_clim_photo(ctl->clim_photo, &clim->photo);
4484
4485 /* Read HNO3 climatology... */
4486 if (ctl->clim_hno3_filename[0] != '-')
4487 read_clim_zm(ctl->clim_hno3_filename, "HNO3", &clim->hno3);
4488
4489 /* Read OH climatology... */
4490 if (ctl->clim_oh_filename[0] != '-') {
4491 read_clim_zm(ctl->clim_oh_filename, "OH", &clim->oh);
4492 if (ctl->oh_chem_beta > 0)
4493 clim_oh_diurnal_correction(ctl, clim);
4494 }
4495
4496 /* Read H2O2 climatology... */
4497 if (ctl->clim_h2o2_filename[0] != '-')
4498 read_clim_zm(ctl->clim_h2o2_filename, "H2O2", &clim->h2o2);
4499
4500 /* Read HO2 climatology... */
4501 if (ctl->clim_ho2_filename[0] != '-')
4502 read_clim_zm(ctl->clim_ho2_filename, "HO2", &clim->ho2);
4503
4504 /* Read O(1D) climatology... */
4505 if (ctl->clim_o1d_filename[0] != '-')
4506 read_clim_zm(ctl->clim_o1d_filename, "O1D", &clim->o1d);
4507
4508 /* Read CFC-10 time series... */
4509 if (ctl->clim_ccl4_timeseries[0] != '-')
4511
4512 /* Read CFC-11 time series... */
4513 if (ctl->clim_ccl3f_timeseries[0] != '-')
4515
4516 /* Read CFC-12 time series... */
4517 if (ctl->clim_ccl2f2_timeseries[0] != '-')
4519
4520 /* Read N2O time series... */
4521 if (ctl->clim_n2o_timeseries[0] != '-')
4522 read_clim_ts(ctl->clim_n2o_timeseries, &clim->n2o);
4523
4524 /* Read SF6 time series... */
4525 if (ctl->clim_sf6_timeseries[0] != '-')
4526 read_clim_ts(ctl->clim_sf6_timeseries, &clim->sf6);
4527}
4528
4529/*****************************************************************************/
4530
4532 const char *filename,
4533 int argc,
4534 char *argv[],
4535 ctl_t *ctl) {
4536
4537 /* Set timer... */
4538 SELECT_TIMER("READ_CTL", "INPUT", NVTX_READ);
4539
4540 /* Write info... */
4541 LOG(1, "\nMassive-Parallel Trajectory Calculations (MPTRAC)\n"
4542 "(executable: %s | version: %s | compiled: %s, %s)\n",
4543 argv[0], VERSION, __DATE__, __TIME__);
4544
4545 /* Initialize quantity indices... */
4546 ctl->qnt_idx = -1;
4547 ctl->qnt_ens = -1;
4548 ctl->qnt_stat = -1;
4549 ctl->qnt_m = -1;
4550 ctl->qnt_vmr = -1;
4551 ctl->qnt_rp = -1;
4552 ctl->qnt_rhop = -1;
4553 ctl->qnt_ps = -1;
4554 ctl->qnt_ts = -1;
4555 ctl->qnt_zs = -1;
4556 ctl->qnt_us = -1;
4557 ctl->qnt_vs = -1;
4558 ctl->qnt_ess = -1;
4559 ctl->qnt_nss = -1;
4560 ctl->qnt_shf = -1;
4561 ctl->qnt_lsm = -1;
4562 ctl->qnt_sst = -1;
4563 ctl->qnt_pbl = -1;
4564 ctl->qnt_pt = -1;
4565 ctl->qnt_tt = -1;
4566 ctl->qnt_zt = -1;
4567 ctl->qnt_h2ot = -1;
4568 ctl->qnt_zg = -1;
4569 ctl->qnt_p = -1;
4570 ctl->qnt_t = -1;
4571 ctl->qnt_rho = -1;
4572 ctl->qnt_u = -1;
4573 ctl->qnt_v = -1;
4574 ctl->qnt_w = -1;
4575 ctl->qnt_h2o = -1;
4576 ctl->qnt_o3 = -1;
4577 ctl->qnt_lwc = -1;
4578 ctl->qnt_rwc = -1;
4579 ctl->qnt_iwc = -1;
4580 ctl->qnt_swc = -1;
4581 ctl->qnt_cc = -1;
4582 ctl->qnt_pct = -1;
4583 ctl->qnt_pcb = -1;
4584 ctl->qnt_cl = -1;
4585 ctl->qnt_plcl = -1;
4586 ctl->qnt_plfc = -1;
4587 ctl->qnt_pel = -1;
4588 ctl->qnt_cape = -1;
4589 ctl->qnt_cin = -1;
4590 ctl->qnt_o3c = -1;
4591 ctl->qnt_hno3 = -1;
4592 ctl->qnt_oh = -1;
4593 ctl->qnt_h2o2 = -1;
4594 ctl->qnt_ho2 = -1;
4595 ctl->qnt_o1d = -1;
4596 ctl->qnt_mloss_oh = -1;
4597 ctl->qnt_mloss_h2o2 = -1;
4598 ctl->qnt_mloss_kpp = -1;
4599 ctl->qnt_mloss_wet = -1;
4600 ctl->qnt_mloss_dry = -1;
4601 ctl->qnt_mloss_decay = -1;
4602 ctl->qnt_loss_rate = -1;
4603 ctl->qnt_psat = -1;
4604 ctl->qnt_psice = -1;
4605 ctl->qnt_pw = -1;
4606 ctl->qnt_sh = -1;
4607 ctl->qnt_rh = -1;
4608 ctl->qnt_rhice = -1;
4609 ctl->qnt_theta = -1;
4610 ctl->qnt_zeta = -1;
4611 ctl->qnt_zeta_d = -1;
4612 ctl->qnt_tvirt = -1;
4613 ctl->qnt_lapse = -1;
4614 ctl->qnt_vh = -1;
4615 ctl->qnt_vz = -1;
4616 ctl->qnt_pv = -1;
4617 ctl->qnt_tdew = -1;
4618 ctl->qnt_tice = -1;
4619 ctl->qnt_tsts = -1;
4620 ctl->qnt_tnat = -1;
4621 ctl->qnt_Cx = -1;
4622 ctl->qnt_Ch2o = -1;
4623 ctl->qnt_Co3 = -1;
4624 ctl->qnt_Cco = -1;
4625 ctl->qnt_Coh = -1;
4626 ctl->qnt_Ch = -1;
4627 ctl->qnt_Cho2 = -1;
4628 ctl->qnt_Ch2o2 = -1;
4629 ctl->qnt_Co1d = -1;
4630 ctl->qnt_Co3p = -1;
4631 ctl->qnt_Cccl4 = -1;
4632 ctl->qnt_Cccl3f = -1;
4633 ctl->qnt_Cccl2f2 = -1;
4634 ctl->qnt_Cn2o = -1;
4635 ctl->qnt_Csf6 = -1;
4636 ctl->qnt_aoa = -1;
4637
4638 /* Read quantities... */
4639 ctl->nq = (int) scan_ctl(filename, argc, argv, "NQ", -1, "0", NULL);
4640 if (ctl->nq > NQ)
4641 ERRMSG("Too many quantities!");
4642 for (int iq = 0; iq < ctl->nq; iq++) {
4643
4644 /* Read quantity name and format... */
4645 scan_ctl(filename, argc, argv, "QNT_NAME", iq, "", ctl->qnt_name[iq]);
4646 scan_ctl(filename, argc, argv, "QNT_LONGNAME", iq, ctl->qnt_name[iq],
4647 ctl->qnt_longname[iq]);
4648 scan_ctl(filename, argc, argv, "QNT_FORMAT", iq, "%g",
4649 ctl->qnt_format[iq]);
4650 if (strcasecmp(ctl->qnt_name[iq], "aoa") == 0)
4651 sprintf(ctl->qnt_format[iq], "%%.2f");
4652
4653 /* Try to identify quantity... */
4654 SET_QNT(qnt_idx, "idx", "particle index", "-")
4655 SET_QNT(qnt_ens, "ens", "ensemble index", "-")
4656 SET_QNT(qnt_stat, "stat", "station flag", "-")
4657 SET_QNT(qnt_m, "m", "mass", "kg")
4658 SET_QNT(qnt_vmr, "vmr", "volume mixing ratio", "ppv")
4659 SET_QNT(qnt_rp, "rp", "particle radius", "microns")
4660 SET_QNT(qnt_rhop, "rhop", "particle density", "kg/m^3")
4661 SET_QNT(qnt_ps, "ps", "surface pressure", "hPa")
4662 SET_QNT(qnt_ts, "ts", "surface temperature", "K")
4663 SET_QNT(qnt_zs, "zs", "surface height", "km")
4664 SET_QNT(qnt_us, "us", "surface zonal wind", "m/s")
4665 SET_QNT(qnt_vs, "vs", "surface meridional wind", "m/s")
4666 SET_QNT(qnt_ess, "ess", "eastward turbulent surface stress", "N/m^2")
4667 SET_QNT(qnt_nss, "nss", "northward turbulent surface stress", "N/m^2")
4668 SET_QNT(qnt_shf, "shf", "surface sensible heat flux", "W/m^2")
4669 SET_QNT(qnt_lsm, "lsm", "land-sea mask", "1")
4670 SET_QNT(qnt_sst, "sst", "sea surface temperature", "K")
4671 SET_QNT(qnt_pbl, "pbl", "planetary boundary layer", "hPa")
4672 SET_QNT(qnt_pt, "pt", "tropopause pressure", "hPa")
4673 SET_QNT(qnt_tt, "tt", "tropopause temperature", "K")
4674 SET_QNT(qnt_zt, "zt", "tropopause geopotential height", "km")
4675 SET_QNT(qnt_h2ot, "h2ot", "tropopause water vapor", "ppv")
4676 SET_QNT(qnt_zg, "zg", "geopotential height", "km")
4677 SET_QNT(qnt_p, "p", "pressure", "hPa")
4678 SET_QNT(qnt_t, "t", "temperature", "K")
4679 SET_QNT(qnt_rho, "rho", "air density", "kg/m^3")
4680 SET_QNT(qnt_u, "u", "zonal wind", "m/s")
4681 SET_QNT(qnt_v, "v", "meridional wind", "m/s")
4682 SET_QNT(qnt_w, "w", "vertical velocity", "hPa/s")
4683 SET_QNT(qnt_h2o, "h2o", "water vapor", "ppv")
4684 SET_QNT(qnt_o3, "o3", "ozone", "ppv")
4685 SET_QNT(qnt_lwc, "lwc", "cloud liquid water content", "kg/kg")
4686 SET_QNT(qnt_rwc, "rwc", "cloud rain water content", "kg/kg")
4687 SET_QNT(qnt_iwc, "iwc", "cloud ice water content", "kg/kg")
4688 SET_QNT(qnt_swc, "iwc", "cloud snow water content", "kg/kg")
4689 SET_QNT(qnt_cc, "cc", "cloud cover", "1")
4690 SET_QNT(qnt_pct, "pct", "cloud top pressure", "hPa")
4691 SET_QNT(qnt_pcb, "pcb", "cloud bottom pressure", "hPa")
4692 SET_QNT(qnt_cl, "cl", "total column cloud water", "kg/m^2")
4693 SET_QNT(qnt_plcl, "plcl", "lifted condensation level", "hPa")
4694 SET_QNT(qnt_plfc, "plfc", "level of free convection", "hPa")
4695 SET_QNT(qnt_pel, "pel", "equilibrium level", "hPa")
4696 SET_QNT(qnt_cape, "cape", "convective available potential energy",
4697 "J/kg")
4698 SET_QNT(qnt_cin, "cin", "convective inhibition", "J/kg")
4699 SET_QNT(qnt_o3c, "o3c", "total column ozone", "DU")
4700 SET_QNT(qnt_hno3, "hno3", "nitric acid", "ppv")
4701 SET_QNT(qnt_oh, "oh", "hydroxyl radical", "ppv")
4702 SET_QNT(qnt_h2o2, "h2o2", "hydrogen peroxide", "ppv")
4703 SET_QNT(qnt_ho2, "ho2", "hydroperoxyl radical", "ppv")
4704 SET_QNT(qnt_o1d, "o1d", "atomic oxygen", "ppv")
4705 SET_QNT(qnt_mloss_oh, "mloss_oh", "mass loss due to OH chemistry", "kg")
4706 SET_QNT(qnt_mloss_h2o2, "mloss_h2o2", "mass loss due to H2O2 chemistry",
4707 "kg")
4708 SET_QNT(qnt_mloss_kpp, "mloss_kpp", "mass loss due to kpp chemistry",
4709 "kg")
4710 SET_QNT(qnt_mloss_wet, "mloss_wet", "mass loss due to wet deposition",
4711 "kg")
4712 SET_QNT(qnt_mloss_dry, "mloss_dry", "mass loss due to dry deposition",
4713 "kg")
4714 SET_QNT(qnt_mloss_decay, "mloss_decay",
4715 "mass loss due to exponential decay", "kg")
4716 SET_QNT(qnt_loss_rate, "loss_rate", "total loss rate", "s^-1")
4717 SET_QNT(qnt_psat, "psat", "saturation pressure over water", "hPa")
4718 SET_QNT(qnt_psice, "psice", "saturation pressure over ice", "hPa")
4719 SET_QNT(qnt_pw, "pw", "partial water vapor pressure", "hPa")
4720 SET_QNT(qnt_sh, "sh", "specific humidity", "kg/kg")
4721 SET_QNT(qnt_rh, "rh", "relative humidity", "%%")
4722 SET_QNT(qnt_rhice, "rhice", "relative humidity over ice", "%%")
4723 SET_QNT(qnt_theta, "theta", "potential temperature", "K")
4724 SET_QNT(qnt_zeta, "zeta", "zeta coordinate", "K")
4725 SET_QNT(qnt_zeta_d, "zeta_d", "diagnosed zeta coordinate", "K")
4726 SET_QNT(qnt_tvirt, "tvirt", "virtual temperature", "K")
4727 SET_QNT(qnt_lapse, "lapse", "temperature lapse rate", "K/km")
4728 SET_QNT(qnt_vh, "vh", "horizontal velocity", "m/s")
4729 SET_QNT(qnt_vz, "vz", "vertical velocity", "m/s")
4730 SET_QNT(qnt_pv, "pv", "potential vorticity", "PVU")
4731 SET_QNT(qnt_tdew, "tdew", "dew point temperature", "K")
4732 SET_QNT(qnt_tice, "tice", "frost point temperature", "K")
4733 SET_QNT(qnt_tsts, "tsts", "STS existence temperature", "K")
4734 SET_QNT(qnt_tnat, "tnat", "NAT existence temperature", "K")
4735 SET_QNT(qnt_Cx, "Cx", "Trace species x volume mixing ratio", "ppv")
4736 SET_QNT(qnt_Ch2o, "Ch2o", "H2O volume mixing ratio", "ppv")
4737 SET_QNT(qnt_Co3, "Co3", "O3 volume mixing ratio", "ppv")
4738 SET_QNT(qnt_Cco, "Cco", "CO volume mixing ratio", "ppv")
4739 SET_QNT(qnt_Coh, "Coh", "HO volume mixing ratio", "ppv")
4740 SET_QNT(qnt_Ch, "Ch", "H radical volume mixing ratio", "ppv")
4741 SET_QNT(qnt_Cho2, "Cho2", "HO2 volume mixing ratio", "ppv")
4742 SET_QNT(qnt_Ch2o2, "Ch2o2", "H2O2 volume mixing ratio", "ppv")
4743 SET_QNT(qnt_Co1d, "Co1d", "O(1D) volume mixing ratio", "ppv")
4744 SET_QNT(qnt_Co3p, "Co3p", "O(3P) radical volume mixing ratio", "ppv")
4745 SET_QNT(qnt_Cccl4, "Cccl4", "CCl4 (CFC-10) volume mixing ratio", "ppv")
4746 SET_QNT(qnt_Cccl3f, "Cccl3f", "CCl3F (CFC-11) volume mixing ratio",
4747 "ppv")
4748 SET_QNT(qnt_Cccl2f2, "Cccl2f2", "CCl2F2 (CFC-12) volume mixing ratio",
4749 "ppv")
4750 SET_QNT(qnt_Cn2o, "Cn2o", "N2O volume mixing ratio", "ppv")
4751 SET_QNT(qnt_Csf6, "Csf6", "SF6 volume mixing ratio", "ppv")
4752 SET_QNT(qnt_aoa, "aoa", "age of air", "s")
4753 scan_ctl(filename, argc, argv, "QNT_UNIT", iq, "", ctl->qnt_unit[iq]);
4754 }
4755
4756 /* Vertical coordinates and velocities... */
4757 ctl->advect_vert_coord =
4758 (int) scan_ctl(filename, argc, argv, "ADVECT_VERT_COORD", -1, "0", NULL);
4759 if (ctl->advect_vert_coord < 0 || ctl->advect_vert_coord > 2)
4760 ERRMSG("Set advect_vert_coord to 0, 1, or 2!");
4761 if (ctl->advect_vert_coord == 1 && ctl->qnt_zeta < 0)
4762 ERRMSG("Please add zeta to your quantities for diabatic calculations!");
4763 ctl->met_vert_coord =
4764 (int) scan_ctl(filename, argc, argv, "MET_VERT_COORD", -1, "0", NULL);
4765 if (ctl->met_vert_coord < 0 || ctl->met_vert_coord > 2)
4766 ERRMSG("Set MET_VERT_COORD to 0, 1, or 2!");
4767 if (ctl->advect_vert_coord == 2 && ctl->met_vert_coord == 0)
4768 ERRMSG
4769 ("Using ADVECT_VERT_COORD = 2 requires meteo data on model levels!");
4770
4771 /* Time steps of simulation... */
4772 ctl->direction =
4773 (int) scan_ctl(filename, argc, argv, "DIRECTION", -1, "1", NULL);
4774 if (ctl->direction != -1 && ctl->direction != 1)
4775 ERRMSG("Set DIRECTION to -1 or 1!");
4776 ctl->t_stop = scan_ctl(filename, argc, argv, "T_STOP", -1, "1e100", NULL);
4777 ctl->dt_mod = scan_ctl(filename, argc, argv, "DT_MOD", -1, "180", NULL);
4778
4779 /* Meteo data... */
4780 scan_ctl(filename, argc, argv, "METBASE", -1, "-", ctl->metbase);
4781 ctl->dt_met = scan_ctl(filename, argc, argv, "DT_MET", -1, "3600", NULL);
4782 ctl->met_convention =
4783 (int) scan_ctl(filename, argc, argv, "MET_CONVENTION", -1, "0", NULL);
4784 ctl->met_type =
4785 (int) scan_ctl(filename, argc, argv, "MET_TYPE", -1, "0", NULL);
4786 if (ctl->advect_vert_coord == 1 && ctl->met_type != 0)
4787 ERRMSG
4788 ("Please use meteorological files in netcdf format for diabatic calculations.");
4789 ctl->met_clams =
4790 (int) scan_ctl(filename, argc, argv, "MET_CLAMS", -1, "0", NULL);
4791 ctl->met_nc_scale =
4792 (int) scan_ctl(filename, argc, argv, "MET_NC_SCALE", -1, "1", NULL);
4793 ctl->met_nc_level =
4794 (int) scan_ctl(filename, argc, argv, "MET_NC_LEVEL", -1, "0", NULL);
4795 ctl->met_nc_quant =
4796 (int) scan_ctl(filename, argc, argv, "MET_NC_QUANT", -1, "0", NULL);
4797 ctl->met_zfp_prec =
4798 (int) scan_ctl(filename, argc, argv, "MET_ZFP_PREC", -1, "8", NULL);
4799 ctl->met_zfp_tol_t =
4800 scan_ctl(filename, argc, argv, "MET_ZFP_TOL_T", -1, "5.0", NULL);
4801 ctl->met_zfp_tol_z =
4802 scan_ctl(filename, argc, argv, "MET_ZFP_TOL_Z", -1, "0.5", NULL);
4803 ctl->met_cms_batch =
4804 (int) scan_ctl(filename, argc, argv, "MET_CMS_BATCH", -1, "-1", NULL);
4805 ctl->met_cms_heur =
4806 (int) scan_ctl(filename, argc, argv, "MET_CMS_HEUR", -1, "1", NULL);
4807 ctl->met_cms_eps_z =
4808 scan_ctl(filename, argc, argv, "MET_CMS_EPS_Z", -1, "1.0", NULL);
4809 ctl->met_cms_eps_t =
4810 scan_ctl(filename, argc, argv, "MET_CMS_EPS_T", -1, "0.05", NULL);
4811 ctl->met_cms_eps_u =
4812 scan_ctl(filename, argc, argv, "MET_CMS_EPS_U", -1, "0.05", NULL);
4813 ctl->met_cms_eps_v =
4814 scan_ctl(filename, argc, argv, "MET_CMS_EPS_V", -1, "0.05", NULL);
4815 ctl->met_cms_eps_w =
4816 scan_ctl(filename, argc, argv, "MET_CMS_EPS_W", -1, "1.0", NULL);
4817 ctl->met_cms_eps_pv =
4818 scan_ctl(filename, argc, argv, "MET_CMS_EPS_PV", -1, "1.0", NULL);
4819 ctl->met_cms_eps_h2o =
4820 scan_ctl(filename, argc, argv, "MET_CMS_EPS_H2O", -1, "1.0", NULL);
4821 ctl->met_cms_eps_o3 =
4822 scan_ctl(filename, argc, argv, "MET_CMS_EPS_O3", -1, "1.0", NULL);
4823 ctl->met_cms_eps_lwc =
4824 scan_ctl(filename, argc, argv, "MET_CMS_EPS_LWC", -1, "1.0", NULL);
4825 ctl->met_cms_eps_rwc =
4826 scan_ctl(filename, argc, argv, "MET_CMS_EPS_RWC", -1, "1.0", NULL);
4827 ctl->met_cms_eps_iwc =
4828 scan_ctl(filename, argc, argv, "MET_CMS_EPS_IWC", -1, "1.0", NULL);
4829 ctl->met_cms_eps_swc =
4830 scan_ctl(filename, argc, argv, "MET_CMS_EPS_SWC", -1, "1.0", NULL);
4831 ctl->met_cms_eps_cc =
4832 scan_ctl(filename, argc, argv, "MET_CMS_EPS_CC", -1, "1.0", NULL);
4833 ctl->met_dx = (int) scan_ctl(filename, argc, argv, "MET_DX", -1, "1", NULL);
4834 ctl->met_dy = (int) scan_ctl(filename, argc, argv, "MET_DY", -1, "1", NULL);
4835 ctl->met_dp = (int) scan_ctl(filename, argc, argv, "MET_DP", -1, "1", NULL);
4836 if (ctl->met_dx < 1 || ctl->met_dy < 1 || ctl->met_dp < 1)
4837 ERRMSG("MET_DX, MET_DY, and MET_DP need to be greater than zero!");
4838 ctl->met_sx = (int) scan_ctl(filename, argc, argv, "MET_SX", -1, "1", NULL);
4839 ctl->met_sy = (int) scan_ctl(filename, argc, argv, "MET_SY", -1, "1", NULL);
4840 ctl->met_sp = (int) scan_ctl(filename, argc, argv, "MET_SP", -1, "1", NULL);
4841 if (ctl->met_sx < 1 || ctl->met_sy < 1 || ctl->met_sp < 1)
4842 ERRMSG("MET_SX, MET_SY, and MET_SP need to be greater than zero!");
4843 ctl->met_detrend =
4844 scan_ctl(filename, argc, argv, "MET_DETREND", -1, "-999", NULL);
4845 ctl->met_np = (int) scan_ctl(filename, argc, argv, "MET_NP", -1, "0", NULL);
4846 if (ctl->met_np > EP)
4847 ERRMSG("Too many levels!");
4848 ctl->met_press_level_def =
4849 (int) scan_ctl(filename, argc, argv, "MET_PRESS_LEVEL_DEF", -1, "-1",
4850 NULL);
4851 if (ctl->met_press_level_def >= 0) {
4852 level_definitions(ctl);
4853 } else {
4854 if (ctl->met_np > 0) {
4855 for (int ip = 0; ip < ctl->met_np; ip++)
4856 ctl->met_p[ip] =
4857 scan_ctl(filename, argc, argv, "MET_P", ip, "", NULL);
4858 }
4859 }
4860 ctl->met_geopot_sx =
4861 (int) scan_ctl(filename, argc, argv, "MET_GEOPOT_SX", -1, "-1", NULL);
4862 ctl->met_geopot_sy =
4863 (int) scan_ctl(filename, argc, argv, "MET_GEOPOT_SY", -1, "-1", NULL);
4864 ctl->met_relhum =
4865 (int) scan_ctl(filename, argc, argv, "MET_RELHUM", -1, "0", NULL);
4866 ctl->met_cape =
4867 (int) scan_ctl(filename, argc, argv, "MET_CAPE", -1, "1", NULL);
4868 if (ctl->met_cape < 0 || ctl->met_cape > 1)
4869 ERRMSG("Set MET_CAPE to 0 or 1!");
4870 ctl->met_pbl =
4871 (int) scan_ctl(filename, argc, argv, "MET_PBL", -1, "3", NULL);
4872 if (ctl->met_pbl < 0 || ctl->met_pbl > 3)
4873 ERRMSG("Set MET_PBL to 0 ... 3!");
4874 ctl->met_pbl_min =
4875 scan_ctl(filename, argc, argv, "MET_PBL_MIN", -1, "0.1", NULL);
4876 ctl->met_pbl_max =
4877 scan_ctl(filename, argc, argv, "MET_PBL_MAX", -1, "5.0", NULL);
4878 ctl->met_tropo =
4879 (int) scan_ctl(filename, argc, argv, "MET_TROPO", -1, "3", NULL);
4880 if (ctl->met_tropo < 0 || ctl->met_tropo > 5)
4881 ERRMSG("Set MET_TROPO to 0 ... 5!");
4882 ctl->met_tropo_pv =
4883 scan_ctl(filename, argc, argv, "MET_TROPO_PV", -1, "3.5", NULL);
4884 ctl->met_tropo_theta =
4885 scan_ctl(filename, argc, argv, "MET_TROPO_THETA", -1, "380", NULL);
4886 ctl->met_tropo_spline =
4887 (int) scan_ctl(filename, argc, argv, "MET_TROPO_SPLINE", -1, "1", NULL);
4888 ctl->met_dt_out =
4889 scan_ctl(filename, argc, argv, "MET_DT_OUT", -1, "0.1", NULL);
4890 ctl->met_cache =
4891 (int) scan_ctl(filename, argc, argv, "MET_CACHE", -1, "0", NULL);
4892 ctl->met_mpi_share =
4893 (int) scan_ctl(filename, argc, argv, "MET_MPI_SHARE", -1, "0", NULL);
4894
4895 /* Sorting... */
4896 ctl->sort_dt = scan_ctl(filename, argc, argv, "SORT_DT", -1, "-999", NULL);
4897
4898 /* Isosurface parameters... */
4899 ctl->isosurf =
4900 (int) scan_ctl(filename, argc, argv, "ISOSURF", -1, "0", NULL);
4901 scan_ctl(filename, argc, argv, "BALLOON", -1, "-", ctl->balloon);
4902
4903 /* Random number generator... */
4904 ctl->rng_type =
4905 (int) scan_ctl(filename, argc, argv, "RNG_TYPE", -1, "1", NULL);
4906 if (ctl->rng_type < 0 || ctl->rng_type > 2)
4907 ERRMSG("Set RNG_TYPE to 0, 1, or 2!");
4908
4909 /* Advection parameters... */
4910 ctl->advect = (int) scan_ctl(filename, argc, argv, "ADVECT", -1, "2", NULL);
4911 if (!(ctl->advect == 0 || ctl->advect == 1
4912 || ctl->advect == 2 || ctl->advect == 4))
4913 ERRMSG("Set ADVECT to 0, 1, 2, or 4!");
4914
4915 /* Diffusion parameters... */
4916 ctl->diffusion
4917 = (int) scan_ctl(filename, argc, argv, "DIFFUSION", -1, "0", NULL);
4918 if (ctl->diffusion < 0 || ctl->diffusion > 2)
4919 ERRMSG("Set DIFFUSION to 0, 1 or 2!");
4920 ctl->turb_dx_pbl =
4921 scan_ctl(filename, argc, argv, "TURB_DX_PBL", -1, "50", NULL);
4922 ctl->turb_dx_trop =
4923 scan_ctl(filename, argc, argv, "TURB_DX_TROP", -1, "50", NULL);
4924 ctl->turb_dx_strat =
4925 scan_ctl(filename, argc, argv, "TURB_DX_STRAT", -1, "0", NULL);
4926 ctl->turb_dz_pbl =
4927 scan_ctl(filename, argc, argv, "TURB_DZ_PBL", -1, "0", NULL);
4928 ctl->turb_dz_trop =
4929 scan_ctl(filename, argc, argv, "TURB_DZ_TROP", -1, "0", NULL);
4930 ctl->turb_dz_strat =
4931 scan_ctl(filename, argc, argv, "TURB_DZ_STRAT", -1, "0.1", NULL);
4932 ctl->turb_mesox =
4933 scan_ctl(filename, argc, argv, "TURB_MESOX", -1, "0.16", NULL);
4934 ctl->turb_mesoz =
4935 scan_ctl(filename, argc, argv, "TURB_MESOZ", -1, "0.16", NULL);
4936
4937 /* Convection... */
4938 ctl->conv_mix_pbl
4939 = (int) scan_ctl(filename, argc, argv, "CONV_MIX_PBL", -1, "0", NULL);
4940 ctl->conv_pbl_trans
4941 = scan_ctl(filename, argc, argv, "CONV_PBL_TRANS", -1, "0", NULL);
4942 ctl->conv_cape
4943 = scan_ctl(filename, argc, argv, "CONV_CAPE", -1, "-999", NULL);
4944 ctl->conv_cin
4945 = scan_ctl(filename, argc, argv, "CONV_CIN", -1, "-999", NULL);
4946 ctl->conv_dt = scan_ctl(filename, argc, argv, "CONV_DT", -1, "-999", NULL);
4947
4948 /* Boundary conditions... */
4949 ctl->bound_mass =
4950 scan_ctl(filename, argc, argv, "BOUND_MASS", -1, "-999", NULL);
4951 ctl->bound_mass_trend =
4952 scan_ctl(filename, argc, argv, "BOUND_MASS_TREND", -1, "0", NULL);
4953 ctl->bound_vmr =
4954 scan_ctl(filename, argc, argv, "BOUND_VMR", -1, "-999", NULL);
4955 ctl->bound_vmr_trend =
4956 scan_ctl(filename, argc, argv, "BOUND_VMR_TREND", -1, "0", NULL);
4957 ctl->bound_lat0 =
4958 scan_ctl(filename, argc, argv, "BOUND_LAT0", -1, "-999", NULL);
4959 ctl->bound_lat1 =
4960 scan_ctl(filename, argc, argv, "BOUND_LAT1", -1, "-999", NULL);
4961 ctl->bound_p0 =
4962 scan_ctl(filename, argc, argv, "BOUND_P0", -1, "-999", NULL);
4963 ctl->bound_p1 =
4964 scan_ctl(filename, argc, argv, "BOUND_P1", -1, "-999", NULL);
4965 ctl->bound_dps =
4966 scan_ctl(filename, argc, argv, "BOUND_DPS", -1, "-999", NULL);
4967 ctl->bound_dzs =
4968 scan_ctl(filename, argc, argv, "BOUND_DZS", -1, "-999", NULL);
4969 ctl->bound_zetas =
4970 scan_ctl(filename, argc, argv, "BOUND_ZETAS", -1, "-999", NULL);
4971 ctl->bound_pbl =
4972 (int) scan_ctl(filename, argc, argv, "BOUND_PBL", -1, "0", NULL);
4973
4974 /* Species parameters... */
4975 scan_ctl(filename, argc, argv, "SPECIES", -1, "-", ctl->species);
4976 if (strcasecmp(ctl->species, "CF2Cl2") == 0) {
4977 ctl->molmass = 120.907;
4978 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 3e-5;
4979 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3500.0;
4980 } else if (strcasecmp(ctl->species, "CFCl3") == 0) {
4981 ctl->molmass = 137.359;
4982 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.1e-4;
4983 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3300.0;
4984 } else if (strcasecmp(ctl->species, "CH4") == 0) {
4985 ctl->molmass = 16.043;
4986 ctl->oh_chem_reaction = 2;
4987 ctl->oh_chem[0] = 2.45e-12;
4988 ctl->oh_chem[1] = 1775;
4989 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.4e-5;
4990 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1600.0;
4991 } else if (strcasecmp(ctl->species, "CO") == 0) {
4992 ctl->molmass = 28.01;
4993 ctl->oh_chem_reaction = 3;
4994 ctl->oh_chem[0] = 6.9e-33;
4995 ctl->oh_chem[1] = 2.1;
4996 ctl->oh_chem[2] = 1.1e-12;
4997 ctl->oh_chem[3] = -1.3;
4998 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 9.7e-6;
4999 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1300.0;
5000 } else if (strcasecmp(ctl->species, "CO2") == 0) {
5001 ctl->molmass = 44.009;
5002 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 3.3e-4;
5003 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2400.0;
5004 } else if (strcasecmp(ctl->species, "H2O") == 0) {
5005 ctl->molmass = 18.01528;
5006 } else if (strcasecmp(ctl->species, "N2O") == 0) {
5007 ctl->molmass = 44.013;
5008 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.4e-4;
5009 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2600.;
5010 } else if (strcasecmp(ctl->species, "NH3") == 0) {
5011 ctl->molmass = 17.031;
5012 ctl->oh_chem_reaction = 2;
5013 ctl->oh_chem[0] = 1.7e-12;
5014 ctl->oh_chem[1] = 710;
5015 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 5.9e-1;
5016 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 4200.0;
5017 } else if (strcasecmp(ctl->species, "HNO3") == 0) {
5018 ctl->molmass = 63.012;
5019 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.1e3;
5020 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 8700.0;
5021 } else if (strcasecmp(ctl->species, "NO") == 0) {
5022 ctl->molmass = 30.006;
5023 ctl->oh_chem_reaction = 3;
5024 ctl->oh_chem[0] = 7.1e-31;
5025 ctl->oh_chem[1] = 2.6;
5026 ctl->oh_chem[2] = 3.6e-11;
5027 ctl->oh_chem[3] = 0.1;
5028 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.9e-5;
5029 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1600.0;
5030 } else if (strcasecmp(ctl->species, "NO2") == 0) {
5031 ctl->molmass = 46.005;
5032 ctl->oh_chem_reaction = 3;
5033 ctl->oh_chem[0] = 1.8e-30;
5034 ctl->oh_chem[1] = 3.0;
5035 ctl->oh_chem[2] = 2.8e-11;
5036 ctl->oh_chem[3] = 0.0;
5037 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.2e-4;
5038 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2400.0;
5039 } else if (strcasecmp(ctl->species, "O3") == 0) {
5040 ctl->molmass = 47.997;
5041 ctl->oh_chem_reaction = 2;
5042 ctl->oh_chem[0] = 1.7e-12;
5043 ctl->oh_chem[1] = 940;
5044 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1e-4;
5045 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2800.0;
5046 } else if (strcasecmp(ctl->species, "SF6") == 0) {
5047 ctl->molmass = 146.048;
5048 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.4e-6;
5049 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3100.0;
5050 } else if (strcasecmp(ctl->species, "SO2") == 0) {
5051 ctl->molmass = 64.066;
5052 ctl->oh_chem_reaction = 3;
5053 ctl->oh_chem[0] = 2.9e-31;
5054 ctl->oh_chem[1] = 4.1;
5055 ctl->oh_chem[2] = 1.7e-12;
5056 ctl->oh_chem[3] = -0.2;
5057 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.3e-2;
5058 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2900.0;
5059 }
5060
5061 /* Molar mass... */
5062 char defstr[LEN];
5063 sprintf(defstr, "%g", ctl->molmass);
5064 ctl->molmass = scan_ctl(filename, argc, argv, "MOLMASS", -1, defstr, NULL);
5065
5066 /* OH chemistry... */
5067 sprintf(defstr, "%d", ctl->oh_chem_reaction);
5068 ctl->oh_chem_reaction =
5069 (int) scan_ctl(filename, argc, argv, "OH_CHEM_REACTION", -1, defstr,
5070 NULL);
5071 for (int ip = 0; ip < 4; ip++) {
5072 sprintf(defstr, "%g", ctl->oh_chem[ip]);
5073 ctl->oh_chem[ip] =
5074 scan_ctl(filename, argc, argv, "OH_CHEM", ip, defstr, NULL);
5075 }
5076 ctl->oh_chem_beta =
5077 scan_ctl(filename, argc, argv, "OH_CHEM_BETA", -1, "0", NULL);
5078
5079 /* H2O2 chemistry... */
5080 ctl->h2o2_chem_reaction =
5081 (int) scan_ctl(filename, argc, argv, "H2O2_CHEM_REACTION", -1, "0", NULL);
5082
5083 /* KPP chemistry... */
5084 ctl->kpp_chem =
5085 (int) scan_ctl(filename, argc, argv, "KPP_CHEM", -1, "0", NULL);
5086 ctl->dt_kpp = scan_ctl(filename, argc, argv, "DT_KPP", -1, "1800", NULL);
5087
5088 /* First order tracer chemistry... */
5089 ctl->tracer_chem =
5090 (int) scan_ctl(filename, argc, argv, "TRACER_CHEM", -1, "0", NULL);
5091
5092 /* Wet deposition... */
5093 for (int ip = 0; ip < 2; ip++) {
5094 sprintf(defstr, "%g", ctl->wet_depo_ic_h[ip]);
5095 ctl->wet_depo_ic_h[ip] =
5096 scan_ctl(filename, argc, argv, "WET_DEPO_IC_H", ip, defstr, NULL);
5097 }
5098 for (int ip = 0; ip < 1; ip++) {
5099 sprintf(defstr, "%g", ctl->wet_depo_bc_h[ip]);
5100 ctl->wet_depo_bc_h[ip] =
5101 scan_ctl(filename, argc, argv, "WET_DEPO_BC_H", ip, defstr, NULL);
5102 }
5103 ctl->wet_depo_so2_ph =
5104 scan_ctl(filename, argc, argv, "WET_DEPO_SO2_PH", -1, "0", NULL);
5105 ctl->wet_depo_ic_a =
5106 scan_ctl(filename, argc, argv, "WET_DEPO_IC_A", -1, "0", NULL);
5107 ctl->wet_depo_ic_b =
5108 scan_ctl(filename, argc, argv, "WET_DEPO_IC_B", -1, "0", NULL);
5109 ctl->wet_depo_bc_a =
5110 scan_ctl(filename, argc, argv, "WET_DEPO_BC_A", -1, "0", NULL);
5111 ctl->wet_depo_bc_b =
5112 scan_ctl(filename, argc, argv, "WET_DEPO_BC_B", -1, "0", NULL);
5113 ctl->wet_depo_pre[0] =
5114 scan_ctl(filename, argc, argv, "WET_DEPO_PRE", 0, "0.5", NULL);
5115 ctl->wet_depo_pre[1] =
5116 scan_ctl(filename, argc, argv, "WET_DEPO_PRE", 1, "0.36", NULL);
5118 scan_ctl(filename, argc, argv, "WET_DEPO_IC_RET_RATIO", -1, "1", NULL);
5120 scan_ctl(filename, argc, argv, "WET_DEPO_BC_RET_RATIO", -1, "1", NULL);
5121
5122 /* Dry deposition... */
5123 ctl->dry_depo_vdep =
5124 scan_ctl(filename, argc, argv, "DRY_DEPO_VDEP", -1, "0", NULL);
5125 ctl->dry_depo_dp =
5126 scan_ctl(filename, argc, argv, "DRY_DEPO_DP", -1, "30", NULL);
5127
5128 /* Climatological data... */
5129 scan_ctl(filename, argc, argv, "CLIM_PHOTO", -1,
5130 "../../data/clams_photolysis_rates.nc", ctl->clim_photo);
5131 scan_ctl(filename, argc, argv, "CLIM_HNO3_FILENAME", -1,
5132 "../../data/gozcards_HNO3.nc", ctl->clim_hno3_filename);
5133 scan_ctl(filename, argc, argv, "CLIM_OH_FILENAME", -1,
5134 "../../data/clams_radical_species_vmr.nc", ctl->clim_oh_filename);
5135 scan_ctl(filename, argc, argv, "CLIM_H2O2_FILENAME", -1,
5136 "../../data/cams_H2O2.nc", ctl->clim_h2o2_filename);
5137 scan_ctl(filename, argc, argv, "CLIM_HO2_FILENAME", -1,
5138 "../../data/clams_radical_species_vmr.nc", ctl->clim_ho2_filename);
5139 scan_ctl(filename, argc, argv, "CLIM_O1D_FILENAME", -1,
5140 "../../data/clams_radical_species_vmr.nc", ctl->clim_o1d_filename);
5141 scan_ctl(filename, argc, argv, "CLIM_CCL4_TIMESERIES", -1,
5142 "../../data/noaa_gml_ccl4.tab", ctl->clim_ccl4_timeseries);
5143 scan_ctl(filename, argc, argv, "CLIM_CCL3F_TIMESERIES", -1,
5144 "../../data/noaa_gml_cfc11.tab", ctl->clim_ccl3f_timeseries);
5145 scan_ctl(filename, argc, argv, "CLIM_CCL2F2_TIMESERIES", -1,
5146 "../../data/noaa_gml_cfc12.tab", ctl->clim_ccl2f2_timeseries);
5147 scan_ctl(filename, argc, argv, "CLIM_N2O_TIMESERIES", -1,
5148 "../../data/noaa_gml_n2o.tab", ctl->clim_n2o_timeseries);
5149 scan_ctl(filename, argc, argv, "CLIM_SF6_TIMESERIES", -1,
5150 "../../data/noaa_gml_sf6.tab", ctl->clim_sf6_timeseries);
5151
5152 /* Mixing... */
5153 ctl->mixing_dt =
5154 scan_ctl(filename, argc, argv, "MIXING_DT", -1, "3600.", NULL);
5155 ctl->mixing_trop =
5156 scan_ctl(filename, argc, argv, "MIXING_TROP", -1, "-999", NULL);
5157 ctl->mixing_strat =
5158 scan_ctl(filename, argc, argv, "MIXING_STRAT", -1, "-999", NULL);
5159 ctl->mixing_z0 =
5160 scan_ctl(filename, argc, argv, "MIXING_Z0", -1, "-5", NULL);
5161 ctl->mixing_z1 =
5162 scan_ctl(filename, argc, argv, "MIXING_Z1", -1, "85", NULL);
5163 ctl->mixing_nz =
5164 (int) scan_ctl(filename, argc, argv, "MIXING_NZ", -1, "90", NULL);
5165 ctl->mixing_lon0 =
5166 scan_ctl(filename, argc, argv, "MIXING_LON0", -1, "-180", NULL);
5167 ctl->mixing_lon1 =
5168 scan_ctl(filename, argc, argv, "MIXING_LON1", -1, "180", NULL);
5169 ctl->mixing_nx =
5170 (int) scan_ctl(filename, argc, argv, "MIXING_NX", -1, "360", NULL);
5171 ctl->mixing_lat0 =
5172 scan_ctl(filename, argc, argv, "MIXING_LAT0", -1, "-90", NULL);
5173 ctl->mixing_lat1 =
5174 scan_ctl(filename, argc, argv, "MIXING_LAT1", -1, "90", NULL);
5175 ctl->mixing_ny =
5176 (int) scan_ctl(filename, argc, argv, "MIXING_NY", -1, "180", NULL);
5177
5178 /* Chemistry grid... */
5179 ctl->chemgrid_z0 =
5180 scan_ctl(filename, argc, argv, "CHEMGRID_Z0", -1, "-5", NULL);
5181 ctl->chemgrid_z1 =
5182 scan_ctl(filename, argc, argv, "CHEMGRID_Z1", -1, "85", NULL);
5183 ctl->chemgrid_nz =
5184 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NZ", -1, "90", NULL);
5185 ctl->chemgrid_lon0 =
5186 scan_ctl(filename, argc, argv, "CHEMGRID_LON0", -1, "-180", NULL);
5187 ctl->chemgrid_lon1 =
5188 scan_ctl(filename, argc, argv, "CHEMGRID_LON1", -1, "180", NULL);
5189 ctl->chemgrid_nx =
5190 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NX", -1, "360", NULL);
5191 ctl->chemgrid_lat0 =
5192 scan_ctl(filename, argc, argv, "CHEMGRID_LAT0", -1, "-90", NULL);
5193 ctl->chemgrid_lat1 =
5194 scan_ctl(filename, argc, argv, "CHEMGRID_LAT1", -1, "90", NULL);
5195 ctl->chemgrid_ny =
5196 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NY", -1, "180", NULL);
5197
5198 /* Exponential decay... */
5199 ctl->tdec_trop = scan_ctl(filename, argc, argv, "TDEC_TROP", -1, "0", NULL);
5200 ctl->tdec_strat
5201 = scan_ctl(filename, argc, argv, "TDEC_STRAT", -1, "0", NULL);
5202
5203 /* PSC analysis... */
5204 ctl->psc_h2o = scan_ctl(filename, argc, argv, "PSC_H2O", -1, "4e-6", NULL);
5205 ctl->psc_hno3 =
5206 scan_ctl(filename, argc, argv, "PSC_HNO3", -1, "9e-9", NULL);
5207
5208 /* Output of atmospheric data... */
5209 scan_ctl(filename, argc, argv, "ATM_BASENAME", -1, "-", ctl->atm_basename);
5210 scan_ctl(filename, argc, argv, "ATM_GPFILE", -1, "-", ctl->atm_gpfile);
5211 ctl->atm_dt_out =
5212 scan_ctl(filename, argc, argv, "ATM_DT_OUT", -1, "86400", NULL);
5213 ctl->atm_filter =
5214 (int) scan_ctl(filename, argc, argv, "ATM_FILTER", -1, "0", NULL);
5215 ctl->atm_stride =
5216 (int) scan_ctl(filename, argc, argv, "ATM_STRIDE", -1, "1", NULL);
5217 ctl->atm_type =
5218 (int) scan_ctl(filename, argc, argv, "ATM_TYPE", -1, "0", NULL);
5219 ctl->atm_type_out =
5220 (int) scan_ctl(filename, argc, argv, "ATM_TYPE_OUT", -1, "-1", NULL);
5221 if (ctl->atm_type_out == -1)
5222 ctl->atm_type_out = ctl->atm_type;
5223 ctl->atm_nc_level =
5224 (int) scan_ctl(filename, argc, argv, "ATM_NC_LEVEL", -1, "0", NULL);
5225 for (int iq = 0; iq < ctl->nq; iq++)
5226 ctl->atm_nc_quant[iq] =
5227 (int) scan_ctl(filename, argc, argv, "ATM_NC_QUANT", iq, "0", NULL);
5228 ctl->obs_type =
5229 (int) scan_ctl(filename, argc, argv, "OBS_TYPE", -1, "0", NULL);
5230
5231 /* Output of CSI data... */
5232 scan_ctl(filename, argc, argv, "CSI_BASENAME", -1, "-", ctl->csi_basename);
5233 scan_ctl(filename, argc, argv, "CSI_KERNEL", -1, "-", ctl->csi_kernel);
5234 ctl->csi_dt_out =
5235 scan_ctl(filename, argc, argv, "CSI_DT_OUT", -1, "86400", NULL);
5236 scan_ctl(filename, argc, argv, "CSI_OBSFILE", -1, "-", ctl->csi_obsfile);
5237 ctl->csi_obsmin =
5238 scan_ctl(filename, argc, argv, "CSI_OBSMIN", -1, "0", NULL);
5239 ctl->csi_modmin =
5240 scan_ctl(filename, argc, argv, "CSI_MODMIN", -1, "0", NULL);
5241 ctl->csi_z0 = scan_ctl(filename, argc, argv, "CSI_Z0", -1, "-5", NULL);
5242 ctl->csi_z1 = scan_ctl(filename, argc, argv, "CSI_Z1", -1, "85", NULL);
5243 ctl->csi_nz = (int) scan_ctl(filename, argc, argv, "CSI_NZ", -1, "1", NULL);
5244 ctl->csi_lon0 =
5245 scan_ctl(filename, argc, argv, "CSI_LON0", -1, "-180", NULL);
5246 ctl->csi_lon1 = scan_ctl(filename, argc, argv, "CSI_LON1", -1, "180", NULL);
5247 ctl->csi_nx =
5248 (int) scan_ctl(filename, argc, argv, "CSI_NX", -1, "360", NULL);
5249 ctl->csi_lat0 = scan_ctl(filename, argc, argv, "CSI_LAT0", -1, "-90", NULL);
5250 ctl->csi_lat1 = scan_ctl(filename, argc, argv, "CSI_LAT1", -1, "90", NULL);
5251 ctl->csi_ny =
5252 (int) scan_ctl(filename, argc, argv, "CSI_NY", -1, "180", NULL);
5253
5254 /* Output of ensemble data... */
5255 scan_ctl(filename, argc, argv, "ENS_BASENAME", -1, "-", ctl->ens_basename);
5256 ctl->ens_dt_out =
5257 scan_ctl(filename, argc, argv, "ENS_DT_OUT", -1, "86400", NULL);
5258
5259 /* Output of grid data... */
5260 scan_ctl(filename, argc, argv, "GRID_BASENAME", -1, "-",
5261 ctl->grid_basename);
5262 scan_ctl(filename, argc, argv, "GRID_KERNEL", -1, "-", ctl->grid_kernel);
5263 scan_ctl(filename, argc, argv, "GRID_GPFILE", -1, "-", ctl->grid_gpfile);
5264 ctl->grid_dt_out =
5265 scan_ctl(filename, argc, argv, "GRID_DT_OUT", -1, "86400", NULL);
5266 ctl->grid_sparse =
5267 (int) scan_ctl(filename, argc, argv, "GRID_SPARSE", -1, "0", NULL);
5268 ctl->grid_nc_level =
5269 (int) scan_ctl(filename, argc, argv, "GRID_NC_LEVEL", -1, "0", NULL);
5270 for (int iq = 0; iq < ctl->nq; iq++)
5271 ctl->grid_nc_quant[iq] =
5272 (int) scan_ctl(filename, argc, argv, "GRID_NC_QUANT", iq, "0", NULL);
5273 ctl->grid_stddev =
5274 (int) scan_ctl(filename, argc, argv, "GRID_STDDEV", -1, "0", NULL);
5275 ctl->grid_z0 = scan_ctl(filename, argc, argv, "GRID_Z0", -1, "-5", NULL);
5276 ctl->grid_z1 = scan_ctl(filename, argc, argv, "GRID_Z1", -1, "85", NULL);
5277 ctl->grid_nz =
5278 (int) scan_ctl(filename, argc, argv, "GRID_NZ", -1, "1", NULL);
5279 ctl->grid_lon0 =
5280 scan_ctl(filename, argc, argv, "GRID_LON0", -1, "-180", NULL);
5281 ctl->grid_lon1 =
5282 scan_ctl(filename, argc, argv, "GRID_LON1", -1, "180", NULL);
5283 ctl->grid_nx =
5284 (int) scan_ctl(filename, argc, argv, "GRID_NX", -1, "360", NULL);
5285 ctl->grid_lat0 =
5286 scan_ctl(filename, argc, argv, "GRID_LAT0", -1, "-90", NULL);
5287 ctl->grid_lat1 =
5288 scan_ctl(filename, argc, argv, "GRID_LAT1", -1, "90", NULL);
5289 ctl->grid_ny =
5290 (int) scan_ctl(filename, argc, argv, "GRID_NY", -1, "180", NULL);
5291 ctl->grid_type =
5292 (int) scan_ctl(filename, argc, argv, "GRID_TYPE", -1, "0", NULL);
5293
5294 /* Output of profile data... */
5295 scan_ctl(filename, argc, argv, "PROF_BASENAME", -1, "-",
5296 ctl->prof_basename);
5297 scan_ctl(filename, argc, argv, "PROF_OBSFILE", -1, "-", ctl->prof_obsfile);
5298 ctl->prof_z0 = scan_ctl(filename, argc, argv, "PROF_Z0", -1, "0", NULL);
5299 ctl->prof_z1 = scan_ctl(filename, argc, argv, "PROF_Z1", -1, "60", NULL);
5300 ctl->prof_nz =
5301 (int) scan_ctl(filename, argc, argv, "PROF_NZ", -1, "60", NULL);
5302 ctl->prof_lon0 =
5303 scan_ctl(filename, argc, argv, "PROF_LON0", -1, "-180", NULL);
5304 ctl->prof_lon1 =
5305 scan_ctl(filename, argc, argv, "PROF_LON1", -1, "180", NULL);
5306 ctl->prof_nx =
5307 (int) scan_ctl(filename, argc, argv, "PROF_NX", -1, "360", NULL);
5308 ctl->prof_lat0 =
5309 scan_ctl(filename, argc, argv, "PROF_LAT0", -1, "-90", NULL);
5310 ctl->prof_lat1 =
5311 scan_ctl(filename, argc, argv, "PROF_LAT1", -1, "90", NULL);
5312 ctl->prof_ny =
5313 (int) scan_ctl(filename, argc, argv, "PROF_NY", -1, "180", NULL);
5314
5315 /* Output of sample data... */
5316 scan_ctl(filename, argc, argv, "SAMPLE_BASENAME", -1, "-",
5317 ctl->sample_basename);
5318 scan_ctl(filename, argc, argv, "SAMPLE_KERNEL", -1, "-",
5319 ctl->sample_kernel);
5320 scan_ctl(filename, argc, argv, "SAMPLE_OBSFILE", -1, "-",
5321 ctl->sample_obsfile);
5322 ctl->sample_dx =
5323 scan_ctl(filename, argc, argv, "SAMPLE_DX", -1, "50", NULL);
5324 ctl->sample_dz =
5325 scan_ctl(filename, argc, argv, "SAMPLE_DZ", -1, "-999", NULL);
5326
5327 /* Output of station data... */
5328 scan_ctl(filename, argc, argv, "STAT_BASENAME", -1, "-",
5329 ctl->stat_basename);
5330 ctl->stat_lon = scan_ctl(filename, argc, argv, "STAT_LON", -1, "0", NULL);
5331 ctl->stat_lat = scan_ctl(filename, argc, argv, "STAT_LAT", -1, "0", NULL);
5332 ctl->stat_r = scan_ctl(filename, argc, argv, "STAT_R", -1, "50", NULL);
5333 ctl->stat_t0 =
5334 scan_ctl(filename, argc, argv, "STAT_T0", -1, "-1e100", NULL);
5335 ctl->stat_t1 = scan_ctl(filename, argc, argv, "STAT_T1", -1, "1e100", NULL);
5336
5337 /* Output of VTK data... */
5338 scan_ctl(filename, argc, argv, "VTK_BASENAME", -1, "-", ctl->vtk_basename);
5339 ctl->vtk_dt_out =
5340 scan_ctl(filename, argc, argv, "VTK_DT_OUT", -1, "86400", NULL);
5341 ctl->vtk_stride =
5342 (int) scan_ctl(filename, argc, argv, "VTK_STRIDE", -1, "1", NULL);
5343 ctl->vtk_scale =
5344 scan_ctl(filename, argc, argv, "VTK_SCALE", -1, "1.0", NULL);
5345 ctl->vtk_offset =
5346 scan_ctl(filename, argc, argv, "VTK_OFFSET", -1, "0.0", NULL);
5347 ctl->vtk_sphere =
5348 (int) scan_ctl(filename, argc, argv, "VTK_SPHERE", -1, "0", NULL);
5349}
5350
5351/*****************************************************************************/
5352
5354 const char *filename,
5355 const ctl_t *ctl,
5356 const clim_t *clim,
5357 met_t *met) {
5358
5359 /* Write info... */
5360 LOG(1, "Read meteo data: %s", filename);
5361
5362 /* Set rank... */
5363 int rank = 0;
5364#ifdef MPI
5365 if (ctl->met_mpi_share)
5366 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
5367#endif
5368
5369 /* Check rank... */
5370 if (!ctl->met_mpi_share || rank == 0) {
5371
5372 /* Read netCDF data... */
5373 if (ctl->met_type == 0) {
5374 if (read_met_nc(filename, ctl, clim, met) != 1)
5375 return 0;
5376 }
5377
5378 /* Read binary data... */
5379 else if (ctl->met_type >= 1 && ctl->met_type <= 5) {
5380 if (read_met_bin(filename, ctl, met) != 1)
5381 return 0;
5382 }
5383
5384 /* Not implemented... */
5385 else
5386 ERRMSG("MET_TYPE not implemented!");
5387 }
5388
5389 /* Broadcast data via MPI... */
5390#ifdef MPI
5391 if (ctl->met_mpi_share) {
5392
5393 /* Set timer... */
5394 SELECT_TIMER("READ_MET_MPI_BCAST", "COMM", NVTX_SEND);
5395 LOG(2, "Broadcast data on rank %d...", rank);
5396
5397 /* Broadcast... */
5398 broadcast_large_data(met, sizeof(met_t));
5399 }
5400#endif
5401
5402 /* Return success... */
5403 return 1;
5404}
5405
5406/*****************************************************************************/
5407
5409 ctl_t *ctl,
5410 cache_t *cache,
5411 clim_t *clim,
5412 met_t **met0,
5413 met_t **met1,
5414 atm_t *atm,
5415 double t) {
5416
5417 /* Initialize modules... */
5418 if (t == ctl->t_start) {
5419
5420 /* Initialize isosurface data... */
5421 if (ctl->isosurf >= 1 && ctl->isosurf <= 4)
5422 module_isosurf_init(ctl, cache, *met0, *met1, atm);
5423
5424 /* Initialize advection... */
5425 module_advect_init(ctl, cache, *met0, *met1, atm);
5426
5427 /* Initialize chemistry... */
5428 module_chem_init(ctl, cache, clim, *met0, *met1, atm);
5429 }
5430
5431 /* Set time steps of air parcels... */
5432 module_timesteps(ctl, cache, *met0, atm, t);
5433
5434 /* Sort particles... */
5435 if (ctl->sort_dt > 0 && fmod(t, ctl->sort_dt) == 0)
5436 module_sort(ctl, *met0, atm);
5437
5438 /* Check positions (initial)... */
5439 module_position(cache, *met0, *met1, atm);
5440
5441 /* Advection... */
5442 if (ctl->advect > 0)
5443 module_advect(ctl, cache, *met0, *met1, atm);
5444
5445 /* Turbulent diffusion... */
5446 if (ctl->diffusion == 1
5447 && (ctl->turb_dx_pbl > 0 || ctl->turb_dz_pbl > 0
5448 || ctl->turb_dx_trop > 0 || ctl->turb_dz_trop > 0
5449 || ctl->turb_dx_strat > 0 || ctl->turb_dz_strat > 0))
5450 module_diff_turb(ctl, cache, clim, *met0, *met1, atm);
5451
5452 /* Mesoscale diffusion... */
5453 if (ctl->diffusion == 1 && (ctl->turb_mesox > 0 || ctl->turb_mesoz > 0))
5454 module_diff_meso(ctl, cache, *met0, *met1, atm);
5455
5456 /* Diffusion... */
5457 if (ctl->diffusion == 2)
5458 module_diff_pbl(ctl, cache, *met0, *met1, atm);
5459
5460 /* Convection... */
5461 if ((ctl->conv_mix_pbl || ctl->conv_cape >= 0)
5462 && (ctl->conv_dt <= 0 || fmod(t, ctl->conv_dt) == 0))
5463 module_convection(ctl, cache, *met0, *met1, atm);
5464
5465 /* Sedimentation... */
5466 if (ctl->qnt_rp >= 0 && ctl->qnt_rhop >= 0)
5467 module_sedi(ctl, cache, *met0, *met1, atm);
5468
5469 /* Isosurface... */
5470 if (ctl->isosurf >= 1 && ctl->isosurf <= 4)
5471 module_isosurf(ctl, cache, *met0, *met1, atm);
5472
5473 /* Check positions (final)... */
5474 module_position(cache, *met0, *met1, atm);
5475
5476 /* Interpolate meteo data... */
5477 if (ctl->met_dt_out > 0
5478 && (ctl->met_dt_out < ctl->dt_mod || fmod(t, ctl->met_dt_out) == 0))
5479 module_meteo(ctl, cache, clim, *met0, *met1, atm);
5480
5481 /* Check boundary conditions (initial)... */
5482 if ((ctl->bound_lat0 < ctl->bound_lat1)
5483 && (ctl->bound_p0 > ctl->bound_p1))
5484 module_bound_cond(ctl, cache, clim, *met0, *met1, atm);
5485
5486 /* Initialize quantity of total loss rate... */
5487 if (ctl->qnt_loss_rate >= 0) {
5488 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,atm)") {
5489 atm->q[ctl->qnt_loss_rate][ip] = 0;
5490 }
5491 }
5492
5493 /* Decay of particle mass... */
5494 if (ctl->tdec_trop > 0 && ctl->tdec_strat > 0)
5495 module_decay(ctl, cache, clim, atm);
5496
5497 /* Interparcel mixing... */
5498 if (ctl->mixing_trop >= 0 && ctl->mixing_strat >= 0
5499 && (ctl->mixing_dt <= 0 || fmod(t, ctl->mixing_dt) == 0))
5500 module_mixing(ctl, clim, atm, t);
5501
5502 /* Calculate the tracer vmr in the chemistry grid... */
5503 if (ctl->oh_chem_reaction != 0 || ctl->h2o2_chem_reaction != 0
5504 || (ctl->kpp_chem && fmod(t, ctl->dt_kpp) == 0))
5505 module_chem_grid(ctl, *met0, *met1, atm, t);
5506
5507 /* OH chemistry... */
5508 if (ctl->oh_chem_reaction != 0)
5509 module_oh_chem(ctl, cache, clim, *met0, *met1, atm);
5510
5511 /* H2O2 chemistry (for SO2 aqueous phase oxidation)... */
5512 if (ctl->h2o2_chem_reaction != 0)
5513 module_h2o2_chem(ctl, cache, clim, *met0, *met1, atm);
5514
5515 /* First-order tracer chemistry... */
5516 if (ctl->tracer_chem)
5517 module_tracer_chem(ctl, cache, clim, *met0, *met1, atm);
5518
5519 /* KPP chemistry... */
5520 if (ctl->kpp_chem && fmod(t, ctl->dt_kpp) == 0) {
5521#ifdef KPP
5522 module_kpp_chem(ctl, cache, clim, *met0, *met1, atm);
5523#else
5524 ERRMSG("Code was compiled without KPP!");
5525#endif
5526 }
5527
5528 /* Wet deposition... */
5529 if ((ctl->wet_depo_ic_a > 0 || ctl->wet_depo_ic_h[0] > 0)
5530 && (ctl->wet_depo_bc_a > 0 || ctl->wet_depo_bc_h[0] > 0))
5531 module_wet_depo(ctl, cache, *met0, *met1, atm);
5532
5533 /* Dry deposition... */
5534 if (ctl->dry_depo_vdep > 0)
5535 module_dry_depo(ctl, cache, *met0, *met1, atm);
5536
5537 /* Check boundary conditions (final)... */
5538 if ((ctl->bound_lat0 < ctl->bound_lat1)
5539 && (ctl->bound_p0 > ctl->bound_p1))
5540 module_bound_cond(ctl, cache, clim, *met0, *met1, atm);
5541}
5542
5543/*****************************************************************************/
5544
5546 const ctl_t *ctl,
5547 const cache_t *cache,
5548 const clim_t *clim,
5549 met_t **met0,
5550 met_t **met1,
5551 const atm_t *atm) {
5552
5553 /* Update GPU... */
5554 if (ctl != NULL) {
5555#ifdef _OPENACC
5556 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5557#pragma acc update device(ctl[:1])
5558#endif
5559 }
5560
5561 if (cache != NULL) {
5562#ifdef _OPENACC
5563 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5564#pragma acc update device(cache[:1])
5565#endif
5566 }
5567
5568 if (clim != NULL) {
5569#ifdef _OPENACC
5570 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5571#pragma acc update device(clim[:1])
5572#endif
5573 }
5574
5575 if (met0 != NULL) {
5576#ifdef _OPENACC
5577 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5578 met_t *met0up = *met0;
5579#pragma acc update device(met0up[:1])
5580#endif
5581 }
5582
5583 if (met1 != NULL) {
5584#ifdef _OPENACC
5585 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5586 met_t *met1up = *met1;
5587#pragma acc update device(met1up[:1])
5588#endif
5589 }
5590
5591 if (atm != NULL) {
5592#ifdef _OPENACC
5593 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5594#pragma acc update device(atm[:1])
5595#endif
5596 }
5597}
5598
5599/*****************************************************************************/
5600
5602 const ctl_t *ctl,
5603 const cache_t *cache,
5604 const clim_t *clim,
5605 met_t **met0,
5606 met_t **met1,
5607 const atm_t *atm) {
5608
5609 /* Update GPU... */
5610 if (ctl != NULL) {
5611#ifdef _OPENACC
5612 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
5613#pragma acc update host(ctl[:1])
5614#endif
5615 }
5616
5617 if (cache != NULL) {
5618#ifdef _OPENACC
5619 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
5620#pragma acc update host(cache[:1])
5621#endif
5622 }
5623
5624 if (clim != NULL) {
5625#ifdef _OPENACC
5626 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
5627#pragma acc update host(clim[:1])
5628#endif
5629 }
5630
5631 if (met0 != NULL) {
5632#ifdef _OPENACC
5633 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5634 met_t *met0up = *met0;
5635#pragma acc update host(met0up[:1])
5636#endif
5637 }
5638
5639 if (met1 != NULL) {
5640#ifdef _OPENACC
5641 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
5642 met_t *met1up = *met1;
5643#pragma acc update host(met1up[:1])
5644#endif
5645 }
5646
5647 if (atm != NULL) {
5648#ifdef _OPENACC
5649 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
5650#pragma acc update host(atm[:1])
5651#endif
5652 }
5653}
5654
5655/*****************************************************************************/
5656
5658 const char *filename,
5659 const ctl_t *ctl,
5660 const atm_t *atm,
5661 const double t) {
5662
5663 /* Set timer... */
5664 SELECT_TIMER("WRITE_ATM", "OUTPUT", NVTX_WRITE);
5665
5666 /* Write info... */
5667 LOG(1, "Write atmospheric data: %s", filename);
5668
5669 /* Write ASCII data... */
5670 if (ctl->atm_type_out == 0)
5671 write_atm_asc(filename, ctl, atm, t);
5672
5673 /* Write binary data... */
5674 else if (ctl->atm_type_out == 1)
5675 write_atm_bin(filename, ctl, atm);
5676
5677 /* Write netCDF data... */
5678 else if (ctl->atm_type_out == 2)
5679 write_atm_nc(filename, ctl, atm);
5680
5681 /* Write CLaMS trajectory data... */
5682 else if (ctl->atm_type_out == 3)
5683 write_atm_clams_traj(filename, ctl, atm, t);
5684
5685 /* Write CLaMS pos data... */
5686 else if (ctl->atm_type_out == 4)
5687 write_atm_clams(filename, ctl, atm);
5688
5689 /* Error... */
5690 else
5691 ERRMSG("Atmospheric data type not supported!");
5692
5693 /* Write info... */
5694 double mini, maxi;
5695 LOG(2, "Number of particles: %d", atm->np);
5696 gsl_stats_minmax(&mini, &maxi, atm->time, 1, (size_t) atm->np);
5697 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
5698 gsl_stats_minmax(&mini, &maxi, atm->p, 1, (size_t) atm->np);
5699 LOG(2, "Altitude range: %g ... %g km", Z(maxi), Z(mini));
5700 LOG(2, "Pressure range: %g ... %g hPa", maxi, mini);
5701 gsl_stats_minmax(&mini, &maxi, atm->lon, 1, (size_t) atm->np);
5702 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
5703 gsl_stats_minmax(&mini, &maxi, atm->lat, 1, (size_t) atm->np);
5704 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
5705 for (int iq = 0; iq < ctl->nq; iq++) {
5706 char msg[5 * LEN];
5707 sprintf(msg, "Quantity %s range: %s ... %s %s",
5708 ctl->qnt_name[iq], ctl->qnt_format[iq],
5709 ctl->qnt_format[iq], ctl->qnt_unit[iq]);
5710 gsl_stats_minmax(&mini, &maxi, atm->q[iq], 1, (size_t) atm->np);
5711 LOG(2, msg, mini, maxi);
5712 }
5713}
5714
5715/*****************************************************************************/
5716
5718 const char *filename,
5719 const ctl_t *ctl,
5720 met_t *met) {
5721
5722 /* Set timer... */
5723 SELECT_TIMER("WRITE_MET", "OUTPUT", NVTX_WRITE);
5724
5725 /* Write info... */
5726 LOG(1, "Write meteo data: %s", filename);
5727
5728 /* Check compression flags... */
5729#ifndef ZFP
5730 if (ctl->met_type == 3)
5731 ERRMSG("MPTRAC was compiled without zfp compression!");
5732#endif
5733#ifndef ZSTD
5734 if (ctl->met_type == 4)
5735 ERRMSG("MPTRAC was compiled without zstd compression!");
5736#endif
5737#ifndef CMS
5738 if (ctl->met_type == 5)
5739 ERRMSG("MPTRAC was compiled without cmultiscale compression!");
5740#endif
5741
5742 /* Write netCDF data... */
5743 if (ctl->met_type == 0)
5744 write_met_nc(filename, ctl, met);
5745
5746 /* Write binary data... */
5747 else if (ctl->met_type >= 1 && ctl->met_type <= 5)
5748 write_met_bin(filename, ctl, met);
5749
5750 /* Not implemented... */
5751 else
5752 ERRMSG("MET_TYPE not implemented!");
5753}
5754
5755/*****************************************************************************/
5756
5758 const char *dirname,
5759 const ctl_t *ctl,
5760 met_t *met0,
5761 met_t *met1,
5762 atm_t *atm,
5763 const double t) {
5764
5765 char ext[10], filename[2 * LEN];
5766
5767 double r;
5768
5769 int year, mon, day, hour, min, sec;
5770
5771 /* Get time... */
5772 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
5773
5774 /* Update host... */
5775 if ((ctl->atm_basename[0] != '-' && fmod(t, ctl->atm_dt_out) == 0)
5776 || (ctl->grid_basename[0] != '-' && fmod(t, ctl->grid_dt_out) == 0)
5777 || (ctl->ens_basename[0] != '-' && fmod(t, ctl->ens_dt_out) == 0)
5778 || ctl->csi_basename[0] != '-' || ctl->prof_basename[0] != '-'
5779 || ctl->sample_basename[0] != '-' || ctl->stat_basename[0] != '-'
5780 || (ctl->vtk_basename[0] != '-' && fmod(t, ctl->vtk_dt_out) == 0))
5781 mptrac_update_host(NULL, NULL, NULL, NULL, NULL, atm);
5782
5783 /* Write atmospheric data... */
5784 if (ctl->atm_basename[0] != '-' &&
5785 (fmod(t, ctl->atm_dt_out) == 0 || t == ctl->t_stop)) {
5786 if (ctl->atm_type_out == 0)
5787 sprintf(ext, "tab");
5788 else if (ctl->atm_type_out == 1)
5789 sprintf(ext, "bin");
5790 else if (ctl->atm_type_out == 2)
5791 sprintf(ext, "nc");
5792 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
5793 dirname, ctl->atm_basename, year, mon, day, hour, min, ext);
5794 mptrac_write_atm(filename, ctl, atm, t);
5795 }
5796
5797 /* Write gridded data... */
5798 if (ctl->grid_basename[0] != '-' && fmod(t, ctl->grid_dt_out) == 0) {
5799 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
5800 dirname, ctl->grid_basename, year, mon, day, hour, min,
5801 ctl->grid_type == 0 ? "tab" : "nc");
5802 write_grid(filename, ctl, met0, met1, atm, t);
5803 }
5804
5805 /* Write CSI data... */
5806 if (ctl->csi_basename[0] != '-') {
5807 sprintf(filename, "%s/%s.tab", dirname, ctl->csi_basename);
5808 write_csi(filename, ctl, atm, t);
5809 }
5810
5811 /* Write ensemble data... */
5812 if (ctl->ens_basename[0] != '-' && fmod(t, ctl->ens_dt_out) == 0) {
5813 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.tab",
5814 dirname, ctl->ens_basename, year, mon, day, hour, min);
5815 write_ens(filename, ctl, atm, t);
5816 }
5817
5818 /* Write profile data... */
5819 if (ctl->prof_basename[0] != '-') {
5820 sprintf(filename, "%s/%s.tab", dirname, ctl->prof_basename);
5821 write_prof(filename, ctl, met0, met1, atm, t);
5822 }
5823
5824 /* Write sample data... */
5825 if (ctl->sample_basename[0] != '-') {
5826 sprintf(filename, "%s/%s.tab", dirname, ctl->sample_basename);
5827 write_sample(filename, ctl, met0, met1, atm, t);
5828 }
5829
5830 /* Write station data... */
5831 if (ctl->stat_basename[0] != '-') {
5832 sprintf(filename, "%s/%s.tab", dirname, ctl->stat_basename);
5833 write_station(filename, ctl, atm, t);
5834 }
5835
5836 /* Write VTK data... */
5837 if (ctl->vtk_basename[0] != '-' && fmod(t, ctl->vtk_dt_out) == 0) {
5838 static int nvtk;
5839 if (t == ctl->t_start)
5840 nvtk = 0;
5841 sprintf(filename, "%s/%s_%05d.vtk", dirname, ctl->vtk_basename, ++nvtk);
5842 write_vtk(filename, ctl, atm, t);
5843 }
5844}
5845
5846/*****************************************************************************/
5847
5849 const double p,
5850 const double h2o,
5851 const double hno3) {
5852
5853 /* Check water vapor volume mixing ratio... */
5854 const double h2o_help = MAX(h2o, 0.1e-6);
5855
5856 /* Calculate T_NAT... */
5857 const double p_hno3 = hno3 * p / 1.333224;
5858 const double p_h2o = h2o_help * p / 1.333224;
5859 const double a = 0.009179 - 0.00088 * log10(p_h2o);
5860 const double b = (38.9855 - log10(p_hno3) - 2.7836 * log10(p_h2o)) / a;
5861 const double c = -11397.0 / a;
5862 double tnat = (-b + sqrt(b * b - 4. * c)) / 2.;
5863 double x2 = (-b - sqrt(b * b - 4. * c)) / 2.;
5864 if (x2 > 0)
5865 tnat = x2;
5866
5867 return tnat;
5868}
5869
5870/*****************************************************************************/
5871
5873 const ctl_t *ctl,
5874 const atm_t *atm,
5875 const int ip,
5876 const double pbl,
5877 const double ps) {
5878
5879 /* Get pressure range... */
5880 const double p1 = pbl - ctl->conv_pbl_trans * (ps - pbl);
5881 const double p0 = pbl;
5882
5883 /* Get weighting factor... */
5884 if (atm->p[ip] > p0)
5885 return 1;
5886 else if (atm->p[ip] < p1)
5887 return 0;
5888 else
5889 return LIN(p0, 1.0, p1, 0.0, atm->p[ip]);
5890}
5891
5892/*****************************************************************************/
5893
5895 const char *filename,
5896 const ctl_t *ctl,
5897 atm_t *atm) {
5898
5899 /* Open file... */
5900 FILE *in;
5901 if (!(in = fopen(filename, "r"))) {
5902 WARN("Cannot open file!");
5903 return 0;
5904 }
5905
5906 /* Read line... */
5907 char line[LEN];
5908 while (fgets(line, LEN, in)) {
5909
5910 /* Read data... */
5911 char *tok;
5912 TOK(line, tok, "%lg", atm->time[atm->np]);
5913 TOK(NULL, tok, "%lg", atm->p[atm->np]);
5914 TOK(NULL, tok, "%lg", atm->lon[atm->np]);
5915 TOK(NULL, tok, "%lg", atm->lat[atm->np]);
5916 for (int iq = 0; iq < ctl->nq; iq++)
5917 TOK(NULL, tok, "%lg", atm->q[iq][atm->np]);
5918
5919 /* Convert altitude to pressure... */
5920 atm->p[atm->np] = P(atm->p[atm->np]);
5921
5922 /* Increment data point counter... */
5923 if ((++atm->np) > NP)
5924 ERRMSG("Too many data points!");
5925 }
5926
5927 /* Close file... */
5928 fclose(in);
5929
5930 /* Return success... */
5931 return 1;
5932}
5933
5934/*****************************************************************************/
5935
5937 const char *filename,
5938 const ctl_t *ctl,
5939 atm_t *atm) {
5940
5941 /* Open file... */
5942 FILE *in;
5943 if (!(in = fopen(filename, "r")))
5944 return 0;
5945
5946 /* Check version of binary data... */
5947 int version;
5948 FREAD(&version, int,
5949 1,
5950 in);
5951 if (version != 100)
5952 ERRMSG("Wrong version of binary data!");
5953
5954 /* Read data... */
5955 FREAD(&atm->np, int,
5956 1,
5957 in);
5958 FREAD(atm->time, double,
5959 (size_t) atm->np,
5960 in);
5961 FREAD(atm->p, double,
5962 (size_t) atm->np,
5963 in);
5964 FREAD(atm->lon, double,
5965 (size_t) atm->np,
5966 in);
5967 FREAD(atm->lat, double,
5968 (size_t) atm->np,
5969 in);
5970 for (int iq = 0; iq < ctl->nq; iq++)
5971 FREAD(atm->q[iq], double,
5972 (size_t) atm->np,
5973 in);
5974
5975 /* Read final flag... */
5976 int final;
5977 FREAD(&final, int,
5978 1,
5979 in);
5980 if (final != 999)
5981 ERRMSG("Error while reading binary data!");
5982
5983 /* Close file... */
5984 fclose(in);
5985
5986 /* Return success... */
5987 return 1;
5988}
5989
5990/*****************************************************************************/
5991
5993 const char *filename,
5994 const ctl_t *ctl,
5995 atm_t *atm) {
5996
5997 int ncid, varid;
5998
5999 /* Open file... */
6000 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
6001 return 0;
6002
6003 /* Get dimensions... */
6004 NC_INQ_DIM("NPARTS", &atm->np, 1, NP);
6005
6006 /* Get time... */
6007 if (nc_inq_varid(ncid, "TIME_INIT", &varid) == NC_NOERR) {
6008 NC(nc_get_var_double(ncid, varid, atm->time));
6009 } else {
6010 WARN("TIME_INIT not found use time instead!");
6011 double time_init;
6012 NC_GET_DOUBLE("time", &time_init, 1);
6013 for (int ip = 0; ip < atm->np; ip++) {
6014 atm->time[ip] = time_init;
6015 }
6016 }
6017
6018 /* Read zeta coordinate, pressure is optional... */
6019 if (ctl->advect_vert_coord == 1) {
6020 NC_GET_DOUBLE("ZETA", atm->q[ctl->qnt_zeta], 1);
6021 NC_GET_DOUBLE("PRESS", atm->p, 0);
6022 }
6023
6024 /* Read pressure, zeta coordinate is optional... */
6025 else {
6026 if (nc_inq_varid(ncid, "PRESS_INIT", &varid) == NC_NOERR) {
6027 NC(nc_get_var_double(ncid, varid, atm->p));
6028 } else {
6029 WARN("PRESS_INIT not found use PRESS instead!");
6030 nc_inq_varid(ncid, "PRESS", &varid);
6031 NC(nc_get_var_double(ncid, varid, atm->p));
6032 }
6033 }
6034
6035 /* Read longitude and latitude... */
6036 NC_GET_DOUBLE("LON", atm->lon, 1);
6037 NC_GET_DOUBLE("LAT", atm->lat, 1);
6038
6039 /* Close file... */
6040 NC(nc_close(ncid));
6041
6042 /* Return success... */
6043 return 1;
6044}
6045
6046/*****************************************************************************/
6047
6049 const char *filename,
6050 const ctl_t *ctl,
6051 atm_t *atm) {
6052
6053 int ncid, varid;
6054
6055 /* Open file... */
6056 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
6057 return 0;
6058
6059 /* Get dimensions... */
6060 NC_INQ_DIM("obs", &atm->np, 1, NP);
6061
6062 /* Read geolocations... */
6063 NC_GET_DOUBLE("time", atm->time, 1);
6064 NC_GET_DOUBLE("press", atm->p, 1);
6065 NC_GET_DOUBLE("lon", atm->lon, 1);
6066 NC_GET_DOUBLE("lat", atm->lat, 1);
6067
6068 /* Read variables... */
6069 for (int iq = 0; iq < ctl->nq; iq++)
6070 NC_GET_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
6071
6072 /* Close file... */
6073 NC(nc_close(ncid));
6074
6075 /* Return success... */
6076 return 1;
6077}
6078
6079/*****************************************************************************/
6080
6082 const char *filename,
6083 clim_photo_t *photo) {
6084
6085 int ncid, varid;
6086
6087 /* Write info... */
6088 LOG(1, "Read photolysis rates: %s", filename);
6089
6090 /* Open netCDF file... */
6091 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
6092 WARN("Photolysis rate data are missing!");
6093 return;
6094 }
6095
6096 /* Read pressure data... */
6097 NC_INQ_DIM("press", &photo->np, 2, CP);
6098 NC_GET_DOUBLE("press", photo->p, 1);
6099 if (photo->p[0] < photo->p[1])
6100 ERRMSG("Pressure data are not descending!");
6101
6102 /* Read total column ozone data... */
6103 NC_INQ_DIM("total_o3col", &photo->no3c, 2, CO3);
6104 NC_GET_DOUBLE("total_o3col", photo->o3c, 1);
6105 if (photo->o3c[0] > photo->o3c[1])
6106 ERRMSG("Total column ozone data are not ascending!");
6107
6108 /* Read solar zenith angle data... */
6109 NC_INQ_DIM("sza", &photo->nsza, 2, CSZA);
6110 NC_GET_DOUBLE("sza", photo->sza, 1);
6111 if (photo->sza[0] > photo->sza[1])
6112 ERRMSG("Solar zenith angle data are not ascending!");
6113
6114 /* Read data... */
6115 read_clim_photo_help(ncid, "J_N2O", photo, photo->n2o);
6116 read_clim_photo_help(ncid, "J_CCl4", photo, photo->ccl4);
6117 read_clim_photo_help(ncid, "J_CFC-11", photo, photo->ccl3f);
6118 read_clim_photo_help(ncid, "J_CFC-12", photo, photo->ccl2f2);
6119 read_clim_photo_help(ncid, "J_O2", photo, photo->o2);
6120 read_clim_photo_help(ncid, "J_O3b", photo, photo->o3_1);
6121 read_clim_photo_help(ncid, "J_O3a", photo, photo->o3_2);
6122 read_clim_photo_help(ncid, "J_H2O2", photo, photo->h2o2);
6123 read_clim_photo_help(ncid, "J_H2O", photo, photo->h2o);
6124
6125 /* Close netCDF file... */
6126 NC(nc_close(ncid));
6127
6128 /* Write info... */
6129 LOG(2, "Number of pressure levels: %d", photo->np);
6130 LOG(2, "Altitude levels: %g, %g ... %g km",
6131 Z(photo->p[0]), Z(photo->p[1]), Z(photo->p[photo->np - 1]));
6132 LOG(2, "Pressure levels: %g, %g ... %g hPa",
6133 photo->p[0], photo->p[1], photo->p[photo->np - 1]);
6134 LOG(2, "Number of solar zenith angles: %d", photo->nsza);
6135 LOG(2, "Solar zenith angles: %g, %g ... %g deg",
6136 RAD2DEG(photo->sza[0]), RAD2DEG(photo->sza[1]),
6137 RAD2DEG(photo->sza[photo->nsza - 1]));
6138 LOG(2, "Number of total column ozone values: %d", photo->no3c);
6139 LOG(2, "Total column ozone: %g, %g ... %g DU",
6140 photo->o3c[0], photo->o3c[1], photo->o3c[photo->no3c - 1]);
6141 LOG(2, "N2O photolysis rate: %g, %g ... %g s**-1",
6142 photo->n2o[0][0][0], photo->n2o[1][0][0],
6143 photo->n2o[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6144 LOG(2, "CCl4 photolysis rate: %g, %g ... %g s**-1",
6145 photo->ccl4[0][0][0], photo->ccl4[1][0][0],
6146 photo->ccl4[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6147 LOG(2, "CFC-11 photolysis rate: %g, %g ... %g s**-1",
6148 photo->ccl3f[0][0][0], photo->ccl3f[1][0][0],
6149 photo->ccl3f[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6150 LOG(2, "CFC-12 photolysis rate: %g, %g ... %g s**-1",
6151 photo->ccl2f2[0][0][0], photo->ccl2f2[1][0][0],
6152 photo->ccl2f2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6153 LOG(2, "O2 photolysis rate: %g, %g ... %g s**-1",
6154 photo->o2[0][0][0], photo->o2[1][0][0],
6155 photo->o2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6156 LOG(2, "O3 -> O(1D) photolysis rate: %g, %g ... %g s**-1",
6157 photo->o3_1[0][0][0], photo->o3_1[1][0][0],
6158 photo->o3_1[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6159 LOG(2, "O3 -> O(3P) photolysis rate: %g, %g ... %g s**-1",
6160 photo->o3_2[0][0][0], photo->o3_2[1][0][0],
6161 photo->o3_2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6162 LOG(2, "H2O2 photolysis rate: %g, %g ... %g s**-1",
6163 photo->h2o2[0][0][0], photo->h2o2[1][0][0],
6164 photo->h2o2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6165 LOG(2, "H2O photolysis rate: %g, %g ... %g s**-1",
6166 photo->h2o[0][0][0], photo->h2o[1][0][0],
6167 photo->h2o[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
6168}
6169
6170/*****************************************************************************/
6171
6173 const int ncid,
6174 const char *varname,
6175 const clim_photo_t *photo,
6176 double var[CP][CSZA][CO3]) {
6177
6178 /* Allocate... */
6179 double *help;
6180 ALLOC(help, double,
6181 photo->np * photo->nsza * photo->no3c);
6182
6183 /* Read varible... */
6184 int varid;
6185 NC_GET_DOUBLE(varname, help, 1);
6186
6187 /* Copy data... */
6188 for (int ip = 0; ip < photo->np; ip++)
6189 for (int is = 0; is < photo->nsza; is++)
6190 for (int io = 0; io < photo->no3c; io++)
6191 var[ip][is][io] =
6192 help[ARRAY_3D(ip, is, photo->nsza, io, photo->no3c)];
6193
6194 /* Free... */
6195 free(help);
6196}
6197
6198/*****************************************************************************/
6199
6201 const char *filename,
6202 clim_ts_t *ts) {
6203
6204 /* Write info... */
6205 LOG(1, "Read climatological time series: %s", filename);
6206
6207 /* Open file... */
6208 FILE *in;
6209 if (!(in = fopen(filename, "r"))) {
6210 WARN("Cannot open file!");
6211 return 0;
6212 }
6213
6214 /* Read data... */
6215 char line[LEN];
6216 int nh = 0;
6217 while (fgets(line, LEN, in))
6218 if (sscanf(line, "%lg %lg", &ts->time[nh], &ts->vmr[nh]) == 2) {
6219
6220 /* Convert years to seconds... */
6221 ts->time[nh] = (ts->time[nh] - 2000.0) * 365.25 * 86400.;
6222
6223 /* Check data... */
6224 if (nh > 0 && ts->time[nh] <= ts->time[nh - 1])
6225 ERRMSG("Time series must be ascending!");
6226
6227 /* Count time steps... */
6228 if ((++nh) >= CTS)
6229 ERRMSG("Too many data points!");
6230 }
6231
6232 /* Close file... */
6233 fclose(in);
6234
6235 /* Check number of data points... */
6236 ts->ntime = nh;
6237 if (nh < 2)
6238 ERRMSG("Not enough data points!");
6239
6240 /* Write info... */
6241 LOG(2, "Number of time steps: %d", ts->ntime);
6242 LOG(2, "Time steps: %.2f, %.2f ... %.2f s", ts->time[0], ts->time[1],
6243 ts->time[nh - 1]);
6244 LOG(2, "Volume mixing ratio range: %g ... %g ppv",
6245 gsl_stats_min(ts->vmr, 1, (size_t) nh), gsl_stats_max(ts->vmr, 1,
6246 (size_t) nh));
6247
6248 /* Exit success... */
6249 return 1;
6250}
6251
6252/*****************************************************************************/
6253
6255 const char *filename,
6256 const char *varname,
6257 clim_zm_t *zm) {
6258
6259 int ncid, varid, it, iy, iz, iz2, nt;
6260
6261 double *help, varmin = 1e99, varmax = -1e99;
6262
6263 /* Write info... */
6264 LOG(1, "Read %s data: %s", varname, filename);
6265
6266 /* Open netCDF file... */
6267 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
6268 WARN("%s climatology data are missing!", varname);
6269 return;
6270 }
6271
6272 /* Read pressure data... */
6273 NC_INQ_DIM("press", &zm->np, 2, CP);
6274 NC_GET_DOUBLE("press", zm->p, 1);
6275 if (zm->p[0] < zm->p[1])
6276 ERRMSG("Pressure data are not descending!");
6277
6278 /* Read latitudes... */
6279 NC_INQ_DIM("lat", &zm->nlat, 2, CY);
6280 NC_GET_DOUBLE("lat", zm->lat, 1);
6281 if (zm->lat[0] > zm->lat[1])
6282 ERRMSG("Latitude data are not ascending!");
6283
6284 /* Set time data (for monthly means)... */
6285 zm->ntime = 12;
6286 zm->time[0] = 1209600.00;
6287 zm->time[1] = 3888000.00;
6288 zm->time[2] = 6393600.00;
6289 zm->time[3] = 9072000.00;
6290 zm->time[4] = 11664000.00;
6291 zm->time[5] = 14342400.00;
6292 zm->time[6] = 16934400.00;
6293 zm->time[7] = 19612800.00;
6294 zm->time[8] = 22291200.00;
6295 zm->time[9] = 24883200.00;
6296 zm->time[10] = 27561600.00;
6297 zm->time[11] = 30153600.00;
6298
6299 /* Check number of timesteps... */
6300 NC_INQ_DIM("time", &nt, 12, 12);
6301
6302 /* Read data... */
6303 ALLOC(help, double,
6304 zm->nlat * zm->np * zm->ntime);
6305 NC_GET_DOUBLE(varname, help, 1);
6306 for (it = 0; it < zm->ntime; it++)
6307 for (iz = 0; iz < zm->np; iz++)
6308 for (iy = 0; iy < zm->nlat; iy++)
6309 zm->vmr[it][iz][iy] = help[ARRAY_3D(it, iz, zm->np, iy, zm->nlat)];
6310 free(help);
6311
6312 /* Fix data gaps... */
6313 for (it = 0; it < zm->ntime; it++)
6314 for (iy = 0; iy < zm->nlat; iy++)
6315 for (iz = 0; iz < zm->np; iz++) {
6316 if (zm->vmr[it][iz][iy] < 0) {
6317 for (iz2 = 0; iz2 < zm->np; iz2++)
6318 if (zm->vmr[it][iz2][iy] >= 0) {
6319 zm->vmr[it][iz][iy] = zm->vmr[it][iz2][iy];
6320 break;
6321 }
6322 for (iz2 = zm->np - 1; iz2 >= 0; iz2--)
6323 if (zm->vmr[it][iz2][iy] >= 0) {
6324 zm->vmr[it][iz][iy] = zm->vmr[it][iz2][iy];
6325 break;
6326 }
6327 }
6328 varmin = MIN(varmin, zm->vmr[it][iz][iy]);
6329 varmax = MAX(varmax, zm->vmr[it][iz][iy]);
6330 }
6331
6332 /* Close netCDF file... */
6333 NC(nc_close(ncid));
6334
6335 /* Write info... */
6336 LOG(2, "Number of time steps: %d", zm->ntime);
6337 LOG(2, "Time steps: %.2f, %.2f ... %.2f s",
6338 zm->time[0], zm->time[1], zm->time[zm->ntime - 1]);
6339 LOG(2, "Number of pressure levels: %d", zm->np);
6340 LOG(2, "Altitude levels: %g, %g ... %g km",
6341 Z(zm->p[0]), Z(zm->p[1]), Z(zm->p[zm->np - 1]));
6342 LOG(2, "Pressure levels: %g, %g ... %g hPa", zm->p[0],
6343 zm->p[1], zm->p[zm->np - 1]);
6344 LOG(2, "Number of latitudes: %d", zm->nlat);
6345 LOG(2, "Latitudes: %g, %g ... %g deg",
6346 zm->lat[0], zm->lat[1], zm->lat[zm->nlat - 1]);
6347 LOG(2, "%s volume mixing ratio range: %g ... %g ppv", varname, varmin,
6348 varmax);
6349}
6350
6351/*****************************************************************************/
6352
6354 const char *filename,
6355 double kz[EP],
6356 double kw[EP],
6357 int *nk) {
6358
6359 /* Write info... */
6360 LOG(1, "Read kernel function: %s", filename);
6361
6362 /* Open file... */
6363 FILE *in;
6364 if (!(in = fopen(filename, "r")))
6365 ERRMSG("Cannot open file!");
6366
6367 /* Read data... */
6368 char line[LEN];
6369 int n = 0;
6370 while (fgets(line, LEN, in))
6371 if (sscanf(line, "%lg %lg", &kz[n], &kw[n]) == 2) {
6372 if (n > 0 && kz[n] < kz[n - 1])
6373 ERRMSG("Height levels must be ascending!");
6374 if ((++n) >= EP)
6375 ERRMSG("Too many height levels!");
6376 }
6377
6378 /* Close file... */
6379 fclose(in);
6380
6381 /* Check number of data points... */
6382 *nk = n;
6383 if (n < 2)
6384 ERRMSG("Not enough height levels!");
6385
6386 /* Normalize kernel function... */
6387 const double kmax = gsl_stats_max(kw, 1, (size_t) n);
6388 for (int iz = 0; iz < n; iz++)
6389 kw[iz] /= kmax;
6390}
6391
6392/*****************************************************************************/
6393
6395 const char *filename,
6396 const ctl_t *ctl,
6397 met_t *met) {
6398
6399 FILE *in;
6400
6401 double r;
6402
6403 int year, mon, day, hour, min, sec;
6404
6405 /* Set timer... */
6406 SELECT_TIMER("READ_MET_BIN", "INPUT", NVTX_READ);
6407
6408 /* Open file... */
6409 if (!(in = fopen(filename, "r"))) {
6410 WARN("Cannot open file!");
6411 return 0;
6412 }
6413
6414 /* Check type of binary data... */
6415 int met_type;
6416 FREAD(&met_type, int,
6417 1,
6418 in);
6419 if (met_type != ctl->met_type)
6420 ERRMSG("Wrong MET_TYPE of binary data!");
6421
6422 /* Check version of binary data... */
6423 int version;
6424 FREAD(&version, int,
6425 1,
6426 in);
6427 if (version != 103)
6428 ERRMSG("Wrong version of binary data!");
6429
6430 /* Read time... */
6431 FREAD(&met->time, double,
6432 1,
6433 in);
6434 jsec2time(met->time, &year, &mon, &day, &hour, &min, &sec, &r);
6435 LOG(2, "Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
6436 met->time, year, mon, day, hour, min);
6437 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
6438 || day < 1 || day > 31 || hour < 0 || hour > 23)
6439 ERRMSG("Error while reading time!");
6440
6441 /* Read dimensions... */
6442 FREAD(&met->nx, int,
6443 1,
6444 in);
6445 LOG(2, "Number of longitudes: %d", met->nx);
6446 if (met->nx < 2 || met->nx > EX)
6447 ERRMSG("Number of longitudes out of range!");
6448
6449 FREAD(&met->ny, int,
6450 1,
6451 in);
6452 LOG(2, "Number of latitudes: %d", met->ny);
6453 if (met->ny < 2 || met->ny > EY)
6454 ERRMSG("Number of latitudes out of range!");
6455
6456 FREAD(&met->np, int,
6457 1,
6458 in);
6459 LOG(2, "Number of levels: %d", met->np);
6460 if (met->np < 2 || met->np > EP)
6461 ERRMSG("Number of levels out of range!");
6462
6463 /* Read grid... */
6464 FREAD(met->lon, double,
6465 (size_t) met->nx,
6466 in);
6467 LOG(2, "Longitudes: %g, %g ... %g deg",
6468 met->lon[0], met->lon[1], met->lon[met->nx - 1]);
6469
6470 FREAD(met->lat, double,
6471 (size_t) met->ny,
6472 in);
6473 LOG(2, "Latitudes: %g, %g ... %g deg",
6474 met->lat[0], met->lat[1], met->lat[met->ny - 1]);
6475
6476 FREAD(met->p, double,
6477 (size_t) met->np,
6478 in);
6479 LOG(2, "Altitude levels: %g, %g ... %g km",
6480 Z(met->p[0]), Z(met->p[1]), Z(met->p[met->np - 1]));
6481 LOG(2, "Pressure levels: %g, %g ... %g hPa",
6482 met->p[0], met->p[1], met->p[met->np - 1]);
6483
6484 /* Read surface data... */
6485 read_met_bin_2d(in, met, met->ps, "PS");
6486 read_met_bin_2d(in, met, met->ts, "TS");
6487 read_met_bin_2d(in, met, met->zs, "ZS");
6488 read_met_bin_2d(in, met, met->us, "US");
6489 read_met_bin_2d(in, met, met->vs, "VS");
6490 read_met_bin_2d(in, met, met->ess, "ESS");
6491 read_met_bin_2d(in, met, met->nss, "NSS");
6492 read_met_bin_2d(in, met, met->shf, "SHF");
6493 read_met_bin_2d(in, met, met->lsm, "LSM");
6494 read_met_bin_2d(in, met, met->sst, "SST");
6495 read_met_bin_2d(in, met, met->pbl, "PBL");
6496 read_met_bin_2d(in, met, met->pt, "PT");
6497 read_met_bin_2d(in, met, met->tt, "TT");
6498 read_met_bin_2d(in, met, met->zt, "ZT");
6499 read_met_bin_2d(in, met, met->h2ot, "H2OT");
6500 read_met_bin_2d(in, met, met->pct, "PCT");
6501 read_met_bin_2d(in, met, met->pcb, "PCB");
6502 read_met_bin_2d(in, met, met->cl, "CL");
6503 read_met_bin_2d(in, met, met->plcl, "PLCL");
6504 read_met_bin_2d(in, met, met->plfc, "PLFC");
6505 read_met_bin_2d(in, met, met->pel, "PEL");
6506 read_met_bin_2d(in, met, met->cape, "CAPE");
6507 read_met_bin_2d(in, met, met->cin, "CIN");
6508 read_met_bin_2d(in, met, met->o3c, "O3C");
6509
6510 /* Read level data... */
6511 read_met_bin_3d(in, ctl, met, met->z, "Z", -1e34f, 1e34f);
6512 read_met_bin_3d(in, ctl, met, met->t, "T", 0, 1e34f);
6513 read_met_bin_3d(in, ctl, met, met->u, "U", -1e34f, 1e34f);
6514 read_met_bin_3d(in, ctl, met, met->v, "V", -1e34f, 1e34f);
6515 read_met_bin_3d(in, ctl, met, met->w, "W", -1e34f, 1e34f);
6516 read_met_bin_3d(in, ctl, met, met->pv, "PV", -1e34f, 1e34f);
6517 read_met_bin_3d(in, ctl, met, met->h2o, "H2O", 0, 1e34f);
6518 read_met_bin_3d(in, ctl, met, met->o3, "O3", 0, 1e34f);
6519 read_met_bin_3d(in, ctl, met, met->lwc, "LWC", 0, 1e34f);
6520 read_met_bin_3d(in, ctl, met, met->rwc, "RWC", 0, 1e34f);
6521 read_met_bin_3d(in, ctl, met, met->iwc, "IWC", 0, 1e34f);
6522 read_met_bin_3d(in, ctl, met, met->swc, "SWC", 0, 1e34f);
6523 read_met_bin_3d(in, ctl, met, met->cc, "CC", 0, 1);
6524
6525 /* Read final flag... */
6526 int final;
6527 FREAD(&final, int,
6528 1,
6529 in);
6530 if (final != 999)
6531 ERRMSG("Error while reading binary data!");
6532
6533 /* Close file... */
6534 fclose(in);
6535
6536 /* Return success... */
6537 return 1;
6538}
6539
6540/*****************************************************************************/
6541
6543 FILE *in,
6544 const met_t *met,
6545 float var[EX][EY],
6546 const char *varname) {
6547
6548 float *help;
6549
6550 /* Allocate... */
6551 ALLOC(help, float,
6552 EX * EY);
6553
6554 /* Read uncompressed... */
6555 LOG(2, "Read 2-D variable: %s (uncompressed)", varname);
6556 FREAD(help, float,
6557 (size_t) (met->nx * met->ny),
6558 in);
6559
6560 /* Copy data... */
6561 for (int ix = 0; ix < met->nx; ix++)
6562 for (int iy = 0; iy < met->ny; iy++)
6563 var[ix][iy] = help[ARRAY_2D(ix, iy, met->ny)];
6564
6565 /* Free... */
6566 free(help);
6567}
6568
6569/*****************************************************************************/
6570
6572 FILE *in,
6573 const ctl_t *ctl,
6574 const met_t *met,
6575 float var[EX][EY][EP],
6576 const char *varname,
6577 const float bound_min,
6578 const float bound_max) {
6579
6580 float *help;
6581
6582 /* Allocate... */
6583 ALLOC(help, float,
6584 EX * EY * EP);
6585
6586 /* Read uncompressed data... */
6587 if (ctl->met_type == 1) {
6588 LOG(2, "Read 3-D variable: %s (uncompressed)", varname);
6589 FREAD(help, float,
6590 (size_t) (met->nx * met->ny * met->np),
6591 in);
6592 }
6593
6594 /* Read packed data... */
6595 else if (ctl->met_type == 2)
6596 compress_pck(varname, help, (size_t) (met->ny * met->nx),
6597 (size_t) met->np, 1, in);
6598
6599 /* Read zfp data... */
6600 else if (ctl->met_type == 3) {
6601#ifdef ZFP
6602 int precision;
6603 FREAD(&precision, int,
6604 1,
6605 in);
6606
6607 double tolerance;
6608 FREAD(&tolerance, double,
6609 1,
6610 in);
6611
6612 compress_zfp(varname, help, met->np, met->ny, met->nx, precision,
6613 tolerance, 1, in);
6614#else
6615 ERRMSG("MPTRAC was compiled without zfp compression!");
6616#endif
6617 }
6618
6619 /* Read zstd data... */
6620 else if (ctl->met_type == 4) {
6621#ifdef ZSTD
6622 compress_zstd(varname, help, (size_t) (met->np * met->ny * met->nx), 1,
6623 in);
6624#else
6625 ERRMSG("MPTRAC was compiled without zstd compression!");
6626#endif
6627 }
6628
6629 /* Read cmultiscale data... */
6630 else if (ctl->met_type == 5) {
6631#ifdef CMS
6632 compress_cms(ctl, varname, help, (size_t) met->nx, (size_t) met->ny,
6633 (size_t) met->np, 1, in);
6634#else
6635 ERRMSG("MPTRAC was compiled without cmultiscale compression!");
6636#endif
6637 }
6638
6639 /* Copy data... */
6640#pragma omp parallel for default(shared) collapse(2)
6641 for (int ix = 0; ix < met->nx; ix++)
6642 for (int iy = 0; iy < met->ny; iy++)
6643 for (int ip = 0; ip < met->np; ip++) {
6644 var[ix][iy][ip] = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
6645 if (var[ix][iy][ip] < bound_min)
6646 var[ix][iy][ip] = bound_min;
6647 else if (var[ix][iy][ip] > bound_max)
6648 var[ix][iy][ip] = bound_max;
6649 }
6650
6651 /* Free... */
6652 free(help);
6653}
6654
6655/*****************************************************************************/
6656
6658 const ctl_t *ctl,
6659 const clim_t *clim,
6660 met_t *met) {
6661
6662 /* Check parameters... */
6663 if (ctl->met_cape != 1)
6664 return;
6665
6666 /* Set timer... */
6667 SELECT_TIMER("READ_MET_CAPE", "METPROC", NVTX_READ);
6668 LOG(2, "Calculate CAPE...");
6669
6670 /* Vertical spacing (about 100 m)... */
6671 const double pfac = 1.01439, dz0 = RI / MA / G0 * log(pfac);
6672
6673 /* Loop over columns... */
6674#pragma omp parallel for default(shared) collapse(2)
6675 for (int ix = 0; ix < met->nx; ix++)
6676 for (int iy = 0; iy < met->ny; iy++) {
6677
6678 /* Get potential temperature and water vapor at lowest 50 hPa... */
6679 int n = 0;
6680 double h2o = 0, t, theta = 0;
6681 double pbot = MIN(met->ps[ix][iy], met->p[0]);
6682 double ptop = pbot - 50.;
6683 for (int ip = 0; ip < met->np; ip++) {
6684 if (met->p[ip] <= pbot) {
6685 theta += THETA(met->p[ip], met->t[ix][iy][ip]);
6686 h2o += met->h2o[ix][iy][ip];
6687 n++;
6688 }
6689 if (met->p[ip] < ptop && n > 0)
6690 break;
6691 }
6692 theta /= n;
6693 h2o /= n;
6694
6695 /* Cannot compute anything if water vapor is missing... */
6696 met->plcl[ix][iy] = NAN;
6697 met->plfc[ix][iy] = NAN;
6698 met->pel[ix][iy] = NAN;
6699 met->cape[ix][iy] = NAN;
6700 met->cin[ix][iy] = NAN;
6701 if (h2o <= 0)
6702 continue;
6703
6704 /* Find lifted condensation level (LCL)... */
6705 ptop = P(20.);
6706 pbot = met->ps[ix][iy];
6707 do {
6708 met->plcl[ix][iy] = (float) (0.5 * (pbot + ptop));
6709 t = theta / pow(1000. / met->plcl[ix][iy], 0.286);
6710 if (RH(met->plcl[ix][iy], t, h2o) > 100.)
6711 ptop = met->plcl[ix][iy];
6712 else
6713 pbot = met->plcl[ix][iy];
6714 } while (pbot - ptop > 0.1);
6715
6716 /* Calculate CIN up to LCL... */
6718 double dcape, dz, h2o_env, t_env;
6719 double p = met->ps[ix][iy];
6720 met->cape[ix][iy] = met->cin[ix][iy] = 0;
6721 do {
6722 dz = dz0 * TVIRT(t, h2o);
6723 p /= pfac;
6724 t = theta / pow(1000. / p, 0.286);
6725 intpol_met_space_3d(met, met->t, p, met->lon[ix], met->lat[iy],
6726 &t_env, ci, cw, 1);
6727 intpol_met_space_3d(met, met->h2o, p, met->lon[ix], met->lat[iy],
6728 &h2o_env, ci, cw, 0);
6729 dcape = 1e3 * G0 * (TVIRT(t, h2o) - TVIRT(t_env, h2o_env)) /
6730 TVIRT(t_env, h2o_env) * dz;
6731 if (dcape < 0)
6732 met->cin[ix][iy] += fabsf((float) dcape);
6733 } while (p > met->plcl[ix][iy]);
6734
6735 /* Calculate level of free convection (LFC), equilibrium level (EL),
6736 and convective available potential energy (CAPE)... */
6737 dcape = 0;
6738 p = met->plcl[ix][iy];
6739 t = theta / pow(1000. / p, 0.286);
6740 ptop = 0.75 * clim_tropo(clim, met->time, met->lat[iy]);
6741 do {
6742 dz = dz0 * TVIRT(t, h2o);
6743 p /= pfac;
6744 t -= lapse_rate(t, h2o) * dz;
6745 double psat = PSAT(t);
6746 h2o = psat / (p - (1. - EPS) * psat);
6747 intpol_met_space_3d(met, met->t, p, met->lon[ix], met->lat[iy],
6748 &t_env, ci, cw, 1);
6749 intpol_met_space_3d(met, met->h2o, p, met->lon[ix], met->lat[iy],
6750 &h2o_env, ci, cw, 0);
6751 double dcape_old = dcape;
6752 dcape = 1e3 * G0 * (TVIRT(t, h2o) - TVIRT(t_env, h2o_env)) /
6753 TVIRT(t_env, h2o_env) * dz;
6754 if (dcape > 0) {
6755 met->cape[ix][iy] += (float) dcape;
6756 if (!isfinite(met->plfc[ix][iy]))
6757 met->plfc[ix][iy] = (float) p;
6758 } else if (dcape_old > 0)
6759 met->pel[ix][iy] = (float) p;
6760 if (dcape < 0 && !isfinite(met->plfc[ix][iy]))
6761 met->cin[ix][iy] += fabsf((float) dcape);
6762 } while (p > ptop);
6763
6764 /* Check results... */
6765 if (!isfinite(met->plfc[ix][iy]))
6766 met->cin[ix][iy] = NAN;
6767 }
6768}
6769
6770/*****************************************************************************/
6771
6773 met_t *met) {
6774
6775 /* Set timer... */
6776 SELECT_TIMER("READ_MET_CLOUD", "METPROC", NVTX_READ);
6777 LOG(2, "Calculate cloud data...");
6778
6779 /* Thresholds for cloud detection... */
6780 const double ccmin = 0.01, cwmin = 1e-6;
6781
6782 /* Loop over columns... */
6783#pragma omp parallel for default(shared) collapse(2)
6784 for (int ix = 0; ix < met->nx; ix++)
6785 for (int iy = 0; iy < met->ny; iy++) {
6786
6787 /* Init... */
6788 met->pct[ix][iy] = NAN;
6789 met->pcb[ix][iy] = NAN;
6790 met->cl[ix][iy] = 0;
6791
6792 /* Loop over pressure levels... */
6793 for (int ip = 0; ip < met->np - 1; ip++) {
6794
6795 /* Check pressure... */
6796 if (met->p[ip] > met->ps[ix][iy] || met->p[ip] < P(20.))
6797 continue;
6798
6799 /* Check ice water and liquid water content... */
6800 if (met->cc[ix][iy][ip] > ccmin
6801 && (met->iwc[ix][iy][ip] > cwmin
6802 || met->rwc[ix][iy][ip] > cwmin
6803 || met->lwc[ix][iy][ip] > cwmin
6804 || met->swc[ix][iy][ip] > cwmin)) {
6805
6806 /* Get cloud top pressure ... */
6807 met->pct[ix][iy]
6808 = (float) (0.5 * (met->p[ip] + (float) met->p[ip + 1]));
6809
6810 /* Get cloud bottom pressure ... */
6811 if (!isfinite(met->pcb[ix][iy]))
6812 met->pcb[ix][iy]
6813 = (float) (0.5 * (met->p[ip] + met->p[MAX(ip - 1, 0)]));
6814 }
6815
6816 /* Get cloud water... */
6817 met->cl[ix][iy] += (float)
6818 (0.5 * (met->lwc[ix][iy][ip] + met->lwc[ix][iy][ip + 1]
6819 + met->rwc[ix][iy][ip] + met->rwc[ix][iy][ip + 1]
6820 + met->iwc[ix][iy][ip] + met->iwc[ix][iy][ip + 1]
6821 + met->swc[ix][iy][ip] + met->swc[ix][iy][ip + 1])
6822 * 100. * (met->p[ip] - met->p[ip + 1]) / G0);
6823 }
6824 }
6825}
6826
6827/*****************************************************************************/
6828
6830 const ctl_t *ctl,
6831 met_t *met) {
6832
6833 met_t *help;
6834
6835 /* Check parameters... */
6836 if (ctl->met_detrend <= 0)
6837 return;
6838
6839 /* Set timer... */
6840 SELECT_TIMER("READ_MET_DETREND", "METPROC", NVTX_READ);
6841 LOG(2, "Detrend meteo data...");
6842
6843 /* Allocate... */
6844 ALLOC(help, met_t, 1);
6845
6846 /* Calculate standard deviation... */
6847 const double sigma = ctl->met_detrend / 2.355;
6848 const double tssq = 2. * SQR(sigma);
6849
6850 /* Calculate box size in latitude... */
6851 int sy = (int) (3. * DY2DEG(sigma) / fabs(met->lat[1] - met->lat[0]));
6852 sy = MIN(MAX(1, sy), met->ny / 2);
6853
6854 /* Calculate background... */
6855#pragma omp parallel for default(shared) collapse(2)
6856 for (int ix = 0; ix < met->nx; ix++) {
6857 for (int iy = 0; iy < met->ny; iy++) {
6858
6859 /* Calculate Cartesian coordinates... */
6860 double x0[3];
6861 geo2cart(0.0, met->lon[ix], met->lat[iy], x0);
6862
6863 /* Calculate box size in longitude... */
6864 int sx =
6865 (int) (3. * DX2DEG(sigma, met->lat[iy]) /
6866 fabs(met->lon[1] - met->lon[0]));
6867 sx = MIN(MAX(1, sx), met->nx / 2);
6868
6869 /* Init... */
6870 float wsum = 0;
6871 for (int ip = 0; ip < met->np; ip++) {
6872 help->t[ix][iy][ip] = 0;
6873 help->u[ix][iy][ip] = 0;
6874 help->v[ix][iy][ip] = 0;
6875 help->w[ix][iy][ip] = 0;
6876 }
6877
6878 /* Loop over neighboring grid points... */
6879 for (int ix2 = ix - sx; ix2 <= ix + sx; ix2++) {
6880 int ix3 = ix2;
6881 if (ix3 < 0)
6882 ix3 += met->nx;
6883 else if (ix3 >= met->nx)
6884 ix3 -= met->nx;
6885 for (int iy2 = MAX(iy - sy, 0);
6886 iy2 <= MIN(iy + sy, met->ny - 1); iy2++) {
6887
6888 /* Calculate Cartesian coordinates... */
6889 double x1[3];
6890 geo2cart(0.0, met->lon[ix3], met->lat[iy2], x1);
6891
6892 /* Calculate weighting factor... */
6893 const float w = (float) exp(-DIST2(x0, x1) / tssq);
6894
6895 /* Add data... */
6896 wsum += w;
6897 for (int ip = 0; ip < met->np; ip++) {
6898 help->t[ix][iy][ip] += w * met->t[ix3][iy2][ip];
6899 help->u[ix][iy][ip] += w * met->u[ix3][iy2][ip];
6900 help->v[ix][iy][ip] += w * met->v[ix3][iy2][ip];
6901 help->w[ix][iy][ip] += w * met->w[ix3][iy2][ip];
6902 }
6903 }
6904 }
6905
6906 /* Normalize... */
6907 for (int ip = 0; ip < met->np; ip++) {
6908 help->t[ix][iy][ip] /= wsum;
6909 help->u[ix][iy][ip] /= wsum;
6910 help->v[ix][iy][ip] /= wsum;
6911 help->w[ix][iy][ip] /= wsum;
6912 }
6913 }
6914 }
6915
6916 /* Subtract background... */
6917#pragma omp parallel for default(shared) collapse(3)
6918 for (int ix = 0; ix < met->nx; ix++)
6919 for (int iy = 0; iy < met->ny; iy++)
6920 for (int ip = 0; ip < met->np; ip++) {
6921 met->t[ix][iy][ip] -= help->t[ix][iy][ip];
6922 met->u[ix][iy][ip] -= help->u[ix][iy][ip];
6923 met->v[ix][iy][ip] -= help->v[ix][iy][ip];
6924 met->w[ix][iy][ip] -= help->w[ix][iy][ip];
6925 }
6926
6927 /* Free... */
6928 free(help);
6929}
6930
6931/*****************************************************************************/
6932
6934 met_t *met) {
6935
6936 /* Set timer... */
6937 SELECT_TIMER("READ_MET_EXTRAPOLATE", "METPROC", NVTX_READ);
6938 LOG(2, "Extrapolate meteo data...");
6939
6940 /* Loop over columns... */
6941#pragma omp parallel for default(shared) collapse(2)
6942 for (int ix = 0; ix < met->nx; ix++)
6943 for (int iy = 0; iy < met->ny; iy++) {
6944
6945 /* Find lowest valid data point... */
6946 int ip0;
6947 for (ip0 = met->np - 1; ip0 >= 0; ip0--)
6948 if (!isfinite(met->t[ix][iy][ip0])
6949 || !isfinite(met->u[ix][iy][ip0])
6950 || !isfinite(met->v[ix][iy][ip0])
6951 || !isfinite(met->w[ix][iy][ip0]))
6952 break;
6953
6954 /* Extrapolate... */
6955 for (int ip = ip0; ip >= 0; ip--) {
6956 met->t[ix][iy][ip] = met->t[ix][iy][ip + 1];
6957 met->u[ix][iy][ip] = met->u[ix][iy][ip + 1];
6958 met->v[ix][iy][ip] = met->v[ix][iy][ip + 1];
6959 met->w[ix][iy][ip] = met->w[ix][iy][ip + 1];
6960 met->h2o[ix][iy][ip] = met->h2o[ix][iy][ip + 1];
6961 met->o3[ix][iy][ip] = met->o3[ix][iy][ip + 1];
6962 met->lwc[ix][iy][ip] = met->lwc[ix][iy][ip + 1];
6963 met->rwc[ix][iy][ip] = met->rwc[ix][iy][ip + 1];
6964 met->iwc[ix][iy][ip] = met->iwc[ix][iy][ip + 1];
6965 met->swc[ix][iy][ip] = met->swc[ix][iy][ip + 1];
6966 met->cc[ix][iy][ip] = met->cc[ix][iy][ip + 1];
6967 }
6968 }
6969}
6970
6971/*****************************************************************************/
6972
6974 const ctl_t *ctl,
6975 met_t *met) {
6976
6977 float *help;
6978
6979 double logp[EP];
6980
6981 int dx = ctl->met_geopot_sx, dy = ctl->met_geopot_sy;
6982
6983 /* Set timer... */
6984 SELECT_TIMER("READ_MET_GEOPOT", "METPROC", NVTX_READ);
6985 LOG(2, "Calculate geopotential heights...");
6986
6987 /* Allocate... */
6988 ALLOC(help, float,
6989 EX * EY * EP);
6990
6991 /* Calculate log pressure... */
6992#pragma omp parallel for default(shared)
6993 for (int ip = 0; ip < met->np; ip++)
6994 logp[ip] = log(met->p[ip]);
6995
6996 /* Apply hydrostatic equation to calculate geopotential heights... */
6997#pragma omp parallel for default(shared) collapse(2)
6998 for (int ix = 0; ix < met->nx; ix++)
6999 for (int iy = 0; iy < met->ny; iy++) {
7000
7001 /* Get surface height and pressure... */
7002 const double zs = met->zs[ix][iy];
7003 const double lnps = log(met->ps[ix][iy]);
7004
7005 /* Get temperature and water vapor at the surface... */
7006 const int ip0 = locate_irr(met->p, met->np, met->ps[ix][iy]);
7007 const double ts = LIN(met->p[ip0], met->t[ix][iy][ip0], met->p[ip0 + 1],
7008 met->t[ix][iy][ip0 + 1], met->ps[ix][iy]);
7009 const double h2os =
7010 LIN(met->p[ip0], met->h2o[ix][iy][ip0], met->p[ip0 + 1],
7011 met->h2o[ix][iy][ip0 + 1], met->ps[ix][iy]);
7012
7013 /* Upper part of profile... */
7014 met->z[ix][iy][ip0 + 1]
7015 = (float) (zs +
7016 ZDIFF(lnps, ts, h2os, logp[ip0 + 1],
7017 met->t[ix][iy][ip0 + 1], met->h2o[ix][iy][ip0 + 1]));
7018 for (int ip = ip0 + 2; ip < met->np; ip++)
7019 met->z[ix][iy][ip]
7020 = (float) (met->z[ix][iy][ip - 1] +
7021 ZDIFF(logp[ip - 1], met->t[ix][iy][ip - 1],
7022 met->h2o[ix][iy][ip - 1], logp[ip],
7023 met->t[ix][iy][ip], met->h2o[ix][iy][ip]));
7024
7025 /* Lower part of profile... */
7026 met->z[ix][iy][ip0]
7027 = (float) (zs +
7028 ZDIFF(lnps, ts, h2os, logp[ip0],
7029 met->t[ix][iy][ip0], met->h2o[ix][iy][ip0]));
7030 for (int ip = ip0 - 1; ip >= 0; ip--)
7031 met->z[ix][iy][ip]
7032 = (float) (met->z[ix][iy][ip + 1] +
7033 ZDIFF(logp[ip + 1], met->t[ix][iy][ip + 1],
7034 met->h2o[ix][iy][ip + 1], logp[ip],
7035 met->t[ix][iy][ip], met->h2o[ix][iy][ip]));
7036 }
7037
7038 /* Check control parameters... */
7039 if (dx == 0 || dy == 0)
7040 return;
7041
7042 /* Default smoothing parameters... */
7043 if (dx < 0 || dy < 0) {
7044 if (fabs(met->lon[1] - met->lon[0]) < 0.5) {
7045 dx = 3;
7046 dy = 2;
7047 } else {
7048 dx = 6;
7049 dy = 4;
7050 }
7051 }
7052
7053 /* Calculate weights for smoothing... */
7054 float ws[dx + 1][dy + 1];
7055#pragma omp parallel for default(shared) collapse(2)
7056 for (int ix = 0; ix <= dx; ix++)
7057 for (int iy = 0; iy < dy; iy++)
7058 ws[ix][iy] = (1.0f - (float) ix / (float) dx)
7059 * (1.0f - (float) iy / (float) dy);
7060
7061 /* Copy data... */
7062#pragma omp parallel for default(shared) collapse(3)
7063 for (int ix = 0; ix < met->nx; ix++)
7064 for (int iy = 0; iy < met->ny; iy++)
7065 for (int ip = 0; ip < met->np; ip++)
7066 help[ARRAY_3D(ip, ix, met->nx, iy, met->ny)] = met->z[ix][iy][ip];
7067
7068 /* Horizontal smoothing... */
7069#pragma omp parallel for default(shared) collapse(3)
7070 for (int ip = 0; ip < met->np; ip++)
7071 for (int ix = 0; ix < met->nx; ix++)
7072 for (int iy = 0; iy < met->ny; iy++) {
7073 float res = 0, wsum = 0;
7074 int iy0 = MAX(iy - dy + 1, 0);
7075 int iy1 = MIN(iy + dy - 1, met->ny - 1);
7076 for (int ix2 = ix - dx + 1; ix2 <= ix + dx - 1; ++ix2) {
7077 int ix3 = ix2;
7078 if (ix3 < 0)
7079 ix3 += met->nx;
7080 else if (ix3 >= met->nx)
7081 ix3 -= met->nx;
7082 for (int iy2 = iy0; iy2 <= iy1; ++iy2)
7083 if (isfinite(help[ARRAY_3D(ip, ix3, met->nx, iy2, met->ny)])) {
7084 float w = ws[abs(ix - ix2)][abs(iy - iy2)];
7085 res += w * help[ARRAY_3D(ip, ix3, met->nx, iy2, met->ny)];
7086 wsum += w;
7087 }
7088 }
7089 if (wsum > 0)
7090 met->z[ix][iy][ip] = res / wsum;
7091 else
7092 met->z[ix][iy][ip] = NAN;
7093 }
7094
7095 /* Free... */
7096 free(help);
7097}
7098
7099/*****************************************************************************/
7100
7102 const char *filename,
7103 const int ncid,
7104 const ctl_t *ctl,
7105 met_t *met) {
7106
7107 char levname[LEN], tstr[10];
7108
7109 double rtime = 0, r, r2;
7110
7111 int varid, year2, mon2, day2, hour2, min2, sec2,
7112 year, mon, day, hour, min, sec;
7113
7114 size_t np;
7115
7116 /* Set timer... */
7117 SELECT_TIMER("READ_MET_GRID", "INPUT", NVTX_READ);
7118 LOG(2, "Read meteo grid information...");
7119
7120 /* MPTRAC meteo files... */
7121 if (ctl->met_clams == 0) {
7122
7123 /* Get time from filename... */
7124 met->time = time_from_filename(filename, 16);
7125
7126 /* Check time information from data file... */
7127 jsec2time(met->time, &year, &mon, &day, &hour, &min, &sec, &r);
7128 if (nc_inq_varid(ncid, "time", &varid) == NC_NOERR) {
7129 NC(nc_get_var_double(ncid, varid, &rtime));
7130 if (fabs(year * 10000. + mon * 100. + day + hour / 24. - rtime) > 1.0)
7131 WARN("Time information in meteo file does not match filename!");
7132 } else
7133 WARN("Time information in meteo file is missing!");
7134 }
7135
7136 /* CLaMS meteo files... */
7137 else {
7138
7139 /* Read time from file... */
7140 NC_GET_DOUBLE("time", &rtime, 0);
7141
7142 /* Get time from filename (considering the century)... */
7143 if (rtime < 0)
7144 sprintf(tstr, "19%.2s", &filename[strlen(filename) - 11]);
7145 else
7146 sprintf(tstr, "20%.2s", &filename[strlen(filename) - 11]);
7147 year = atoi(tstr);
7148 sprintf(tstr, "%.2s", &filename[strlen(filename) - 9]);
7149 mon = atoi(tstr);
7150 sprintf(tstr, "%.2s", &filename[strlen(filename) - 7]);
7151 day = atoi(tstr);
7152 sprintf(tstr, "%.2s", &filename[strlen(filename) - 5]);
7153 hour = atoi(tstr);
7154 time2jsec(year, mon, day, hour, 0, 0, 0, &met->time);
7155 }
7156
7157 /* Check time... */
7158 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
7159 || day < 1 || day > 31 || hour < 0 || hour > 23)
7160 ERRMSG("Cannot read time from filename!");
7161 jsec2time(met->time, &year2, &mon2, &day2, &hour2, &min2, &sec2, &r2);
7162 LOG(2, "Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
7163 met->time, year2, mon2, day2, hour2, min2);
7164
7165 /* Get grid dimensions... */
7166 NC_INQ_DIM("lon", &met->nx, 2, EX);
7167 LOG(2, "Number of longitudes: %d", met->nx);
7168
7169 NC_INQ_DIM("lat", &met->ny, 2, EY);
7170 LOG(2, "Number of latitudes: %d", met->ny);
7171
7172 int dimid2;
7173 sprintf(levname, "lev");
7174 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR)
7175 sprintf(levname, "plev");
7176 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR)
7177 sprintf(levname, "hybrid");
7178
7179 NC_INQ_DIM(levname, &met->np, 1, EP);
7180 if (met->np == 1) {
7181 sprintf(levname, "lev_2");
7182 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR) {
7183 sprintf(levname, "plev");
7184 NC(nc_inq_dimid(ncid, levname, &dimid2));
7185 }
7186 NC(nc_inq_dimlen(ncid, dimid2, &np));
7187 met->np = (int) np;
7188 }
7189 LOG(2, "Number of levels: %d", met->np);
7190 if (met->np < 2 || met->np > EP)
7191 ERRMSG("Number of levels out of range!");
7192
7193 /* Read longitudes and latitudes... */
7194 NC_GET_DOUBLE("lon", met->lon, 1);
7195 LOG(2, "Longitudes: %g, %g ... %g deg",
7196 met->lon[0], met->lon[1], met->lon[met->nx - 1]);
7197 NC_GET_DOUBLE("lat", met->lat, 1);
7198 LOG(2, "Latitudes: %g, %g ... %g deg",
7199 met->lat[0], met->lat[1], met->lat[met->ny - 1]);
7200
7201 /* Read pressure levels... */
7202 if (ctl->met_np <= 0) {
7203 NC_GET_DOUBLE(levname, met->p, 1);
7204 for (int ip = 0; ip < met->np; ip++)
7205 met->p[ip] /= 100.;
7206 LOG(2, "Altitude levels: %g, %g ... %g km",
7207 Z(met->p[0]), Z(met->p[1]), Z(met->p[met->np - 1]));
7208 LOG(2, "Pressure levels: %g, %g ... %g hPa",
7209 met->p[0], met->p[1], met->p[met->np - 1]);
7210 }
7211
7212 /* Read hybrid levels... */
7213 if (strcasecmp(levname, "hybrid") == 0)
7214 NC_GET_DOUBLE("hybrid", met->hybrid, 1);
7215}
7216
7217/*****************************************************************************/
7218
7220 const int ncid,
7221 const ctl_t *ctl,
7222 met_t *met) {
7223
7224 /* Set timer... */
7225 SELECT_TIMER("READ_MET_LEVELS", "INPUT", NVTX_READ);
7226 LOG(2, "Read level data...");
7227
7228 /* Read temperature... */
7229 if (!read_met_nc_3d(ncid, "t", "T", "temp", "TEMP", ctl, met, met->t, 1.0))
7230 ERRMSG("Cannot read temperature!");
7231
7232 /* Read horizontal wind and vertical velocity... */
7233 if (!read_met_nc_3d(ncid, "u", "U", NULL, NULL, ctl, met, met->u, 1.0))
7234 ERRMSG("Cannot read zonal wind!");
7235 if (!read_met_nc_3d(ncid, "v", "V", NULL, NULL, ctl, met, met->v, 1.0))
7236 ERRMSG("Cannot read meridional wind!");
7237 if (!read_met_nc_3d
7238 (ncid, "w", "W", "omega", "OMEGA", ctl, met, met->w, 0.01f))
7239 WARN("Cannot read vertical velocity!");
7240
7241 /* Read water vapor... */
7242 if (!ctl->met_relhum) {
7243 if (!read_met_nc_3d
7244 (ncid, "q", "Q", "sh", "SH", ctl, met, met->h2o, (float) (MA / MH2O)))
7245 WARN("Cannot read specific humidity!");
7246 } else {
7247 if (!read_met_nc_3d
7248 (ncid, "rh", "RH", NULL, NULL, ctl, met, met->h2o, 0.01f))
7249 WARN("Cannot read relative humidity!");
7250#pragma omp parallel for default(shared) collapse(2)
7251 for (int ix = 0; ix < met->nx; ix++)
7252 for (int iy = 0; iy < met->ny; iy++)
7253 for (int ip = 0; ip < met->np; ip++) {
7254 double pw = met->h2o[ix][iy][ip] * PSAT(met->t[ix][iy][ip]);
7255 met->h2o[ix][iy][ip] =
7256 (float) (pw / (met->p[ip] - (1.0 - EPS) * pw));
7257 }
7258 }
7259
7260 /* Read ozone... */
7261 if (!read_met_nc_3d
7262 (ncid, "o3", "O3", NULL, NULL, ctl, met, met->o3, (float) (MA / MO3)))
7263 WARN("Cannot read ozone data!");
7264
7265 /* Read cloud data... */
7266 if (!read_met_nc_3d
7267 (ncid, "clwc", "CLWC", NULL, NULL, ctl, met, met->lwc, 1.0))
7268 WARN("Cannot read cloud liquid water content!");
7269 if (!read_met_nc_3d
7270 (ncid, "crwc", "CRWC", NULL, NULL, ctl, met, met->rwc, 1.0))
7271 WARN("Cannot read cloud rain water content!");
7272 if (!read_met_nc_3d
7273 (ncid, "ciwc", "CIWC", NULL, NULL, ctl, met, met->iwc, 1.0))
7274 WARN("Cannot read cloud ice water content!");
7275 if (!read_met_nc_3d
7276 (ncid, "cswc", "CSWC", NULL, NULL, ctl, met, met->swc, 1.0))
7277 WARN("Cannot read cloud snow water content!");
7278 if (!read_met_nc_3d(ncid, "cc", "CC", NULL, NULL, ctl, met, met->cc, 1.0))
7279 WARN("Cannot read cloud cover!");
7280
7281 /* Read zeta and zeta_dot... */
7282 if (!read_met_nc_3d
7283 (ncid, "ZETA", "zeta", NULL, NULL, ctl, met, met->zetal, 1.0))
7284 WARN("Cannot read ZETA!");
7285 if (!read_met_nc_3d
7286 (ncid, "ZETA_DOT_TOT", "ZETA_DOT_clr", "zeta_dot_clr",
7287 NULL, ctl, met, met->zeta_dotl, 0.00001157407f))
7288 WARN("Cannot read ZETA_DOT!");
7289
7290 /* Store velocities on model levels... */
7291 if (ctl->met_vert_coord != 0) {
7292 for (int ix = 0; ix < met->nx; ix++)
7293 for (int iy = 0; iy < met->ny; iy++)
7294 for (int ip = 0; ip < met->np; ip++) {
7295 met->ul[ix][iy][ip] = met->u[ix][iy][ip];
7296 met->vl[ix][iy][ip] = met->v[ix][iy][ip];
7297 met->wl[ix][iy][ip] = met->w[ix][iy][ip];
7298 }
7299
7300 /* Save number of model levels... */
7301 met->npl = met->np;
7302 }
7303
7304 /* Read pressure on model levels... */
7305 if (ctl->met_np > 0 || ctl->met_vert_coord != 0) {
7306
7307 /* Read 3-D pressure field... */
7308 if (ctl->met_vert_coord == 1) {
7309 if (!read_met_nc_3d
7310 (ncid, "pl", "PL", "pressure", "PRESSURE", ctl, met, met->pl,
7311 0.01f))
7312 if (!read_met_nc_3d
7313 (ncid, "press", "PRESS", NULL, NULL, ctl, met, met->pl, 1.0))
7314 ERRMSG("Cannot read pressure on model levels!");
7315 }
7316
7317 /* Calculate pressure from a and b coefficients... */
7318 else {
7319
7320 /* Read a and b coefficients... */
7321 int varid;
7322 double hyam[EP], hybm[EP];
7323 NC_GET_DOUBLE("hyam", hyam, 1);
7324 NC_GET_DOUBLE("hybm", hybm, 1);
7325
7326 /* Calculate pressure... */
7327 for (int ix = 0; ix < met->nx; ix++)
7328 for (int iy = 0; iy < met->ny; iy++)
7329 for (int ip = 0; ip < met->np; ip++)
7330 met->pl[ix][iy][ip] =
7331 (float) (hyam[ip] / 100. + hybm[ip] * met->ps[ix][iy]);
7332 }
7333
7334 /* Check ordering of pressure levels... */
7335 for (int ix = 0; ix < met->nx; ix++)
7336 for (int iy = 0; iy < met->ny; iy++)
7337 for (int ip = 1; ip < met->np; ip++)
7338 if ((met->pl[ix][iy][0] > met->pl[ix][iy][1]
7339 && met->pl[ix][iy][ip - 1] <= met->pl[ix][iy][ip])
7340 || (met->pl[ix][iy][0] < met->pl[ix][iy][1]
7341 && met->pl[ix][iy][ip - 1] >= met->pl[ix][iy][ip]))
7342 ERRMSG("Pressure profiles are not monotonic!");
7343 }
7344
7345 /* Interpolate from model levels to pressure levels... */
7346 if (ctl->met_np > 0) {
7347
7348 /* Interpolate variables... */
7349 read_met_ml2pl(ctl, met, met->t, "T");
7350 read_met_ml2pl(ctl, met, met->u, "U");
7351 read_met_ml2pl(ctl, met, met->v, "V");
7352 read_met_ml2pl(ctl, met, met->w, "W");
7353 read_met_ml2pl(ctl, met, met->h2o, "H2O");
7354 read_met_ml2pl(ctl, met, met->o3, "O3");
7355 read_met_ml2pl(ctl, met, met->lwc, "LWC");
7356 read_met_ml2pl(ctl, met, met->rwc, "RWC");
7357 read_met_ml2pl(ctl, met, met->iwc, "IWC");
7358 read_met_ml2pl(ctl, met, met->swc, "SWC");
7359 read_met_ml2pl(ctl, met, met->cc, "CC");
7360
7361 /* Set new pressure levels... */
7362 met->np = ctl->met_np;
7363 for (int ip = 0; ip < met->np; ip++)
7364 met->p[ip] = ctl->met_p[ip];
7365 }
7366
7367 /* Check ordering of pressure levels... */
7368 for (int ip = 1; ip < met->np; ip++)
7369 if (met->p[ip - 1] < met->p[ip])
7370 ERRMSG("Pressure levels must be descending!");
7371}
7372
7373/*****************************************************************************/
7374
7376 const ctl_t *ctl,
7377 const met_t *met,
7378 float var[EX][EY][EP],
7379 const char *varname) {
7380
7381 double aux[EP], p[EP];
7382
7383 /* Set timer... */
7384 SELECT_TIMER("READ_MET_ML2PL", "METPROC", NVTX_READ);
7385 LOG(2, "Interpolate meteo data to pressure levels: %s", varname);
7386
7387 /* Loop over columns... */
7388#pragma omp parallel for default(shared) private(aux,p) collapse(2)
7389 for (int ix = 0; ix < met->nx; ix++)
7390 for (int iy = 0; iy < met->ny; iy++) {
7391
7392 /* Copy pressure profile... */
7393 for (int ip = 0; ip < met->np; ip++)
7394 p[ip] = met->pl[ix][iy][ip];
7395
7396 /* Interpolate... */
7397 for (int ip = 0; ip < ctl->met_np; ip++) {
7398 double pt = ctl->met_p[ip];
7399 if ((pt > p[0] && p[0] > p[1]) || (pt < p[0] && p[0] < p[1]))
7400 pt = p[0];
7401 else if ((pt > p[met->np - 1] && p[1] > p[0])
7402 || (pt < p[met->np - 1] && p[1] < p[0]))
7403 pt = p[met->np - 1];
7404 int ip2 = locate_irr(p, met->np, pt);
7405 aux[ip] = LIN(p[ip2], var[ix][iy][ip2],
7406 p[ip2 + 1], var[ix][iy][ip2 + 1], pt);
7407 }
7408
7409 /* Copy data... */
7410 for (int ip = 0; ip < ctl->met_np; ip++)
7411 var[ix][iy][ip] = (float) aux[ip];
7412 }
7413}
7414
7415/*****************************************************************************/
7416
7418 met_t *met) {
7419
7420 /* Set timer... */
7421 SELECT_TIMER("READ_MET_MONOTONIZE", "METPROC", NVTX_READ);
7422 LOG(2, "Make zeta profiles monotone...");
7423
7424 /* Create monotone zeta profiles... */
7425#pragma omp parallel for default(shared) collapse(2)
7426 for (int i = 0; i < met->nx; i++)
7427 for (int j = 0; j < met->ny; j++) {
7428 int k = 1;
7429
7430 while (k < met->npl) { /* Check if there is an inversion at level k... */
7431 if ((met->zetal[i][j][k - 1] >= met->zetal[i][j][k])) {
7432 /* Find the upper level k+l over the inversion... */
7433 int l = 0;
7434 do {
7435 l++;
7436 }
7437 while ((met->zetal[i][j][k - 1] >=
7438 met->zetal[i][j][k + l]) & (k + l < met->npl));
7439
7440 /* Interpolate linear between the top and bottom
7441 of the inversion... */
7442 float s =
7443 (float) (met->zetal[i][j][k + l] - met->zetal[i][j][k - 1])
7444 / (float) (met->hybrid[k + l] - met->hybrid[k - 1]);
7445
7446 for (int m = k; m < k + l; m++) {
7447 float d = (float) (met->hybrid[m] - met->hybrid[k - 1]);
7448 met->zetal[i][j][m] = s * d + met->zetal[i][j][k - 1];
7449 }
7450
7451 /* Search for more inversions above the last inversion ... */
7452 k = k + l;
7453 } else {
7454 k++;
7455 }
7456 }
7457 }
7458
7459 /* Create monotone pressure profiles... */
7460#pragma omp parallel for default(shared) collapse(2)
7461 for (int i = 0; i < met->nx; i++)
7462 for (int j = 0; j < met->ny; j++) {
7463 int k = 1;
7464
7465 while (k < met->npl) { /* Check if there is an inversion at level k... */
7466 if ((met->pl[i][j][k - 1] <= met->pl[i][j][k])) {
7467
7468 /* Find the upper level k+l over the inversion... */
7469 int l = 0;
7470 do {
7471 l++;
7472 }
7473 while ((met->pl[i][j][k - 1] <= met->pl[i][j][k + l]) & (k + l <
7474 met->npl));
7475
7476 /* Interpolate linear between the top and bottom
7477 of the inversion... */
7478 float s = (float) (met->pl[i][j][k + l] - met->pl[i][j][k - 1])
7479 / (float) (met->hybrid[k + l] - met->hybrid[k - 1]);
7480
7481 for (int m = k; m < k + l; m++) {
7482 float d = (float) (met->hybrid[m] - met->hybrid[k - 1]);
7483 met->pl[i][j][m] = s * d + met->pl[i][j][k - 1];
7484 }
7485
7486 /* Search for more inversions above the last inversion ... */
7487 k += l;
7488 } else {
7489 k++;
7490 }
7491 }
7492 }
7493}
7494
7495/*****************************************************************************/
7496
7498 const char *filename,
7499 const ctl_t *ctl,
7500 const clim_t *clim,
7501 met_t *met) {
7502
7503 int ncid;
7504
7505 /* Open netCDF file... */
7506 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
7507 WARN("Cannot open file!");
7508 return 0;
7509 }
7510
7511 /* Read coordinates of meteo data... */
7512 read_met_grid(filename, ncid, ctl, met);
7513
7514 /* Read surface data... */
7515 read_met_surface(ncid, ctl, met);
7516
7517 /* Read meteo data on vertical levels... */
7518 read_met_levels(ncid, ctl, met);
7519
7520 /* Extrapolate data for lower boundary... */
7522
7523 /* Fix polar winds... */
7525
7526 /* Create periodic boundary conditions... */
7527 read_met_periodic(met);
7528
7529 /* Downsampling... */
7530 read_met_sample(ctl, met);
7531
7532 /* Calculate geopotential heights... */
7533 read_met_geopot(ctl, met);
7534
7535 /* Calculate potential vorticity... */
7536 read_met_pv(met);
7537
7538 /* Calculate boundary layer data... */
7539 read_met_pbl(ctl, met);
7540
7541 /* Calculate tropopause data... */
7542 read_met_tropo(ctl, clim, met);
7543
7544 /* Calculate cloud properties... */
7545 read_met_cloud(met);
7546
7547 /* Calculate convective available potential energy... */
7548 read_met_cape(ctl, clim, met);
7549
7550 /* Calculate total column ozone... */
7551 read_met_ozone(met);
7552
7553 /* Detrending... */
7554 read_met_detrend(ctl, met);
7555
7556 /* Check meteo data and smooth zeta profiles ... */
7557 if (ctl->advect_vert_coord == 1)
7559
7560 /* Close file... */
7561 NC(nc_close(ncid));
7562
7563 /* Return success... */
7564 return 1;
7565}
7566
7567/*****************************************************************************/
7568
7570 const int ncid,
7571 const char *varname,
7572 const char *varname2,
7573 const char *varname3,
7574 const char *varname4,
7575 const char *varname5,
7576 const char *varname6,
7577 const ctl_t *ctl,
7578 const met_t *met,
7579 float dest[EX][EY],
7580 const float scl,
7581 const int init) {
7582
7583 char varsel[LEN];
7584
7585 float offset, scalfac;
7586
7587 int varid;
7588
7589 /* Check if variable exists... */
7590 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
7591 sprintf(varsel, "%s", varname);
7592 else if (varname2 != NULL
7593 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
7594 sprintf(varsel, "%s", varname2);
7595 else if (varname3 != NULL
7596 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
7597 sprintf(varsel, "%s", varname3);
7598 else if (varname4 != NULL
7599 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
7600 sprintf(varsel, "%s", varname4);
7601 else if (varname5 != NULL
7602 && nc_inq_varid(ncid, varname5, &varid) == NC_NOERR)
7603 sprintf(varsel, "%s", varname5);
7604 else if (varname6 != NULL
7605 && nc_inq_varid(ncid, varname6, &varid) == NC_NOERR)
7606 sprintf(varsel, "%s", varname6);
7607 else
7608 return 0;
7609
7610 /* Read packed data... */
7611 if (ctl->met_nc_scale
7612 && nc_get_att_float(ncid, varid, "add_offset", &offset) == NC_NOERR
7613 && nc_get_att_float(ncid, varid, "scale_factor",
7614 &scalfac) == NC_NOERR) {
7615
7616 /* Allocate... */
7617 short *help;
7618 ALLOC(help, short,
7619 EX * EY * EP);
7620
7621 /* Read fill value and missing value... */
7622 short fillval, missval;
7623 if (nc_get_att_short(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
7624 fillval = 0;
7625 if (nc_get_att_short(ncid, varid, "missing_value", &missval) != NC_NOERR)
7626 missval = 0;
7627
7628 /* Write info... */
7629 LOG(2, "Read 2-D variable: %s"
7630 " (FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
7631 varsel, fillval, missval, scalfac, offset);
7632
7633 /* Read data... */
7634 NC(nc_get_var_short(ncid, varid, help));
7635
7636 /* Check meteo data layout... */
7637 if (ctl->met_convention != 0)
7638 ERRMSG("Meteo data layout not implemented for packed netCDF files!");
7639
7640 /* Copy and check data... */
7641#pragma omp parallel for default(shared) num_threads(12)
7642 for (int ix = 0; ix < met->nx; ix++)
7643 for (int iy = 0; iy < met->ny; iy++) {
7644 if (init)
7645 dest[ix][iy] = 0;
7646 const short aux = help[ARRAY_2D(iy, ix, met->nx)];
7647 if ((fillval == 0 || aux != fillval)
7648 && (missval == 0 || aux != missval)
7649 && fabsf(aux * scalfac + offset) < 1e14f)
7650 dest[ix][iy] += scl * (aux * scalfac + offset);
7651 else
7652 dest[ix][iy] = NAN;
7653 }
7654
7655 /* Free... */
7656 free(help);
7657 }
7658
7659 /* Unpacked data... */
7660 else {
7661
7662 /* Allocate... */
7663 float *help;
7664 ALLOC(help, float,
7665 EX * EY);
7666
7667 /* Read fill value and missing value... */
7668 float fillval, missval;
7669 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
7670 fillval = 0;
7671 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
7672 missval = 0;
7673
7674 /* Write info... */
7675 LOG(2, "Read 2-D variable: %s (FILL = %g, MISS = %g)",
7676 varsel, fillval, missval);
7677
7678 /* Read data... */
7679 NC(nc_get_var_float(ncid, varid, help));
7680
7681 /* Check meteo data layout... */
7682 if (ctl->met_convention == 0) {
7683
7684 /* Copy and check data (ordering: lat, lon)... */
7685#pragma omp parallel for default(shared) num_threads(12)
7686 for (int ix = 0; ix < met->nx; ix++)
7687 for (int iy = 0; iy < met->ny; iy++) {
7688 if (init)
7689 dest[ix][iy] = 0;
7690 const float aux = help[ARRAY_2D(iy, ix, met->nx)];
7691 if ((fillval == 0 || aux != fillval)
7692 && (missval == 0 || aux != missval)
7693 && fabsf(aux) < 1e14f)
7694 dest[ix][iy] += scl * aux;
7695 else
7696 dest[ix][iy] = NAN;
7697 }
7698
7699 } else {
7700
7701 /* Copy and check data (ordering: lon, lat)... */
7702#pragma omp parallel for default(shared) num_threads(12)
7703 for (int iy = 0; iy < met->ny; iy++)
7704 for (int ix = 0; ix < met->nx; ix++) {
7705 if (init)
7706 dest[ix][iy] = 0;
7707 const float aux = help[ARRAY_2D(ix, iy, met->ny)];
7708 if ((fillval == 0 || aux != fillval)
7709 && (missval == 0 || aux != missval)
7710 && fabsf(aux) < 1e14f)
7711 dest[ix][iy] += scl * aux;
7712 else
7713 dest[ix][iy] = NAN;
7714 }
7715 }
7716
7717 /* Free... */
7718 free(help);
7719 }
7720
7721 /* Return... */
7722 return 1;
7723}
7724
7725/*****************************************************************************/
7726
7728 const int ncid,
7729 const char *varname,
7730 const char *varname2,
7731 const char *varname3,
7732 const char *varname4,
7733 const ctl_t *ctl,
7734 const met_t *met,
7735 float dest[EX][EY][EP],
7736 const float scl) {
7737
7738 char varsel[LEN];
7739
7740 float offset, scalfac;
7741
7742 int varid;
7743
7744 /* Check if variable exists... */
7745 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
7746 sprintf(varsel, "%s", varname);
7747 else if (varname2 != NULL
7748 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
7749 sprintf(varsel, "%s", varname2);
7750 else if (varname3 != NULL
7751 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
7752 sprintf(varsel, "%s", varname3);
7753 else if (varname4 != NULL
7754 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
7755 sprintf(varsel, "%s", varname4);
7756 else
7757 return 0;
7758
7759 /* Read packed data... */
7760 if (ctl->met_nc_scale
7761 && nc_get_att_float(ncid, varid, "add_offset", &offset) == NC_NOERR
7762 && nc_get_att_float(ncid, varid, "scale_factor",
7763 &scalfac) == NC_NOERR) {
7764
7765 /* Allocate... */
7766 short *help;
7767 ALLOC(help, short,
7768 EX * EY * EP);
7769
7770 /* Read fill value and missing value... */
7771 short fillval, missval;
7772 if (nc_get_att_short(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
7773 fillval = 0;
7774 if (nc_get_att_short(ncid, varid, "missing_value", &missval) != NC_NOERR)
7775 missval = 0;
7776
7777 /* Write info... */
7778 LOG(2, "Read 3-D variable: %s "
7779 "(FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
7780 varsel, fillval, missval, scalfac, offset);
7781
7782 /* Read data... */
7783 NC(nc_get_var_short(ncid, varid, help));
7784
7785 /* Check meteo data layout... */
7786 if (ctl->met_convention != 0)
7787 ERRMSG("Meteo data layout not implemented for packed netCDF files!");
7788
7789 /* Copy and check data... */
7790#pragma omp parallel for default(shared) num_threads(12)
7791 for (int ix = 0; ix < met->nx; ix++)
7792 for (int iy = 0; iy < met->ny; iy++)
7793 for (int ip = 0; ip < met->np; ip++) {
7794 const short aux = help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)];
7795 if ((fillval == 0 || aux != fillval)
7796 && (missval == 0 || aux != missval)
7797 && fabsf(aux * scalfac + offset) < 1e14f)
7798 dest[ix][iy][ip] = scl * (aux * scalfac + offset);
7799 else
7800 dest[ix][iy][ip] = NAN;
7801 }
7802
7803 /* Free... */
7804 free(help);
7805 }
7806
7807 /* Unpacked data... */
7808 else {
7809
7810 /* Allocate... */
7811 float *help;
7812 ALLOC(help, float,
7813 EX * EY * EP);
7814
7815 /* Read fill value and missing value... */
7816 float fillval, missval;
7817 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
7818 fillval = 0;
7819 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
7820 missval = 0;
7821
7822 /* Write info... */
7823 LOG(2, "Read 3-D variable: %s (FILL = %g, MISS = %g)",
7824 varsel, fillval, missval);
7825
7826 /* Read data... */
7827 NC(nc_get_var_float(ncid, varid, help));
7828
7829 /* Check meteo data layout... */
7830 if (ctl->met_convention == 0) {
7831
7832 /* Copy and check data (ordering: lev, lat, lon)... */
7833#pragma omp parallel for default(shared) num_threads(12)
7834 for (int ix = 0; ix < met->nx; ix++)
7835 for (int iy = 0; iy < met->ny; iy++)
7836 for (int ip = 0; ip < met->np; ip++) {
7837 const float aux = help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)];
7838 if ((fillval == 0 || aux != fillval)
7839 && (missval == 0 || aux != missval)
7840 && fabsf(aux) < 1e14f)
7841 dest[ix][iy][ip] = scl * aux;
7842 else
7843 dest[ix][iy][ip] = NAN;
7844 }
7845
7846 } else {
7847
7848 /* Copy and check data (ordering: lon, lat, lev)... */
7849#pragma omp parallel for default(shared) num_threads(12)
7850 for (int ip = 0; ip < met->np; ip++)
7851 for (int iy = 0; iy < met->ny; iy++)
7852 for (int ix = 0; ix < met->nx; ix++) {
7853 const float aux = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
7854 if ((fillval == 0 || aux != fillval)
7855 && (missval == 0 || aux != missval)
7856 && fabsf(aux) < 1e14f)
7857 dest[ix][iy][ip] = scl * aux;
7858 else
7859 dest[ix][iy][ip] = NAN;
7860 }
7861 }
7862
7863 /* Free... */
7864 free(help);
7865 }
7866
7867 /* Return... */
7868 return 1;
7869}
7870
7871/*****************************************************************************/
7872
7874 const ctl_t *ctl,
7875 met_t *met) {
7876
7877 /* Set timer... */
7878 SELECT_TIMER("READ_MET_PBL", "METPROC", NVTX_READ);
7879 LOG(2, "Calculate planetary boundary layer...");
7880
7881 /* Convert PBL height from meteo file to pressure... */
7882 if (ctl->met_pbl == 1) {
7883
7884 /* Loop over grid points... */
7885#pragma omp parallel for default(shared) collapse(2)
7886 for (int ix = 0; ix < met->nx; ix++)
7887 for (int iy = 0; iy < met->ny; iy++) {
7888
7889 /* Get pressure at top of PBL... */
7890 const float z = met->zs[ix][iy] + met->pbl[ix][iy];
7891 const int ip = locate_irr_float(met->z[ix][iy], met->np, z, 0);
7892 met->pbl[ix][iy] =
7893 (float) (LIN(met->z[ix][iy][ip], met->p[ip],
7894 met->z[ix][iy][ip + 1], met->p[ip + 1], z));
7895 }
7896 }
7897
7898 /* Determine PBL based on Richardson number... */
7899 else if (ctl->met_pbl == 2) {
7900
7901 /* Parameters used to estimate the height of the PBL
7902 (e.g., Vogelezang and Holtslag, 1996; Seidel et al., 2012)... */
7903 const double rib_crit = 0.25, dz = 0.05, umin = 5.0;
7904
7905 /* Loop over grid points... */
7906#pragma omp parallel for default(shared) collapse(2)
7907 for (int ix = 0; ix < met->nx; ix++)
7908 for (int iy = 0; iy < met->ny; iy++) {
7909
7910 /* Set bottom level of PBL... */
7911 const double pbl_bot = met->ps[ix][iy] * exp(-dz / H0);
7912
7913 /* Find lowest level near the bottom... */
7914 int ip;
7915 for (ip = 1; ip < met->np; ip++)
7916 if (met->p[ip] < pbl_bot)
7917 break;
7918
7919 /* Get near surface data... */
7920 const double h2os = LIN(met->p[ip - 1], met->h2o[ix][iy][ip - 1],
7921 met->p[ip], met->h2o[ix][iy][ip], pbl_bot);
7922 const double tvs = THETAVIRT(pbl_bot, met->ts[ix][iy], h2os);
7923
7924 /* Init... */
7925 double rib_old = 0;
7926
7927 /* Loop over levels... */
7928 for (; ip < met->np; ip++) {
7929
7930 /* Get squared horizontal wind speed... */
7931 double vh2 = SQR(met->u[ix][iy][ip] - met->us[ix][iy])
7932 + SQR(met->v[ix][iy][ip] - met->vs[ix][iy]);
7933 vh2 = MAX(vh2, SQR(umin));
7934
7935 /* Calculate bulk Richardson number... */
7936 const double rib =
7937 G0 * 1e3 * (met->z[ix][iy][ip] - met->zs[ix][iy]) / tvs
7938 * (THETAVIRT(met->p[ip], met->t[ix][iy][ip],
7939 met->h2o[ix][iy][ip]) - tvs) / vh2;
7940
7941 /* Check for critical value... */
7942 if (rib >= rib_crit) {
7943 met->pbl[ix][iy] = (float) (LIN(rib_old, met->p[ip - 1],
7944 rib, met->p[ip], rib_crit));
7945 if (met->pbl[ix][iy] > pbl_bot)
7946 met->pbl[ix][iy] = (float) pbl_bot;
7947 break;
7948 }
7949
7950 /* Save Richardson number... */
7951 rib_old = rib;
7952 }
7953 }
7954 }
7955
7956 /* Determine PBL based on potential temperature... */
7957 if (ctl->met_pbl == 3) {
7958
7959 /* Parameters used to estimate the height of the PBL
7960 (following HYSPLIT model)... */
7961 const double dtheta = 2.0, zmin = 0.1;
7962
7963 /* Loop over grid points... */
7964#pragma omp parallel for default(shared) collapse(2)
7965 for (int ix = 0; ix < met->nx; ix++)
7966 for (int iy = 0; iy < met->ny; iy++) {
7967
7968 /* Potential temperature at the surface... */
7969 const double theta0 = THETA(met->ps[ix][iy], met->ts[ix][iy]);
7970
7971 /* Find topmost level where theta exceeds surface value by 2 K... */
7972 int ip;
7973 for (ip = met->np - 2; ip > 0; ip--)
7974 if (met->p[ip] >= 300.)
7975 if (met->p[ip] > met->ps[ix][iy]
7976 || THETA(met->p[ip], met->t[ix][iy][ip]) <= theta0 + dtheta)
7977 break;
7978
7979 /* Interpolate... */
7980 met->pbl[ix][iy]
7981 = (float) (LIN(THETA(met->p[ip + 1], met->t[ix][iy][ip + 1]),
7982 met->p[ip + 1],
7983 THETA(met->p[ip], met->t[ix][iy][ip]),
7984 met->p[ip], theta0 + dtheta));
7985
7986 /* Check minimum value... */
7987 double pbl_min = met->ps[ix][iy] * exp(-zmin / H0);
7988 if (met->pbl[ix][iy] > pbl_min || met->p[ip] > met->ps[ix][iy])
7989 met->pbl[ix][iy] = (float) pbl_min;
7990 }
7991 }
7992
7993 /* Loop over grid points... */
7994#pragma omp parallel for default(shared) collapse(2)
7995 for (int ix = 0; ix < met->nx; ix++)
7996 for (int iy = 0; iy < met->ny; iy++) {
7997
7998 /* Check minimum value... */
7999 double pbl_min = met->ps[ix][iy] * exp(-ctl->met_pbl_min / H0);
8000 met->pbl[ix][iy] = MIN(met->pbl[ix][iy], (float) pbl_min);
8001
8002 /* Check maximum value... */
8003 double pbl_max = met->ps[ix][iy] * exp(-ctl->met_pbl_max / H0);
8004 met->pbl[ix][iy] = MAX(met->pbl[ix][iy], (float) pbl_max);
8005 }
8006}
8007
8008/*****************************************************************************/
8009
8011 met_t *met) {
8012
8013 /* Set timer... */
8014 SELECT_TIMER("READ_MET_PERIODIC", "METPROC", NVTX_READ);
8015 LOG(2, "Apply periodic boundary conditions...");
8016
8017 /* Check longitudes... */
8018 if (!(fabs(met->lon[met->nx - 1] - met->lon[0]
8019 + met->lon[1] - met->lon[0] - 360) < 0.01))
8020 return;
8021
8022 /* Increase longitude counter... */
8023 if ((++met->nx) >= EX)
8024 ERRMSG("Cannot create periodic boundary conditions!");
8025
8026 /* Set longitude... */
8027 met->lon[met->nx - 1] = met->lon[met->nx - 2] + met->lon[1] - met->lon[0];
8028
8029 /* Loop over latitudes and pressure levels... */
8030#pragma omp parallel for default(shared)
8031 for (int iy = 0; iy < met->ny; iy++) {
8032 met->ps[met->nx - 1][iy] = met->ps[0][iy];
8033 met->zs[met->nx - 1][iy] = met->zs[0][iy];
8034 met->ts[met->nx - 1][iy] = met->ts[0][iy];
8035 met->us[met->nx - 1][iy] = met->us[0][iy];
8036 met->vs[met->nx - 1][iy] = met->vs[0][iy];
8037 met->ess[met->nx - 1][iy] = met->ess[0][iy];
8038 met->nss[met->nx - 1][iy] = met->nss[0][iy];
8039 met->shf[met->nx - 1][iy] = met->shf[0][iy];
8040 met->lsm[met->nx - 1][iy] = met->lsm[0][iy];
8041 met->sst[met->nx - 1][iy] = met->sst[0][iy];
8042 met->pbl[met->nx - 1][iy] = met->pbl[0][iy];
8043 met->cape[met->nx - 1][iy] = met->cape[0][iy];
8044 met->cin[met->nx - 1][iy] = met->cin[0][iy];
8045 for (int ip = 0; ip < met->np; ip++) {
8046 met->t[met->nx - 1][iy][ip] = met->t[0][iy][ip];
8047 met->u[met->nx - 1][iy][ip] = met->u[0][iy][ip];
8048 met->v[met->nx - 1][iy][ip] = met->v[0][iy][ip];
8049 met->w[met->nx - 1][iy][ip] = met->w[0][iy][ip];
8050 met->h2o[met->nx - 1][iy][ip] = met->h2o[0][iy][ip];
8051 met->o3[met->nx - 1][iy][ip] = met->o3[0][iy][ip];
8052 met->lwc[met->nx - 1][iy][ip] = met->lwc[0][iy][ip];
8053 met->rwc[met->nx - 1][iy][ip] = met->rwc[0][iy][ip];
8054 met->iwc[met->nx - 1][iy][ip] = met->iwc[0][iy][ip];
8055 met->swc[met->nx - 1][iy][ip] = met->swc[0][iy][ip];
8056 met->cc[met->nx - 1][iy][ip] = met->cc[0][iy][ip];
8057 }
8058 for (int ip = 0; ip < met->npl; ip++) {
8059 met->ul[met->nx - 1][iy][ip] = met->ul[0][iy][ip];
8060 met->vl[met->nx - 1][iy][ip] = met->vl[0][iy][ip];
8061 met->wl[met->nx - 1][iy][ip] = met->wl[0][iy][ip];
8062 met->pl[met->nx - 1][iy][ip] = met->pl[0][iy][ip];
8063 met->zetal[met->nx - 1][iy][ip] = met->zetal[0][iy][ip];
8064 met->zeta_dotl[met->nx - 1][iy][ip] = met->zeta_dotl[0][iy][ip];
8065 }
8066 }
8067}
8068
8069/*****************************************************************************/
8070
8072 met_t *met) {
8073
8074 /* Set timer... */
8075 SELECT_TIMER("READ_MET_POLAR_WINDS", "METPROC", NVTX_READ);
8076 LOG(2, "Apply fix for polar winds...");
8077
8078 /* Check latitudes... */
8079 if (fabs(met->lat[0]) < 89.999 || fabs(met->lat[met->ny - 1]) < 89.999)
8080 return;
8081
8082 /* Loop over hemispheres... */
8083 for (int ihem = 0; ihem < 2; ihem++) {
8084
8085 /* Set latitude indices... */
8086 int i89 = 1, i90 = 0, sign = 1;
8087 if (ihem == 1) {
8088 i89 = met->ny - 2;
8089 i90 = met->ny - 1;
8090 }
8091 if (met->lat[i90] < 0)
8092 sign = -1;
8093
8094 /* Look-up table of cosinus and sinus... */
8095 double clon[EX], slon[EX];
8096#pragma omp parallel for default(shared)
8097 for (int ix = 0; ix < met->nx; ix++) {
8098 clon[ix] = cos(sign * DEG2RAD(met->lon[ix]));
8099 slon[ix] = sin(sign * DEG2RAD(met->lon[ix]));
8100 }
8101
8102 /* Loop over levels... */
8103#pragma omp parallel for default(shared)
8104 for (int ip = 0; ip < met->np; ip++) {
8105
8106 /* Transform 89 degree u and v winds into Cartesian coordinates and take the mean... */
8107 double vel89x = 0, vel89y = 0;
8108 for (int ix = 0; ix < met->nx; ix++) {
8109 vel89x +=
8110 (met->u[ix][i89][ip] * clon[ix] -
8111 met->v[ix][i89][ip] * slon[ix]) / met->nx;
8112 vel89y +=
8113 (met->u[ix][i89][ip] * slon[ix] +
8114 met->v[ix][i89][ip] * clon[ix]) / met->nx;
8115 }
8116
8117 /* Replace 90 degree winds by 89 degree mean... */
8118 for (int ix = 0; ix < met->nx; ix++) {
8119 met->u[ix][i90][ip]
8120 = (float) (vel89x * clon[ix] + vel89y * slon[ix]);
8121 met->v[ix][i90][ip]
8122 = (float) (-vel89x * slon[ix] + vel89y * clon[ix]);
8123 }
8124 }
8125 }
8126}
8127
8128/*****************************************************************************/
8129
8131 met_t *met) {
8132
8133 double pows[EP];
8134
8135 /* Set timer... */
8136 SELECT_TIMER("READ_MET_PV", "METPROC", NVTX_READ);
8137 LOG(2, "Calculate potential vorticity...");
8138
8139 /* Set powers... */
8140#pragma omp parallel for default(shared)
8141 for (int ip = 0; ip < met->np; ip++)
8142 pows[ip] = pow(1000. / met->p[ip], 0.286);
8143
8144 /* Loop over grid points... */
8145#pragma omp parallel for default(shared)
8146 for (int ix = 0; ix < met->nx; ix++) {
8147
8148 /* Set indices... */
8149 const int ix0 = MAX(ix - 1, 0);
8150 const int ix1 = MIN(ix + 1, met->nx - 1);
8151
8152 /* Loop over grid points... */
8153 for (int iy = 0; iy < met->ny; iy++) {
8154
8155 /* Set indices... */
8156 const int iy0 = MAX(iy - 1, 0);
8157 const int iy1 = MIN(iy + 1, met->ny - 1);
8158
8159 /* Set auxiliary variables... */
8160 const double latr = 0.5 * (met->lat[iy1] + met->lat[iy0]);
8161 const double dx = 1000. * DEG2DX(met->lon[ix1] - met->lon[ix0], latr);
8162 const double dy = 1000. * DEG2DY(met->lat[iy1] - met->lat[iy0]);
8163 const double c0 = cos(DEG2RAD(met->lat[iy0]));
8164 const double c1 = cos(DEG2RAD(met->lat[iy1]));
8165 const double cr = cos(DEG2RAD(latr));
8166 const double vort = 2 * 7.2921e-5 * sin(DEG2RAD(latr));
8167
8168 /* Loop over grid points... */
8169 for (int ip = 0; ip < met->np; ip++) {
8170
8171 /* Get gradients in longitude... */
8172 const double dtdx
8173 = (met->t[ix1][iy][ip] - met->t[ix0][iy][ip]) * pows[ip] / dx;
8174 const double dvdx = (met->v[ix1][iy][ip] - met->v[ix0][iy][ip]) / dx;
8175
8176 /* Get gradients in latitude... */
8177 const double dtdy
8178 = (met->t[ix][iy1][ip] - met->t[ix][iy0][ip]) * pows[ip] / dy;
8179 const double dudy
8180 = (met->u[ix][iy1][ip] * c1 - met->u[ix][iy0][ip] * c0) / dy;
8181
8182 /* Set indices... */
8183 const int ip0 = MAX(ip - 1, 0);
8184 const int ip1 = MIN(ip + 1, met->np - 1);
8185
8186 /* Get gradients in pressure... */
8187 double dtdp, dudp, dvdp;
8188 const double dp0 = 100. * (met->p[ip] - met->p[ip0]);
8189 const double dp1 = 100. * (met->p[ip1] - met->p[ip]);
8190 if (ip != ip0 && ip != ip1) {
8191 double denom = dp0 * dp1 * (dp0 + dp1);
8192 dtdp = (dp0 * dp0 * met->t[ix][iy][ip1] * pows[ip1]
8193 - dp1 * dp1 * met->t[ix][iy][ip0] * pows[ip0]
8194 + (dp1 * dp1 - dp0 * dp0) * met->t[ix][iy][ip] * pows[ip])
8195 / denom;
8196 dudp = (dp0 * dp0 * met->u[ix][iy][ip1]
8197 - dp1 * dp1 * met->u[ix][iy][ip0]
8198 + (dp1 * dp1 - dp0 * dp0) * met->u[ix][iy][ip])
8199 / denom;
8200 dvdp = (dp0 * dp0 * met->v[ix][iy][ip1]
8201 - dp1 * dp1 * met->v[ix][iy][ip0]
8202 + (dp1 * dp1 - dp0 * dp0) * met->v[ix][iy][ip])
8203 / denom;
8204 } else {
8205 const double denom = dp0 + dp1;
8206 dtdp =
8207 (met->t[ix][iy][ip1] * pows[ip1] -
8208 met->t[ix][iy][ip0] * pows[ip0]) / denom;
8209 dudp = (met->u[ix][iy][ip1] - met->u[ix][iy][ip0]) / denom;
8210 dvdp = (met->v[ix][iy][ip1] - met->v[ix][iy][ip0]) / denom;
8211 }
8212
8213 /* Calculate PV... */
8214 met->pv[ix][iy][ip] = (float)
8215 (1e6 * G0 *
8216 (-dtdp * (dvdx - dudy / cr + vort) + dvdp * dtdx - dudp * dtdy));
8217 }
8218 }
8219 }
8220
8221 /* Fix for polar regions... */
8222#pragma omp parallel for default(shared)
8223 for (int ix = 0; ix < met->nx; ix++)
8224 for (int ip = 0; ip < met->np; ip++) {
8225 met->pv[ix][0][ip]
8226 = met->pv[ix][1][ip]
8227 = met->pv[ix][2][ip];
8228 met->pv[ix][met->ny - 1][ip]
8229 = met->pv[ix][met->ny - 2][ip]
8230 = met->pv[ix][met->ny - 3][ip];
8231 }
8232}
8233
8234/*****************************************************************************/
8235
8237 met_t *met) {
8238
8239 /* Set timer... */
8240 SELECT_TIMER("READ_MET_OZONE", "METPROC", NVTX_READ);
8241 LOG(2, "Calculate total column ozone...");
8242
8243 /* Loop over columns... */
8244#pragma omp parallel for default(shared) collapse(2)
8245 for (int ix = 0; ix < met->nx; ix++)
8246 for (int iy = 0; iy < met->ny; iy++) {
8247
8248 /* Integrate... */
8249 double cd = 0;
8250 for (int ip = 1; ip < met->np; ip++)
8251 if (met->p[ip - 1] <= met->ps[ix][iy]) {
8252 const double vmr =
8253 0.5 * (met->o3[ix][iy][ip - 1] + met->o3[ix][iy][ip]);
8254 const double dp = met->p[ip - 1] - met->p[ip];
8255 cd += vmr * MO3 / MA * dp * 1e2 / G0;
8256 }
8257
8258 /* Convert to Dobson units... */
8259 met->o3c[ix][iy] = (float) (cd / 2.1415e-5);
8260 }
8261}
8262
8263/*****************************************************************************/
8264
8266 const ctl_t *ctl,
8267 met_t *met) {
8268
8269 met_t *help;
8270
8271 /* Check parameters... */
8272 if (ctl->met_dp <= 1 && ctl->met_dx <= 1 && ctl->met_dy <= 1
8273 && ctl->met_sp <= 1 && ctl->met_sx <= 1 && ctl->met_sy <= 1)
8274 return;
8275
8276 /* Set timer... */
8277 SELECT_TIMER("READ_MET_SAMPLE", "METPROC", NVTX_READ);
8278 LOG(2, "Downsampling of meteo data...");
8279
8280 /* Allocate... */
8281 ALLOC(help, met_t, 1);
8282
8283 /* Copy data... */
8284 help->nx = met->nx;
8285 help->ny = met->ny;
8286 help->np = met->np;
8287 memcpy(help->lon, met->lon, sizeof(met->lon));
8288 memcpy(help->lat, met->lat, sizeof(met->lat));
8289 memcpy(help->p, met->p, sizeof(met->p));
8290
8291 /* Smoothing... */
8292 for (int ix = 0; ix < met->nx; ix += ctl->met_dx) {
8293 for (int iy = 0; iy < met->ny; iy += ctl->met_dy) {
8294 for (int ip = 0; ip < met->np; ip += ctl->met_dp) {
8295 help->ps[ix][iy] = 0;
8296 help->zs[ix][iy] = 0;
8297 help->ts[ix][iy] = 0;
8298 help->us[ix][iy] = 0;
8299 help->vs[ix][iy] = 0;
8300 help->ess[ix][iy] = 0;
8301 help->nss[ix][iy] = 0;
8302 help->shf[ix][iy] = 0;
8303 help->lsm[ix][iy] = 0;
8304 help->sst[ix][iy] = 0;
8305 help->pbl[ix][iy] = 0;
8306 help->cape[ix][iy] = 0;
8307 help->cin[ix][iy] = 0;
8308 help->t[ix][iy][ip] = 0;
8309 help->u[ix][iy][ip] = 0;
8310 help->v[ix][iy][ip] = 0;
8311 help->w[ix][iy][ip] = 0;
8312 help->h2o[ix][iy][ip] = 0;
8313 help->o3[ix][iy][ip] = 0;
8314 help->lwc[ix][iy][ip] = 0;
8315 help->rwc[ix][iy][ip] = 0;
8316 help->iwc[ix][iy][ip] = 0;
8317 help->swc[ix][iy][ip] = 0;
8318 help->cc[ix][iy][ip] = 0;
8319 float wsum = 0;
8320 for (int ix2 = ix - ctl->met_sx + 1; ix2 <= ix + ctl->met_sx - 1;
8321 ix2++) {
8322 int ix3 = ix2;
8323 if (ix3 < 0)
8324 ix3 += met->nx;
8325 else if (ix3 >= met->nx)
8326 ix3 -= met->nx;
8327
8328 for (int iy2 = MAX(iy - ctl->met_sy + 1, 0);
8329 iy2 <= MIN(iy + ctl->met_sy - 1, met->ny - 1); iy2++)
8330 for (int ip2 = MAX(ip - ctl->met_sp + 1, 0);
8331 ip2 <= MIN(ip + ctl->met_sp - 1, met->np - 1); ip2++) {
8332 float w = (1.0f - (float) abs(ix - ix2) / (float) ctl->met_sx)
8333 * (1.0f - (float) abs(iy - iy2) / (float) ctl->met_sy)
8334 * (1.0f - (float) abs(ip - ip2) / (float) ctl->met_sp);
8335 help->ps[ix][iy] += w * met->ps[ix3][iy2];
8336 help->zs[ix][iy] += w * met->zs[ix3][iy2];
8337 help->ts[ix][iy] += w * met->ts[ix3][iy2];
8338 help->us[ix][iy] += w * met->us[ix3][iy2];
8339 help->vs[ix][iy] += w * met->vs[ix3][iy2];
8340 help->ess[ix][iy] += w * met->ess[ix3][iy2];
8341 help->nss[ix][iy] += w * met->nss[ix3][iy2];
8342 help->shf[ix][iy] += w * met->shf[ix3][iy2];
8343 help->lsm[ix][iy] += w * met->lsm[ix3][iy2];
8344 help->sst[ix][iy] += w * met->sst[ix3][iy2];
8345 help->pbl[ix][iy] += w * met->pbl[ix3][iy2];
8346 help->cape[ix][iy] += w * met->cape[ix3][iy2];
8347 help->cin[ix][iy] += w * met->cin[ix3][iy2];
8348 help->t[ix][iy][ip] += w * met->t[ix3][iy2][ip2];
8349 help->u[ix][iy][ip] += w * met->u[ix3][iy2][ip2];
8350 help->v[ix][iy][ip] += w * met->v[ix3][iy2][ip2];
8351 help->w[ix][iy][ip] += w * met->w[ix3][iy2][ip2];
8352 help->h2o[ix][iy][ip] += w * met->h2o[ix3][iy2][ip2];
8353 help->o3[ix][iy][ip] += w * met->o3[ix3][iy2][ip2];
8354 help->lwc[ix][iy][ip] += w * met->lwc[ix3][iy2][ip2];
8355 help->rwc[ix][iy][ip] += w * met->rwc[ix3][iy2][ip2];
8356 help->iwc[ix][iy][ip] += w * met->iwc[ix3][iy2][ip2];
8357 help->swc[ix][iy][ip] += w * met->swc[ix3][iy2][ip2];
8358 help->cc[ix][iy][ip] += w * met->cc[ix3][iy2][ip2];
8359 wsum += w;
8360 }
8361 }
8362 help->ps[ix][iy] /= wsum;
8363 help->zs[ix][iy] /= wsum;
8364 help->ts[ix][iy] /= wsum;
8365 help->us[ix][iy] /= wsum;
8366 help->vs[ix][iy] /= wsum;
8367 help->ess[ix][iy] /= wsum;
8368 help->nss[ix][iy] /= wsum;
8369 help->shf[ix][iy] /= wsum;
8370 help->lsm[ix][iy] /= wsum;
8371 help->sst[ix][iy] /= wsum;
8372 help->pbl[ix][iy] /= wsum;
8373 help->cape[ix][iy] /= wsum;
8374 help->cin[ix][iy] /= wsum;
8375 help->t[ix][iy][ip] /= wsum;
8376 help->u[ix][iy][ip] /= wsum;
8377 help->v[ix][iy][ip] /= wsum;
8378 help->w[ix][iy][ip] /= wsum;
8379 help->h2o[ix][iy][ip] /= wsum;
8380 help->o3[ix][iy][ip] /= wsum;
8381 help->lwc[ix][iy][ip] /= wsum;
8382 help->rwc[ix][iy][ip] /= wsum;
8383 help->iwc[ix][iy][ip] /= wsum;
8384 help->swc[ix][iy][ip] /= wsum;
8385 help->cc[ix][iy][ip] /= wsum;
8386 }
8387 }
8388 }
8389
8390 /* Downsampling... */
8391 met->nx = 0;
8392 for (int ix = 0; ix < help->nx; ix += ctl->met_dx) {
8393 met->lon[met->nx] = help->lon[ix];
8394 met->ny = 0;
8395 for (int iy = 0; iy < help->ny; iy += ctl->met_dy) {
8396 met->lat[met->ny] = help->lat[iy];
8397 met->ps[met->nx][met->ny] = help->ps[ix][iy];
8398 met->zs[met->nx][met->ny] = help->zs[ix][iy];
8399 met->ts[met->nx][met->ny] = help->ts[ix][iy];
8400 met->us[met->nx][met->ny] = help->us[ix][iy];
8401 met->vs[met->nx][met->ny] = help->vs[ix][iy];
8402 met->ess[met->nx][met->ny] = help->ess[ix][iy];
8403 met->nss[met->nx][met->ny] = help->nss[ix][iy];
8404 met->shf[met->nx][met->ny] = help->shf[ix][iy];
8405 met->lsm[met->nx][met->ny] = help->lsm[ix][iy];
8406 met->sst[met->nx][met->ny] = help->sst[ix][iy];
8407 met->pbl[met->nx][met->ny] = help->pbl[ix][iy];
8408 met->cape[met->nx][met->ny] = help->cape[ix][iy];
8409 met->cin[met->nx][met->ny] = help->cin[ix][iy];
8410 met->np = 0;
8411 for (int ip = 0; ip < help->np; ip += ctl->met_dp) {
8412 met->p[met->np] = help->p[ip];
8413 met->t[met->nx][met->ny][met->np] = help->t[ix][iy][ip];
8414 met->u[met->nx][met->ny][met->np] = help->u[ix][iy][ip];
8415 met->v[met->nx][met->ny][met->np] = help->v[ix][iy][ip];
8416 met->w[met->nx][met->ny][met->np] = help->w[ix][iy][ip];
8417 met->h2o[met->nx][met->ny][met->np] = help->h2o[ix][iy][ip];
8418 met->o3[met->nx][met->ny][met->np] = help->o3[ix][iy][ip];
8419 met->lwc[met->nx][met->ny][met->np] = help->lwc[ix][iy][ip];
8420 met->rwc[met->nx][met->ny][met->np] = help->rwc[ix][iy][ip];
8421 met->iwc[met->nx][met->ny][met->np] = help->iwc[ix][iy][ip];
8422 met->swc[met->nx][met->ny][met->np] = help->swc[ix][iy][ip];
8423 met->cc[met->nx][met->ny][met->np] = help->cc[ix][iy][ip];
8424 met->np++;
8425 }
8426 met->ny++;
8427 }
8428 met->nx++;
8429 }
8430
8431 /* Free... */
8432 free(help);
8433}
8434
8435/*****************************************************************************/
8436
8438 const int ncid,
8439 const ctl_t *ctl,
8440 met_t *met) {
8441
8442 /* Set timer... */
8443 SELECT_TIMER("READ_MET_SURFACE", "INPUT", NVTX_READ);
8444 LOG(2, "Read surface data...");
8445
8446 /* Read surface pressure... */
8447 if (read_met_nc_2d
8448 (ncid, "lnsp", "LNSP", NULL, NULL, NULL, NULL, ctl, met, met->ps, 1.0f,
8449 1)) {
8450 for (int ix = 0; ix < met->nx; ix++)
8451 for (int iy = 0; iy < met->ny; iy++)
8452 met->ps[ix][iy] = (float) (exp(met->ps[ix][iy]) / 100.);
8453 } else
8454 if (!read_met_nc_2d
8455 (ncid, "ps", "PS", "sp", "SP", NULL, NULL, ctl, met, met->ps, 0.01f,
8456 1)) {
8457 WARN("Cannot not read surface pressure data (use lowest level)!");
8458 for (int ix = 0; ix < met->nx; ix++)
8459 for (int iy = 0; iy < met->ny; iy++)
8460 met->ps[ix][iy]
8461 = (ctl->met_np > 0 ? (float) ctl->met_p[0] : (float) met->p[0]);
8462 }
8463
8464 /* MPTRAC meteo data... */
8465 if (ctl->met_clams == 0) {
8466
8467 /* Read geopotential height at the surface... */
8468 if (!read_met_nc_2d
8469 (ncid, "z", "Z", NULL, NULL, NULL, NULL, ctl, met, met->zs,
8470 (float) (1. / (1000. * G0)), 1))
8471 if (!read_met_nc_2d
8472 (ncid, "zm", "ZM", NULL, NULL, NULL, NULL, ctl, met, met->zs,
8473 (float) (1. / 1000.), 1))
8474 WARN("Cannot read surface geopotential height!");
8475 }
8476
8477 /* CLaMS meteo data... */
8478 else {
8479
8480 /* Read geopotential height at the surface
8481 (use lowermost level of 3-D data field)... */
8482 float *help;
8483 ALLOC(help, float,
8484 EX * EY * EP);
8485 memcpy(help, met->pl, sizeof(met->pl));
8486 if (!read_met_nc_3d
8487 (ncid, "gph", "GPH", NULL, NULL, ctl, met, met->pl,
8488 (float) (1e-3 / G0)))
8489 ERRMSG("Cannot read geopotential height!");
8490 for (int ix = 0; ix < met->nx; ix++)
8491 for (int iy = 0; iy < met->ny; iy++)
8492 met->zs[ix][iy] = met->pl[ix][iy][0];
8493 memcpy(met->pl, help, sizeof(met->pl));
8494 free(help);
8495 }
8496
8497 /* Read temperature at the surface... */
8498 if (!read_met_nc_2d
8499 (ncid, "t2m", "T2M", "2t", "2T", "t2", "T2", ctl, met, met->ts, 1.0, 1))
8500 WARN("Cannot read surface temperature!");
8501
8502 /* Read zonal wind at the surface... */
8503 if (!read_met_nc_2d
8504 (ncid, "u10m", "U10M", "10u", "10U", "u10", "U10", ctl, met, met->us,
8505 1.0, 1))
8506 WARN("Cannot read surface zonal wind!");
8507
8508 /* Read meridional wind at the surface... */
8509 if (!read_met_nc_2d
8510 (ncid, "v10m", "V10M", "10v", "10V", "v10", "V10", ctl, met, met->vs,
8511 1.0, 1))
8512 WARN("Cannot read surface meridional wind!");
8513
8514 /* Read eastward turbulent surface stress... */
8515 if (!read_met_nc_2d
8516 (ncid, "iews", "IEWS", NULL, NULL, NULL, NULL, ctl, met, met->ess, 1.0,
8517 1))
8518 WARN("Cannot read eastward turbulent surface stress!");
8519
8520 /* Read northward turbulent surface stress... */
8521 if (!read_met_nc_2d
8522 (ncid, "inss", "INSS", NULL, NULL, NULL, NULL, ctl, met, met->nss, 1.0,
8523 1))
8524 WARN("Cannot read nothward turbulent surface stress!");
8525
8526 /* Read surface sensible heat flux... */
8527 if (!read_met_nc_2d
8528 (ncid, "ishf", "ISHF", NULL, NULL, NULL, NULL, ctl, met, met->shf, 1.0,
8529 1))
8530 WARN("Cannot read surface sensible heat flux!");
8531
8532 /* Read land-sea mask... */
8533 if (!read_met_nc_2d
8534 (ncid, "lsm", "LSM", NULL, NULL, NULL, NULL, ctl, met, met->lsm, 1.0,
8535 1))
8536 WARN("Cannot read land-sea mask!");
8537
8538 /* Read sea surface temperature... */
8539 if (!read_met_nc_2d
8540 (ncid, "sstk", "SSTK", "sst", "SST", NULL, NULL, ctl, met, met->sst,
8541 1.0, 1))
8542 WARN("Cannot read sea surface temperature!");
8543
8544 /* Read PBL... */
8545 if (ctl->met_pbl == 0)
8546 if (!read_met_nc_2d
8547 (ncid, "blp", "BLP", NULL, NULL, NULL, NULL, ctl, met, met->pbl,
8548 0.01f, 1))
8549 WARN("Cannot read planetary boundary layer pressure!");
8550 if (ctl->met_pbl == 1)
8551 if (!read_met_nc_2d
8552 (ncid, "blh", "BLH", NULL, NULL, NULL, NULL, ctl, met, met->pbl,
8553 0.001f, 1))
8554 WARN("Cannot read planetary boundary layer height!");
8555
8556 /* Read CAPE... */
8557 if (ctl->met_cape == 0)
8558 if (!read_met_nc_2d
8559 (ncid, "cape", "CAPE", NULL, NULL, NULL, NULL, ctl, met, met->cape,
8560 1.0, 1))
8561 WARN("Cannot read CAPE!");
8562
8563 /* Read CIN... */
8564 if (ctl->met_cape == 0)
8565 if (!read_met_nc_2d
8566 (ncid, "cin", "CIN", NULL, NULL, NULL, NULL, ctl, met, met->cin,
8567 1.0, 1))
8568 WARN("Cannot read convective inhibition!");
8569}
8570
8571/*****************************************************************************/
8572
8574 const ctl_t *ctl,
8575 const clim_t *clim,
8576 met_t *met) {
8577
8578 double p2[200], pv[EP], pv2[200], t[EP], t2[200], th[EP],
8579 th2[200], z[EP], z2[200];
8580
8581 /* Set timer... */
8582 SELECT_TIMER("READ_MET_TROPO", "METPROC", NVTX_READ);
8583 LOG(2, "Calculate tropopause...");
8584
8585 /* Get altitude and pressure profiles... */
8586#pragma omp parallel for default(shared)
8587 for (int iz = 0; iz < met->np; iz++)
8588 z[iz] = Z(met->p[iz]);
8589#pragma omp parallel for default(shared)
8590 for (int iz = 0; iz <= 190; iz++) {
8591 z2[iz] = 4.5 + 0.1 * iz;
8592 p2[iz] = P(z2[iz]);
8593 }
8594
8595 /* Do not calculate tropopause... */
8596 if (ctl->met_tropo == 0)
8597#pragma omp parallel for default(shared) collapse(2)
8598 for (int ix = 0; ix < met->nx; ix++)
8599 for (int iy = 0; iy < met->ny; iy++)
8600 met->pt[ix][iy] = NAN;
8601
8602 /* Use tropopause climatology... */
8603 else if (ctl->met_tropo == 1) {
8604#pragma omp parallel for default(shared) collapse(2)
8605 for (int ix = 0; ix < met->nx; ix++)
8606 for (int iy = 0; iy < met->ny; iy++)
8607 met->pt[ix][iy] = (float) clim_tropo(clim, met->time, met->lat[iy]);
8608 }
8609
8610 /* Use cold point... */
8611 else if (ctl->met_tropo == 2) {
8612
8613 /* Loop over grid points... */
8614#pragma omp parallel for default(shared) private(t,t2) collapse(2)
8615 for (int ix = 0; ix < met->nx; ix++)
8616 for (int iy = 0; iy < met->ny; iy++) {
8617
8618 /* Interpolate temperature profile... */
8619 for (int iz = 0; iz < met->np; iz++)
8620 t[iz] = met->t[ix][iy][iz];
8621 spline(z, t, met->np, z2, t2, 171, ctl->met_tropo_spline);
8622
8623 /* Find minimum... */
8624 int iz = (int) gsl_stats_min_index(t2, 1, 171);
8625 if (iz > 0 && iz < 170)
8626 met->pt[ix][iy] = (float) p2[iz];
8627 else
8628 met->pt[ix][iy] = NAN;
8629 }
8630 }
8631
8632 /* Use WMO definition... */
8633 else if (ctl->met_tropo == 3 || ctl->met_tropo == 4) {
8634
8635 /* Loop over grid points... */
8636#pragma omp parallel for default(shared) private(t,t2) collapse(2)
8637 for (int ix = 0; ix < met->nx; ix++)
8638 for (int iy = 0; iy < met->ny; iy++) {
8639
8640 /* Interpolate temperature profile... */
8641 int iz;
8642 for (iz = 0; iz < met->np; iz++)
8643 t[iz] = met->t[ix][iy][iz];
8644 spline(z, t, met->np, z2, t2, 191, ctl->met_tropo_spline);
8645
8646 /* Find 1st tropopause... */
8647 met->pt[ix][iy] = NAN;
8648 for (iz = 0; iz <= 170; iz++) {
8649 int found = 1;
8650 for (int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
8651 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
8652 found = 0;
8653 break;
8654 }
8655 if (found) {
8656 if (iz > 0 && iz < 170)
8657 met->pt[ix][iy] = (float) p2[iz];
8658 break;
8659 }
8660 }
8661
8662 /* Find 2nd tropopause... */
8663 if (ctl->met_tropo == 4) {
8664 met->pt[ix][iy] = NAN;
8665 for (; iz <= 170; iz++) {
8666 int found = 1;
8667 for (int iz2 = iz + 1; iz2 <= iz + 10; iz2++)
8668 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) < 3.0) {
8669 found = 0;
8670 break;
8671 }
8672 if (found)
8673 break;
8674 }
8675 for (; iz <= 170; iz++) {
8676 int found = 1;
8677 for (int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
8678 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
8679 found = 0;
8680 break;
8681 }
8682 if (found) {
8683 if (iz > 0 && iz < 170)
8684 met->pt[ix][iy] = (float) p2[iz];
8685 break;
8686 }
8687 }
8688 }
8689 }
8690 }
8691
8692 /* Use dynamical tropopause... */
8693 else if (ctl->met_tropo == 5) {
8694
8695 /* Loop over grid points... */
8696#pragma omp parallel for default(shared) private(pv,pv2,th,th2) collapse(2)
8697 for (int ix = 0; ix < met->nx; ix++)
8698 for (int iy = 0; iy < met->ny; iy++) {
8699
8700 /* Interpolate potential vorticity profile... */
8701 for (int iz = 0; iz < met->np; iz++)
8702 pv[iz] = met->pv[ix][iy][iz];
8703 spline(z, pv, met->np, z2, pv2, 171, ctl->met_tropo_spline);
8704
8705 /* Interpolate potential temperature profile... */
8706 for (int iz = 0; iz < met->np; iz++)
8707 th[iz] = THETA(met->p[iz], met->t[ix][iy][iz]);
8708 spline(z, th, met->np, z2, th2, 171, ctl->met_tropo_spline);
8709
8710 /* Find dynamical tropopause... */
8711 met->pt[ix][iy] = NAN;
8712 for (int iz = 0; iz <= 170; iz++)
8713 if (fabs(pv2[iz]) >= ctl->met_tropo_pv
8714 || th2[iz] >= ctl->met_tropo_theta) {
8715 if (iz > 0 && iz < 170)
8716 met->pt[ix][iy] = (float) p2[iz];
8717 break;
8718 }
8719 }
8720 }
8721
8722 else
8723 ERRMSG("Cannot calculate tropopause!");
8724
8725 /* Interpolate temperature, geopotential height, and water vapor... */
8726#pragma omp parallel for default(shared) collapse(2)
8727 for (int ix = 0; ix < met->nx; ix++)
8728 for (int iy = 0; iy < met->ny; iy++) {
8729 double h2ot, tt, zt;
8731 intpol_met_space_3d(met, met->t, met->pt[ix][iy], met->lon[ix],
8732 met->lat[iy], &tt, ci, cw, 1);
8733 intpol_met_space_3d(met, met->z, met->pt[ix][iy], met->lon[ix],
8734 met->lat[iy], &zt, ci, cw, 0);
8735 intpol_met_space_3d(met, met->h2o, met->pt[ix][iy], met->lon[ix],
8736 met->lat[iy], &h2ot, ci, cw, 0);
8737 met->tt[ix][iy] = (float) tt;
8738 met->zt[ix][iy] = (float) zt;
8739 met->h2ot[ix][iy] = (float) h2ot;
8740 }
8741}
8742
8743/*****************************************************************************/
8744
8746 const char *filename,
8747 const ctl_t *ctl,
8748 double *rt,
8749 double *rz,
8750 double *rlon,
8751 double *rlat,
8752 double *robs,
8753 int *nobs) {
8754
8755 /* Write info... */
8756 LOG(1, "Read observation data: %s", filename);
8757
8758 /* Read data... */
8759 if (ctl->obs_type == 0)
8760 read_obs_asc(filename, rt, rz, rlon, rlat, robs, nobs);
8761 else if (ctl->obs_type == 1)
8762 read_obs_nc(filename, rt, rz, rlon, rlat, robs, nobs);
8763 else
8764 ERRMSG("Set OBS_TYPE to 0 or 1!");
8765
8766 /* Check time... */
8767 for (int i = 1; i < *nobs; i++)
8768 if (rt[i] < rt[i - 1])
8769 ERRMSG("Time must be ascending!");
8770
8771 /* Write info... */
8772 int n = *nobs;
8773 double mini, maxi;
8774 LOG(2, "Number of observations: %d", *nobs);
8775 gsl_stats_minmax(&mini, &maxi, rt, 1, (size_t) n);
8776 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
8777 gsl_stats_minmax(&mini, &maxi, rz, 1, (size_t) n);
8778 LOG(2, "Altitude range: %g ... %g km", mini, maxi);
8779 gsl_stats_minmax(&mini, &maxi, rlon, 1, (size_t) n);
8780 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
8781 gsl_stats_minmax(&mini, &maxi, rlat, 1, (size_t) n);
8782 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
8783 gsl_stats_minmax(&mini, &maxi, robs, 1, (size_t) n);
8784 LOG(2, "Observation range: %g ... %g", mini, maxi);
8785}
8786
8787/*****************************************************************************/
8788
8790 const char *filename,
8791 double *rt,
8792 double *rz,
8793 double *rlon,
8794 double *rlat,
8795 double *robs,
8796 int *nobs) {
8797
8798 /* Open observation data file... */
8799 FILE *in;
8800 if (!(in = fopen(filename, "r")))
8801 ERRMSG("Cannot open file!");
8802
8803 /* Read observations... */
8804 char line[LEN];
8805 while (fgets(line, LEN, in))
8806 if (sscanf(line, "%lg %lg %lg %lg %lg", &rt[*nobs], &rz[*nobs],
8807 &rlon[*nobs], &rlat[*nobs], &robs[*nobs]) == 5)
8808 if ((++(*nobs)) >= NOBS)
8809 ERRMSG("Too many observations!");
8810
8811 /* Close observation data file... */
8812 fclose(in);
8813}
8814
8815/*****************************************************************************/
8816
8818 const char *filename,
8819 double *rt,
8820 double *rz,
8821 double *rlon,
8822 double *rlat,
8823 double *robs,
8824 int *nobs) {
8825
8826 int ncid, varid;
8827
8828 /* Open netCDF file... */
8829 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
8830 ERRMSG("Cannot open file!");
8831
8832 /* Read the observations from the NetCDF file... */
8833 NC_INQ_DIM("nobs", nobs, 1, NOBS);
8834 NC_GET_DOUBLE("time", rt, 1);
8835 NC_GET_DOUBLE("alt", rz, 1);
8836 NC_GET_DOUBLE("lon", rlon, 1);
8837 NC_GET_DOUBLE("lat", rlat, 1);
8838 NC_GET_DOUBLE("obs", robs, 1);
8839
8840 /* Close file... */
8841 NC(nc_close(ncid));
8842}
8843
8844/*****************************************************************************/
8845
8847 const char *filename,
8848 int argc,
8849 char *argv[],
8850 const char *varname,
8851 const int arridx,
8852 const char *defvalue,
8853 char *value) {
8854
8855 FILE *in = NULL;
8856
8857 char fullname1[LEN], fullname2[LEN], rval[LEN];
8858
8859 int contain = 0, i;
8860
8861 /* Open file... */
8862 if (filename[strlen(filename) - 1] != '-')
8863 if (!(in = fopen(filename, "r")))
8864 ERRMSG("Cannot open file!");
8865
8866 /* Set full variable name... */
8867 if (arridx >= 0) {
8868 sprintf(fullname1, "%s[%d]", varname, arridx);
8869 sprintf(fullname2, "%s[*]", varname);
8870 } else {
8871 sprintf(fullname1, "%s", varname);
8872 sprintf(fullname2, "%s", varname);
8873 }
8874
8875 /* Read data... */
8876 if (in != NULL) {
8877 char dummy[LEN], line[LEN], rvarname[LEN];
8878 while (fgets(line, LEN, in)) {
8879 if (sscanf(line, "%4999s %4999s %4999s", rvarname, dummy, rval) == 3)
8880 if (strcasecmp(rvarname, fullname1) == 0 ||
8881 strcasecmp(rvarname, fullname2) == 0) {
8882 contain = 1;
8883 break;
8884 }
8885 }
8886 }
8887 for (i = 1; i < argc - 1; i++)
8888 if (strcasecmp(argv[i], fullname1) == 0 ||
8889 strcasecmp(argv[i], fullname2) == 0) {
8890 sprintf(rval, "%s", argv[i + 1]);
8891 contain = 1;
8892 break;
8893 }
8894
8895 /* Close file... */
8896 if (in != NULL)
8897 fclose(in);
8898
8899 /* Check for missing variables... */
8900 if (!contain) {
8901 if (strlen(defvalue) > 0)
8902 sprintf(rval, "%s", defvalue);
8903 else
8904 ERRMSG("Missing variable %s!\n", fullname1);
8905 }
8906
8907 /* Write info... */
8908 LOG(1, "%s = %s", fullname1, rval);
8909
8910 /* Return values... */
8911 if (value != NULL)
8912 sprintf(value, "%s", rval);
8913 return atof(rval);
8914}
8915
8916/*****************************************************************************/
8917
8918double sedi(
8919 const double p,
8920 const double T,
8921 const double rp,
8922 const double rhop) {
8923
8924 /* Convert particle radius from microns to m... */
8925 const double rp_help = rp * 1e-6;
8926
8927 /* Density of dry air [kg / m^3]... */
8928 const double rho = RHO(p, T);
8929
8930 /* Dynamic viscosity of air [kg / (m s)]... */
8931 const double eta = 1.8325e-5 * (416.16 / (T + 120.)) * pow(T / 296.16, 1.5);
8932
8933 /* Thermal velocity of an air molecule [m / s]... */
8934 const double v = sqrt(8. * KB * T / (M_PI * 4.8096e-26));
8935
8936 /* Mean free path of an air molecule [m]... */
8937 const double lambda = 2. * eta / (rho * v);
8938
8939 /* Knudsen number for air (dimensionless)... */
8940 const double K = lambda / rp_help;
8941
8942 /* Cunningham slip-flow correction (dimensionless)... */
8943 const double G = 1. + K * (1.249 + 0.42 * exp(-0.87 / K));
8944
8945 /* Sedimentation velocity [m / s]... */
8946 return 2. * SQR(rp_help) * (rhop - rho) * G0 / (9. * eta) * G;
8947}
8948
8949/*****************************************************************************/
8950
8952 const double *x,
8953 const double *y,
8954 const int n,
8955 const double *x2,
8956 double *y2,
8957 const int n2,
8958 const int method) {
8959
8960 /* Cubic spline interpolation... */
8961 if (method == 1) {
8962
8963 /* Allocate... */
8964 gsl_interp_accel *acc = gsl_interp_accel_alloc();
8965 gsl_spline *s = gsl_spline_alloc(gsl_interp_cspline, (size_t) n);
8966
8967 /* Interpolate profile... */
8968 gsl_spline_init(s, x, y, (size_t) n);
8969 for (int i = 0; i < n2; i++)
8970 if (x2[i] <= x[0])
8971 y2[i] = y[0];
8972 else if (x2[i] >= x[n - 1])
8973 y2[i] = y[n - 1];
8974 else
8975 y2[i] = gsl_spline_eval(s, x2[i], acc);
8976
8977 /* Free... */
8978 gsl_spline_free(s);
8979 gsl_interp_accel_free(acc);
8980 }
8981
8982 /* Linear interpolation... */
8983 else {
8984 for (int i = 0; i < n2; i++)
8985 if (x2[i] <= x[0])
8986 y2[i] = y[0];
8987 else if (x2[i] >= x[n - 1])
8988 y2[i] = y[n - 1];
8989 else {
8990 int idx = locate_irr(x, n, x2[i]);
8991 y2[i] = LIN(x[idx], y[idx], x[idx + 1], y[idx + 1], x2[i]);
8992 }
8993 }
8994}
8995
8996/*****************************************************************************/
8997
8999 const float *data,
9000 const int n) {
9001
9002 if (n <= 0)
9003 return 0;
9004
9005 float mean = 0, var = 0;
9006
9007 for (int i = 0; i < n; ++i) {
9008 mean += data[i];
9009 var += SQR(data[i]);
9010 }
9011
9012 var = var / (float) n - SQR(mean / (float) n);
9013
9014 return (var > 0 ? sqrtf(var) : 0);
9015}
9016
9017/*****************************************************************************/
9018
9020 const double sec,
9021 const double lon,
9022 const double lat) {
9023
9024 /* Number of days and fraction with respect to 2000-01-01T12:00Z... */
9025 const double D = sec / 86400 - 0.5;
9026
9027 /* Geocentric apparent ecliptic longitude [rad]... */
9028 const double g = DEG2RAD(357.529 + 0.98560028 * D);
9029 const double q = 280.459 + 0.98564736 * D;
9030 const double L = DEG2RAD(q + 1.915 * sin(g) + 0.020 * sin(2 * g));
9031
9032 /* Mean obliquity of the ecliptic [rad]... */
9033 const double e = DEG2RAD(23.439 - 0.00000036 * D);
9034
9035 /* Declination [rad]... */
9036 const double sindec = sin(e) * sin(L);
9037
9038 /* Right ascension [rad]... */
9039 const double ra = atan2(cos(e) * sin(L), cos(L));
9040
9041 /* Greenwich Mean Sidereal Time [h]... */
9042 const double GMST = 18.697374558 + 24.06570982441908 * D;
9043
9044 /* Local Sidereal Time [h]... */
9045 const double LST = GMST + lon / 15;
9046
9047 /* Hour angle [rad]... */
9048 const double h = LST / 12 * M_PI - ra;
9049
9050 /* Convert latitude... */
9051 const double lat_help = DEG2RAD(lat);
9052
9053 /* Return solar zenith angle [rad]... */
9054 return acos(sin(lat_help) * sindec +
9055 cos(lat_help) * sqrt(1 - SQR(sindec)) * cos(h));
9056}
9057
9058/*****************************************************************************/
9059
9061 const int year,
9062 const int mon,
9063 const int day,
9064 const int hour,
9065 const int min,
9066 const int sec,
9067 const double remain,
9068 double *jsec) {
9069
9070 struct tm t0, t1;
9071
9072 t0.tm_year = 100;
9073 t0.tm_mon = 0;
9074 t0.tm_mday = 1;
9075 t0.tm_hour = 0;
9076 t0.tm_min = 0;
9077 t0.tm_sec = 0;
9078
9079 t1.tm_year = year - 1900;
9080 t1.tm_mon = mon - 1;
9081 t1.tm_mday = day;
9082 t1.tm_hour = hour;
9083 t1.tm_min = min;
9084 t1.tm_sec = sec;
9085
9086 *jsec = (double) timegm(&t1) - (double) timegm(&t0) + remain;
9087}
9088
9089/*****************************************************************************/
9090
9092 const char *name,
9093 const char *group,
9094 const int output) {
9095
9096 static char names[NTIMER][100], groups[NTIMER][100];
9097
9098 static double rt_name[NTIMER], rt_group[NTIMER],
9099 rt_min[NTIMER], rt_max[NTIMER], dt, t0, t1;
9100
9101 static int iname = -1, igroup = -1, nname, ngroup, ct_name[NTIMER];
9102
9103 /* Get time... */
9104 t1 = omp_get_wtime();
9105 dt = t1 - t0;
9106
9107 /* Add elapsed time to current timers... */
9108 if (iname >= 0) {
9109 rt_name[iname] += dt;
9110 rt_min[iname] = (ct_name[iname] <= 0 ? dt : MIN(rt_min[iname], dt));
9111 rt_max[iname] = (ct_name[iname] <= 0 ? dt : MAX(rt_max[iname], dt));
9112 ct_name[iname]++;
9113 }
9114 if (igroup >= 0)
9115 rt_group[igroup] += t1 - t0;
9116
9117 /* Report timers... */
9118 if (output) {
9119 for (int i = 0; i < nname; i++)
9120 LOG(1, "TIMER_%s = %.3f s (min= %g s, mean= %g s,"
9121 " max= %g s, n= %d)", names[i], rt_name[i], rt_min[i],
9122 rt_name[i] / ct_name[i], rt_max[i], ct_name[i]);
9123 for (int i = 0; i < ngroup; i++)
9124 LOG(1, "TIMER_GROUP_%s = %.3f s", groups[i], rt_group[i]);
9125 double total = 0.0;
9126 for (int i = 0; i < nname; i++)
9127 total += rt_name[i];
9128 LOG(1, "TIMER_TOTAL = %.3f s", total);
9129 }
9130
9131 /* Identify IDs of next timer... */
9132 for (iname = 0; iname < nname; iname++)
9133 if (strcasecmp(name, names[iname]) == 0)
9134 break;
9135 for (igroup = 0; igroup < ngroup; igroup++)
9136 if (strcasecmp(group, groups[igroup]) == 0)
9137 break;
9138
9139 /* Check whether this is a new timer... */
9140 if (iname >= nname) {
9141 sprintf(names[iname], "%s", name);
9142 if ((++nname) >= NTIMER)
9143 ERRMSG("Too many timers!");
9144 }
9145
9146 /* Check whether this is a new group... */
9147 if (igroup >= ngroup) {
9148 sprintf(groups[igroup], "%s", group);
9149 if ((++ngroup) >= NTIMER)
9150 ERRMSG("Too many groups!");
9151 }
9152
9153 /* Save starting time... */
9154 t0 = t1;
9155}
9156
9157/*****************************************************************************/
9158
9160 const char *filename,
9161 const int offset) {
9162
9163 char tstr[10];
9164
9165 double t;
9166
9167 /* Get time from filename... */
9168 int len = (int) strlen(filename);
9169 sprintf(tstr, "%.4s", &filename[len - offset]);
9170 int year = atoi(tstr);
9171 sprintf(tstr, "%.2s", &filename[len - offset + 5]);
9172 int mon = atoi(tstr);
9173 sprintf(tstr, "%.2s", &filename[len - offset + 8]);
9174 int day = atoi(tstr);
9175 sprintf(tstr, "%.2s", &filename[len - offset + 11]);
9176 int hour = atoi(tstr);
9177 sprintf(tstr, "%.2s", &filename[len - offset + 14]);
9178 int min = atoi(tstr);
9179
9180 /* Check time... */
9181 if (year < 1900 || year > 2100 || mon < 1 || mon > 12 || day < 1
9182 || day > 31 || hour < 0 || hour > 23 || min < 0 || min > 59)
9183 ERRMSG("Cannot read time from filename!");
9184
9185 /* Convert time to Julian seconds... */
9186 time2jsec(year, mon, day, hour, min, 0, 0.0, &t);
9187
9188 /* Return time... */
9189 return t;
9190}
9191
9192/*****************************************************************************/
9193
9195 const clim_t *clim,
9196 const atm_t *atm,
9197 const int ip) {
9198
9199 /* Get tropopause pressure... */
9200 const double pt = clim_tropo(clim, atm->time[ip], atm->lat[ip]);
9201
9202 /* Get pressure range... */
9203 const double p1 = pt * 0.866877899;
9204 const double p0 = pt / 0.866877899;
9205
9206 /* Get weighting factor... */
9207 if (atm->p[ip] > p0)
9208 return 1;
9209 else if (atm->p[ip] < p1)
9210 return 0;
9211 else
9212 return LIN(p0, 1.0, p1, 0.0, atm->p[ip]);
9213}
9214
9215/*****************************************************************************/
9216
9218 const char *filename,
9219 const ctl_t *ctl,
9220 const atm_t *atm,
9221 const double t) {
9222
9223 FILE *out;
9224
9225 /* Set time interval for output... */
9226 const double t0 = t - 0.5 * ctl->dt_mod;
9227 const double t1 = t + 0.5 * ctl->dt_mod;
9228
9229 /* Check if gnuplot output is requested... */
9230 if (ctl->atm_gpfile[0] != '-') {
9231
9232 /* Create gnuplot pipe... */
9233 if (!(out = popen("gnuplot", "w")))
9234 ERRMSG("Cannot create pipe to gnuplot!");
9235
9236 /* Set plot filename... */
9237 fprintf(out, "set out \"%s.png\"\n", filename);
9238
9239 /* Set time string... */
9240 double r;
9241 int year, mon, day, hour, min, sec;
9242 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
9243 fprintf(out, "timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
9244 year, mon, day, hour, min);
9245
9246 /* Dump gnuplot file to pipe... */
9247 FILE *in;
9248 if (!(in = fopen(ctl->atm_gpfile, "r")))
9249 ERRMSG("Cannot open file!");
9250 char line[LEN];
9251 while (fgets(line, LEN, in))
9252 fprintf(out, "%s", line);
9253 fclose(in);
9254 }
9255
9256 else {
9257
9258 /* Create file... */
9259 if (!(out = fopen(filename, "w")))
9260 ERRMSG("Cannot create file!");
9261 }
9262
9263 /* Write header... */
9264 fprintf(out,
9265 "# $1 = time [s]\n"
9266 "# $2 = altitude [km]\n"
9267 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
9268 for (int iq = 0; iq < ctl->nq; iq++)
9269 fprintf(out, "# $%i = %s [%s]\n", iq + 5, ctl->qnt_name[iq],
9270 ctl->qnt_unit[iq]);
9271 fprintf(out, "\n");
9272
9273 /* Write data... */
9274 for (int ip = 0; ip < atm->np; ip += ctl->atm_stride) {
9275
9276 /* Check time... */
9277 if (ctl->atm_filter == 2 && (atm->time[ip] < t0 || atm->time[ip] > t1))
9278 continue;
9279
9280 /* Write output... */
9281 fprintf(out, "%.2f %g %g %g", atm->time[ip], Z(atm->p[ip]),
9282 atm->lon[ip], atm->lat[ip]);
9283 for (int iq = 0; iq < ctl->nq; iq++) {
9284 fprintf(out, " ");
9285 if (ctl->atm_filter == 1 && (atm->time[ip] < t0 || atm->time[ip] > t1))
9286 fprintf(out, ctl->qnt_format[iq], NAN);
9287 else
9288 fprintf(out, ctl->qnt_format[iq], atm->q[iq][ip]);
9289 }
9290 fprintf(out, "\n");
9291 }
9292
9293 /* Close file... */
9294 fclose(out);
9295}
9296
9297/*****************************************************************************/
9298
9300 const char *filename,
9301 const ctl_t *ctl,
9302 const atm_t *atm) {
9303
9304 FILE *out;
9305
9306 /* Create file... */
9307 if (!(out = fopen(filename, "w")))
9308 ERRMSG("Cannot create file!");
9309
9310 /* Write version of binary data... */
9311 int version = 100;
9312 FWRITE(&version, int,
9313 1,
9314 out);
9315
9316 /* Write data... */
9317 FWRITE(&atm->np, int,
9318 1,
9319 out);
9320 FWRITE(atm->time, double,
9321 (size_t) atm->np,
9322 out);
9323 FWRITE(atm->p, double,
9324 (size_t) atm->np,
9325 out);
9326 FWRITE(atm->lon, double,
9327 (size_t) atm->np,
9328 out);
9329 FWRITE(atm->lat, double,
9330 (size_t) atm->np,
9331 out);
9332 for (int iq = 0; iq < ctl->nq; iq++)
9333 FWRITE(atm->q[iq], double,
9334 (size_t) atm->np,
9335 out);
9336
9337 /* Write final flag... */
9338 int final = 999;
9339 FWRITE(&final, int,
9340 1,
9341 out);
9342
9343 /* Close file... */
9344 fclose(out);
9345}
9346
9347/*****************************************************************************/
9348
9350 const char *filename,
9351 const ctl_t *ctl,
9352 const atm_t *atm) {
9353
9354 int tid, pid, ncid, varid;
9355 size_t start[2], count[2];
9356
9357 /* Create file... */
9358 nc_create(filename, NC_NETCDF4, &ncid);
9359
9360 /* Define dimensions... */
9361 NC(nc_def_dim(ncid, "time", 1, &tid));
9362 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
9363
9364 /* Define variables and their attributes... */
9365 int dim_ids[2] = { tid, pid };
9366 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
9367 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
9368 NC_DEF_VAR("LAT", NC_DOUBLE, 1, &pid, "Latitude", "deg",
9369 ctl->atm_nc_level, 0);
9370 NC_DEF_VAR("LON", NC_DOUBLE, 1, &pid, "Longitude", "deg",
9371 ctl->atm_nc_level, 0);
9372 NC_DEF_VAR("PRESS", NC_DOUBLE, 1, &pid, "Pressure", "hPa",
9373 ctl->atm_nc_level, 0);
9374 NC_DEF_VAR("ZETA", NC_DOUBLE, 1, &pid, "Zeta", "K", ctl->atm_nc_level, 0);
9375 for (int iq = 0; iq < ctl->nq; iq++)
9376 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
9377 ctl->qnt_name[iq], ctl->qnt_unit[iq],
9378 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
9379
9380 /* Define global attributes... */
9381 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
9382 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
9383
9384 /* End definitions... */
9385 NC(nc_enddef(ncid));
9386
9387 /* Write data... */
9388 NC_PUT_DOUBLE("time", atm->time, 0);
9389 NC_PUT_DOUBLE("LAT", atm->lat, 0);
9390 NC_PUT_DOUBLE("LON", atm->lon, 0);
9391 NC_PUT_DOUBLE("PRESS", atm->p, 0);
9392 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 0);
9393 for (int iq = 0; iq < ctl->nq; iq++)
9394 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
9395
9396 /* Close file... */
9397 NC(nc_close(ncid));
9398}
9399
9400/*****************************************************************************/
9401
9403 const char *dirname,
9404 const ctl_t *ctl,
9405 const atm_t *atm,
9406 const double t) {
9407
9408 /* Global Counter... */
9409 static size_t out_cnt = 0;
9410
9411 double r, r_start, r_stop;
9412 int year, mon, day, hour, min, sec;
9413 int year_start, mon_start, day_start, hour_start, min_start, sec_start;
9414 int year_stop, mon_stop, day_stop, hour_stop, min_stop, sec_stop;
9415 char filename_out[2 * LEN] = "traj_fix_3d_YYYYMMDDHH_YYYYMMDDHH.nc";
9416
9417 int ncid, varid, tid, pid, cid;
9418 int dim_ids[2];
9419
9420 /* time, nparc */
9421 size_t start[2];
9422 size_t count[2];
9423
9424 /* Determine start and stop times of calculation... */
9425 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
9426 jsec2time(ctl->t_start, &year_start, &mon_start, &day_start, &hour_start,
9427 &min_start, &sec_start, &r_start);
9428 jsec2time(ctl->t_stop, &year_stop, &mon_stop, &day_stop, &hour_stop,
9429 &min_stop, &sec_stop, &r_stop);
9430
9431 sprintf(filename_out, "%s/traj_fix_3d_%02d%02d%02d%02d_%02d%02d%02d%02d.nc",
9432 dirname,
9433 year_start % 100, mon_start, day_start, hour_start,
9434 year_stop % 100, mon_stop, day_stop, hour_stop);
9435 LOG(1, "Write traj file: %s", filename_out);
9436
9437 /* Define hyperslap for the traj_file... */
9438 start[0] = out_cnt;
9439 start[1] = 0;
9440 count[0] = 1;
9441 count[1] = (size_t) atm->np;
9442
9443 /* Create the file at the first timestep... */
9444 if (out_cnt == 0) {
9445
9446 /* Create file... */
9447 nc_create(filename_out, NC_NETCDF4, &ncid);
9448
9449 /* Define dimensions... */
9450 NC(nc_def_dim(ncid, "time", NC_UNLIMITED, &tid));
9451 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
9452 NC(nc_def_dim(ncid, "TMDT", 7, &cid));
9453 dim_ids[0] = tid;
9454 dim_ids[1] = pid;
9455
9456 /* Define variables and their attributes... */
9457 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
9458 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
9459 NC_DEF_VAR("LAT", NC_DOUBLE, 2, dim_ids, "Latitude", "deg",
9460 ctl->atm_nc_level, 0);
9461 NC_DEF_VAR("LON", NC_DOUBLE, 2, dim_ids, "Longitude", "deg",
9462 ctl->atm_nc_level, 0);
9463 NC_DEF_VAR("PRESS", NC_DOUBLE, 2, dim_ids, "Pressure", "hPa",
9464 ctl->atm_nc_level, 0);
9465 NC_DEF_VAR("ZETA", NC_DOUBLE, 2, dim_ids, "Zeta", "K",
9466 ctl->atm_nc_level, 0);
9467 for (int iq = 0; iq < ctl->nq; iq++)
9468 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
9469 ctl->qnt_name[iq], ctl->qnt_unit[iq],
9470 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
9471
9472 /* Define global attributes... */
9473 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
9474 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
9475
9476 /* End definitions... */
9477 NC(nc_enddef(ncid));
9478 NC(nc_close(ncid));
9479 }
9480
9481 /* Increment global counter to change hyperslap... */
9482 out_cnt++;
9483
9484 /* Open file... */
9485 NC(nc_open(filename_out, NC_WRITE, &ncid));
9486
9487 /* Write data... */
9488 NC_PUT_DOUBLE("time", atm->time, 1);
9489 NC_PUT_DOUBLE("LAT", atm->lat, 1);
9490 NC_PUT_DOUBLE("LON", atm->lon, 1);
9491 NC_PUT_DOUBLE("PRESS", atm->p, 1);
9492 if (ctl->advect_vert_coord == 1) {
9493 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta], 1);
9494 } else if (ctl->qnt_zeta >= 0) {
9495 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 1);
9496 }
9497 for (int iq = 0; iq < ctl->nq; iq++)
9498 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 1);
9499
9500 /* Close file... */
9501 NC(nc_close(ncid));
9502
9503 /* At the last time step create the init_fix_YYYYMMDDHH file... */
9504 if ((year == year_stop) && (mon == mon_stop)
9505 && (day == day_stop) && (hour == hour_stop)) {
9506
9507 /* Set filename... */
9508 char filename_init[2 * LEN] = "./init_fix_YYYYMMDDHH.nc";
9509 sprintf(filename_init, "%s/init_fix_%02d%02d%02d%02d.nc",
9510 dirname, year_stop % 100, mon_stop, day_stop, hour_stop);
9511 LOG(1, "Write init file: %s", filename_init);
9512
9513 /* Create file... */
9514 nc_create(filename_init, NC_NETCDF4, &ncid);
9515
9516 /* Define dimensions... */
9517 NC(nc_def_dim(ncid, "time", 1, &tid));
9518 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
9519 dim_ids[0] = tid;
9520 dim_ids[1] = pid;
9521
9522 /* Define variables and their attributes... */
9523 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
9524 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
9525 NC_DEF_VAR("LAT", NC_DOUBLE, 1, &pid, "Latitude", "deg",
9526 ctl->atm_nc_level, 0);
9527 NC_DEF_VAR("LON", NC_DOUBLE, 1, &pid, "Longitude", "deg",
9528 ctl->atm_nc_level, 0);
9529 NC_DEF_VAR("PRESS", NC_DOUBLE, 1, &pid, "Pressure", "hPa",
9530 ctl->atm_nc_level, 0);
9531 NC_DEF_VAR("ZETA", NC_DOUBLE, 1, &pid, "Zeta", "K", ctl->atm_nc_level, 0);
9532 for (int iq = 0; iq < ctl->nq; iq++)
9533 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
9534 ctl->qnt_name[iq], ctl->qnt_unit[iq],
9535 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
9536
9537 /* Define global attributes... */
9538 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
9539 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
9540
9541 /* End definitions... */
9542 NC(nc_enddef(ncid));
9543
9544 /* Write data... */
9545 NC_PUT_DOUBLE("time", atm->time, 0);
9546 NC_PUT_DOUBLE("LAT", atm->lat, 0);
9547 NC_PUT_DOUBLE("LON", atm->lon, 0);
9548 NC_PUT_DOUBLE("PRESS", atm->p, 0);
9549 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 0);
9550 for (int iq = 0; iq < ctl->nq; iq++)
9551 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
9552
9553 /* Close file... */
9554 NC(nc_close(ncid));
9555 }
9556}
9557
9558/*****************************************************************************/
9559
9561 const char *filename,
9562 const ctl_t *ctl,
9563 const atm_t *atm) {
9564
9565 int ncid, obsid, varid;
9566
9567 size_t start[2], count[2];
9568
9569 /* Create file... */
9570 NC(nc_create(filename, NC_NETCDF4, &ncid));
9571
9572 /* Define dimensions... */
9573 NC(nc_def_dim(ncid, "obs", (size_t) atm->np, &obsid));
9574
9575 /* Define variables and their attributes... */
9576 NC_DEF_VAR("time", NC_DOUBLE, 1, &obsid, "time",
9577 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
9578 NC_DEF_VAR("press", NC_DOUBLE, 1, &obsid, "pressure", "hPa",
9579 ctl->atm_nc_level, 0);
9580 NC_DEF_VAR("lon", NC_DOUBLE, 1, &obsid, "longitude", "degrees_east",
9581 ctl->atm_nc_level, 0);
9582 NC_DEF_VAR("lat", NC_DOUBLE, 1, &obsid, "latitude", "degrees_north",
9583 ctl->atm_nc_level, 0);
9584 for (int iq = 0; iq < ctl->nq; iq++)
9585 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 1, &obsid,
9586 ctl->qnt_longname[iq], ctl->qnt_unit[iq],
9587 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
9588
9589 /* Define global attributes... */
9590 NC_PUT_ATT_GLOBAL("featureType", "point");
9591
9592 /* End definitions... */
9593 NC(nc_enddef(ncid));
9594
9595 /* Write data... */
9596 NC_PUT_DOUBLE("time", atm->time, 0);
9597 NC_PUT_DOUBLE("press", atm->p, 0);
9598 NC_PUT_DOUBLE("lon", atm->lon, 0);
9599 NC_PUT_DOUBLE("lat", atm->lat, 0);
9600 for (int iq = 0; iq < ctl->nq; iq++)
9601 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
9602
9603 /* Close file... */
9604 NC(nc_close(ncid));
9605}
9606
9607/*****************************************************************************/
9608
9610 const char *filename,
9611 const ctl_t *ctl,
9612 const atm_t *atm,
9613 const double t) {
9614
9615 static FILE *out;
9616
9617 static double *modmean, *obsmean, *obsstd, *rt, *rz, *rlon, *rlat, *robs,
9618 *area, dlon, dlat, dz, x[NCSI], y[NCSI], obsstdn[NCSI], kz[EP], kw[EP];
9619
9620 static int *obscount, ct, cx, cy, cz, ip, ix, iy, iz, n, nobs, nk;
9621
9622 /* Set timer... */
9623 SELECT_TIMER("WRITE_CSI", "OUTPUT", NVTX_WRITE);
9624
9625 /* Init... */
9626 if (t == ctl->t_start) {
9627
9628 /* Check quantity index for mass... */
9629 if (ctl->qnt_m < 0)
9630 ERRMSG("Need quantity mass!");
9631
9632 /* Allocate... */
9633 ALLOC(area, double,
9634 ctl->csi_ny);
9635 ALLOC(rt, double,
9636 NOBS);
9637 ALLOC(rz, double,
9638 NOBS);
9639 ALLOC(rlon, double,
9640 NOBS);
9641 ALLOC(rlat, double,
9642 NOBS);
9643 ALLOC(robs, double,
9644 NOBS);
9645
9646 /* Read observation data... */
9647 read_obs(ctl->csi_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
9648
9649 /* Read kernel data... */
9650 if (ctl->csi_kernel[0] != '-')
9651 read_kernel(ctl->csi_kernel, kz, kw, &nk);
9652
9653 /* Create new file... */
9654 LOG(1, "Write CSI data: %s", filename);
9655 if (!(out = fopen(filename, "w")))
9656 ERRMSG("Cannot create file!");
9657
9658 /* Write header... */
9659 fprintf(out,
9660 "# $1 = time [s]\n"
9661 "# $2 = number of hits (cx)\n"
9662 "# $3 = number of misses (cy)\n"
9663 "# $4 = number of false alarms (cz)\n"
9664 "# $5 = number of observations (cx + cy)\n"
9665 "# $6 = number of forecasts (cx + cz)\n"
9666 "# $7 = bias (ratio of forecasts and observations) [%%]\n"
9667 "# $8 = probability of detection (POD) [%%]\n"
9668 "# $9 = false alarm rate (FAR) [%%]\n"
9669 "# $10 = critical success index (CSI) [%%]\n");
9670 fprintf(out,
9671 "# $11 = hits associated with random chance\n"
9672 "# $12 = equitable threat score (ETS) [%%]\n"
9673 "# $13 = Pearson linear correlation coefficient\n"
9674 "# $14 = Spearman rank-order correlation coefficient\n"
9675 "# $15 = column density mean error (F - O) [kg/m^2]\n"
9676 "# $16 = column density root mean square error (RMSE) [kg/m^2]\n"
9677 "# $17 = column density mean absolute error [kg/m^2]\n"
9678 "# $18 = log-likelihood function\n"
9679 "# $19 = number of data points\n\n");
9680
9681 /* Set grid box size... */
9682 dz = (ctl->csi_z1 - ctl->csi_z0) / ctl->csi_nz;
9683 dlon = (ctl->csi_lon1 - ctl->csi_lon0) / ctl->csi_nx;
9684 dlat = (ctl->csi_lat1 - ctl->csi_lat0) / ctl->csi_ny;
9685
9686 /* Set horizontal coordinates... */
9687 for (iy = 0; iy < ctl->csi_ny; iy++) {
9688 const double lat = ctl->csi_lat0 + dlat * (iy + 0.5);
9689 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat));
9690 }
9691 }
9692
9693 /* Set time interval... */
9694 const double t0 = t - 0.5 * ctl->dt_mod;
9695 const double t1 = t + 0.5 * ctl->dt_mod;
9696
9697 /* Allocate... */
9698 ALLOC(modmean, double,
9699 ctl->csi_nx * ctl->csi_ny * ctl->csi_nz);
9700 ALLOC(obsmean, double,
9701 ctl->csi_nx * ctl->csi_ny * ctl->csi_nz);
9702 ALLOC(obscount, int,
9703 ctl->csi_nx * ctl->csi_ny * ctl->csi_nz);
9704 ALLOC(obsstd, double,
9705 ctl->csi_nx * ctl->csi_ny * ctl->csi_nz);
9706
9707 /* Loop over observations... */
9708 for (int i = 0; i < nobs; i++) {
9709
9710 /* Check time... */
9711 if (rt[i] < t0)
9712 continue;
9713 else if (rt[i] >= t1)
9714 break;
9715
9716 /* Check observation data... */
9717 if (!isfinite(robs[i]))
9718 continue;
9719
9720 /* Calculate indices... */
9721 ix = (int) ((rlon[i] - ctl->csi_lon0) / dlon);
9722 iy = (int) ((rlat[i] - ctl->csi_lat0) / dlat);
9723 iz = (int) ((rz[i] - ctl->csi_z0) / dz);
9724
9725 /* Check indices... */
9726 if (ix < 0 || ix >= ctl->csi_nx ||
9727 iy < 0 || iy >= ctl->csi_ny || iz < 0 || iz >= ctl->csi_nz)
9728 continue;
9729
9730 /* Get mean observation index... */
9731 int idx = ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
9732 obsmean[idx] += robs[i];
9733 obsstd[idx] += SQR(robs[i]);
9734 obscount[idx]++;
9735 }
9736
9737 /* Analyze model data... */
9738 for (ip = 0; ip < atm->np; ip++) {
9739
9740 /* Check time... */
9741 if (atm->time[ip] < t0 || atm->time[ip] > t1)
9742 continue;
9743
9744 /* Get indices... */
9745 ix = (int) ((atm->lon[ip] - ctl->csi_lon0) / dlon);
9746 iy = (int) ((atm->lat[ip] - ctl->csi_lat0) / dlat);
9747 iz = (int) ((Z(atm->p[ip]) - ctl->csi_z0) / dz);
9748
9749 /* Check indices... */
9750 if (ix < 0 || ix >= ctl->csi_nx ||
9751 iy < 0 || iy >= ctl->csi_ny || iz < 0 || iz >= ctl->csi_nz)
9752 continue;
9753
9754 /* Get total mass in grid cell... */
9755 int idx = ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
9756 modmean[idx] += kernel_weight(kz, kw, nk, atm->p[ip])
9757 * atm->q[ctl->qnt_m][ip];
9758 }
9759
9760 /* Analyze all grid cells... */
9761 for (ix = 0; ix < ctl->csi_nx; ix++)
9762 for (iy = 0; iy < ctl->csi_ny; iy++)
9763 for (iz = 0; iz < ctl->csi_nz; iz++) {
9764
9765 /* Calculate mean observation index... */
9766 int idx = ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
9767 if (obscount[idx] > 0) {
9768 obsmean[idx] /= obscount[idx];
9769 obsstd[idx] -= SQR(obsmean[idx]);
9770 obsstd[idx] = sqrt(obsstd[idx]);
9771 }
9772
9773 /* Calculate column density... */
9774 if (modmean[idx] > 0)
9775 modmean[idx] /= (1e6 * area[iy]);
9776
9777 /* Calculate CSI... */
9778 if (obscount[idx] > 0) {
9779 ct++;
9780 if (obsmean[idx] >= ctl->csi_obsmin &&
9781 modmean[idx] >= ctl->csi_modmin)
9782 cx++;
9783 else if (obsmean[idx] >= ctl->csi_obsmin &&
9784 modmean[idx] < ctl->csi_modmin)
9785 cy++;
9786 else if (obsmean[idx] < ctl->csi_obsmin &&
9787 modmean[idx] >= ctl->csi_modmin)
9788 cz++;
9789 }
9790
9791 /* Save data for other verification statistics... */
9792 if (obscount[idx] > 0
9793 && (obsmean[idx] >= ctl->csi_obsmin
9794 || modmean[idx] >= ctl->csi_modmin)) {
9795 x[n] = modmean[idx];
9796 y[n] = obsmean[idx];
9797 if (modmean[idx] >= ctl->csi_modmin)
9798 obsstdn[n] = obsstd[idx];
9799 if ((++n) >= NCSI)
9800 ERRMSG("Too many data points to calculate statistics!");
9801 }
9802 }
9803
9804 /* Write output... */
9805 if (fmod(t, ctl->csi_dt_out) == 0) {
9806
9807 /* Calculate verification statistics
9808 (https://www.cawcr.gov.au/projects/verification/) ... */
9809 static double work[2 * NCSI], work2[2 * NCSI];;
9810 const int n_obs = cx + cy;
9811 const int n_for = cx + cz;
9812 const double bias = (n_obs > 0) ? 100. * n_for / n_obs : NAN;
9813 const double pod = (n_obs > 0) ? (100. * cx) / n_obs : NAN;
9814 const double far = (n_for > 0) ? (100. * cz) / n_for : NAN;
9815 const double csi =
9816 (cx + cy + cz > 0) ? (100. * cx) / (cx + cy + cz) : NAN;
9817 const double cx_rd = (ct > 0) ? (1. * n_obs * n_for) / ct : NAN;
9818 const double ets = (cx + cy + cz - cx_rd > 0) ?
9819 (100. * (cx - cx_rd)) / (cx + cy + cz - cx_rd) : NAN;
9820 const double rho_p =
9821 (n > 0) ? gsl_stats_correlation(x, 1, y, 1, (size_t) n) : NAN;
9822 const double rho_s =
9823 (n > 0) ? gsl_stats_spearman(x, 1, y, 1, (size_t) n, work) : NAN;
9824 for (int i = 0; i < n; i++) {
9825 work[i] = x[i] - y[i];
9826 work2[i] = (obsstdn[i] != 0) ? (x[i] - y[i]) / obsstdn[i] : 0;
9827 }
9828 const double mean = (n > 0) ? gsl_stats_mean(work, 1, (size_t) n) : NAN;
9829 const double rmse =
9830 (n > 0) ? gsl_stats_sd_with_fixed_mean(work, 1, (size_t) n,
9831 0.0) : NAN;
9832 const double absdev =
9833 (n > 0) ? gsl_stats_absdev_m(work, 1, (size_t) n, 0.0) : NAN;
9834 const double loglikelihood =
9835 (n > 0) ? gsl_stats_tss(work2, 1, (size_t) n) * (-0.5) : GSL_NAN;
9836
9837 /* Write... */
9838 fprintf(out,
9839 "%.2f %d %d %d %d %d %g %g %g %g %g %g %g %g %g %g %g %g %d\n", t,
9840 cx, cy, cz, n_obs, n_for, bias, pod, far, csi, cx_rd, ets, rho_p,
9841 rho_s, mean, rmse, absdev, loglikelihood, n);
9842
9843 /* Set counters to zero... */
9844 n = ct = cx = cy = cz = 0;
9845 }
9846
9847 /* Free... */
9848 free(modmean);
9849 free(obsmean);
9850 free(obscount);
9851 free(obsstd);
9852
9853 /* Finalize... */
9854 if (t == ctl->t_stop) {
9855
9856 /* Close output file... */
9857 fclose(out);
9858
9859 /* Free... */
9860 free(area);
9861 free(rt);
9862 free(rz);
9863 free(rlon);
9864 free(rlat);
9865 free(robs);
9866 }
9867}
9868
9869/*****************************************************************************/
9870
9872 const char *filename,
9873 const ctl_t *ctl,
9874 const atm_t *atm,
9875 const double t) {
9876
9877 static FILE *out;
9878
9879 static double dummy, lat, lon, qm[NQ][NENS], qs[NQ][NENS], xm[NENS][3],
9880 x[3], zm[NENS];
9881
9882 static int n[NENS];
9883
9884 /* Set timer... */
9885 SELECT_TIMER("WRITE_ENS", "OUTPUT", NVTX_WRITE);
9886
9887 /* Check quantities... */
9888 if (ctl->qnt_ens < 0)
9889 ERRMSG("Missing ensemble IDs!");
9890
9891 /* Set time interval... */
9892 const double t0 = t - 0.5 * ctl->dt_mod;
9893 const double t1 = t + 0.5 * ctl->dt_mod;
9894
9895 /* Init... */
9896 for (int i = 0; i < NENS; i++) {
9897 for (int iq = 0; iq < ctl->nq; iq++)
9898 qm[iq][i] = qs[iq][i] = 0;
9899 xm[i][0] = xm[i][1] = xm[i][2] = zm[i] = 0;
9900 n[i] = 0;
9901 }
9902
9903 /* Loop over air parcels... */
9904 for (int ip = 0; ip < atm->np; ip++) {
9905
9906 /* Check time... */
9907 if (atm->time[ip] < t0 || atm->time[ip] > t1)
9908 continue;
9909
9910 /* Check ensemble ID... */
9911 if (atm->q[ctl->qnt_ens][ip] < 0 || atm->q[ctl->qnt_ens][ip] >= NENS)
9912 ERRMSG("Ensemble ID is out of range!");
9913
9914 /* Get means... */
9915 geo2cart(0, atm->lon[ip], atm->lat[ip], x);
9916 for (int iq = 0; iq < ctl->nq; iq++) {
9917 qm[iq][ctl->qnt_ens] += atm->q[iq][ip];
9918 qs[iq][ctl->qnt_ens] += SQR(atm->q[iq][ip]);
9919 }
9920 xm[ctl->qnt_ens][0] += x[0];
9921 xm[ctl->qnt_ens][1] += x[1];
9922 xm[ctl->qnt_ens][2] += x[2];
9923 zm[ctl->qnt_ens] += Z(atm->p[ip]);
9924 n[ctl->qnt_ens]++;
9925 }
9926
9927 /* Create file... */
9928 LOG(1, "Write ensemble data: %s", filename);
9929 if (!(out = fopen(filename, "w")))
9930 ERRMSG("Cannot create file!");
9931
9932 /* Write header... */
9933 fprintf(out,
9934 "# $1 = time [s]\n"
9935 "# $2 = altitude [km]\n"
9936 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
9937 for (int iq = 0; iq < ctl->nq; iq++)
9938 fprintf(out, "# $%d = %s (mean) [%s]\n", 5 + iq,
9939 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
9940 for (int iq = 0; iq < ctl->nq; iq++)
9941 fprintf(out, "# $%d = %s (sigma) [%s]\n", 5 + ctl->nq + iq,
9942 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
9943 fprintf(out, "# $%d = number of members\n\n", 5 + 2 * ctl->nq);
9944
9945 /* Write data... */
9946 for (int i = 0; i < NENS; i++)
9947 if (n[i] > 0) {
9948 cart2geo(xm[i], &dummy, &lon, &lat);
9949 fprintf(out, "%.2f %g %g %g", t, zm[i] / n[i], lon, lat);
9950 for (int iq = 0; iq < ctl->nq; iq++) {
9951 fprintf(out, " ");
9952 fprintf(out, ctl->qnt_format[iq], qm[iq][i] / n[i]);
9953 }
9954 for (int iq = 0; iq < ctl->nq; iq++) {
9955 fprintf(out, " ");
9956 double var = qs[iq][i] / n[i] - SQR(qm[iq][i] / n[i]);
9957 fprintf(out, ctl->qnt_format[iq], (var > 0 ? sqrt(var) : 0));
9958 }
9959 fprintf(out, " %d\n", n[i]);
9960 }
9961
9962 /* Close file... */
9963 fclose(out);
9964}
9965
9966/*****************************************************************************/
9967
9969 const char *filename,
9970 const ctl_t *ctl,
9971 met_t *met0,
9972 met_t *met1,
9973 const atm_t *atm,
9974 const double t) {
9975
9976 static double kz[EP], kw[EP];
9977
9978 static int nk;
9979
9980 double *cd, *mean[NQ], *sigma[NQ], *vmr_impl, *z, *lon, *lat, *area, *press;
9981
9982 int *ixs, *iys, *izs, *np;
9983
9984 /* Set timer... */
9985 SELECT_TIMER("WRITE_GRID", "OUTPUT", NVTX_WRITE);
9986
9987 /* Write info... */
9988 LOG(1, "Write grid data: %s", filename);
9989
9990 /* Init... */
9991 if (t == ctl->t_start) {
9992
9993 /* Read kernel data... */
9994 if (ctl->grid_kernel[0] != '-')
9995 read_kernel(ctl->grid_kernel, kz, kw, &nk);
9996 }
9997
9998 /* Allocate... */
9999 ALLOC(cd, double,
10000 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10001 for (int iq = 0; iq < ctl->nq; iq++) {
10002 ALLOC(mean[iq], double,
10003 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10004 ALLOC(sigma[iq], double,
10005 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10006 }
10007 ALLOC(vmr_impl, double,
10008 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10009 ALLOC(z, double,
10010 ctl->grid_nz);
10011 ALLOC(lon, double,
10012 ctl->grid_nx);
10013 ALLOC(lat, double,
10014 ctl->grid_ny);
10015 ALLOC(area, double,
10016 ctl->grid_ny);
10017 ALLOC(press, double,
10018 ctl->grid_nz);
10019 ALLOC(np, int,
10020 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10021 ALLOC(ixs, int,
10022 atm->np);
10023 ALLOC(iys, int,
10024 atm->np);
10025 ALLOC(izs, int,
10026 atm->np);
10027
10028 /* Set grid box size... */
10029 const double dz = (ctl->grid_z1 - ctl->grid_z0) / ctl->grid_nz;
10030 const double dlon = (ctl->grid_lon1 - ctl->grid_lon0) / ctl->grid_nx;
10031 const double dlat = (ctl->grid_lat1 - ctl->grid_lat0) / ctl->grid_ny;
10032
10033 /* Set vertical coordinates... */
10034#pragma omp parallel for default(shared)
10035 for (int iz = 0; iz < ctl->grid_nz; iz++) {
10036 z[iz] = ctl->grid_z0 + dz * (iz + 0.5);
10037 press[iz] = P(z[iz]);
10038 }
10039
10040 /* Set horizontal coordinates... */
10041 for (int ix = 0; ix < ctl->grid_nx; ix++)
10042 lon[ix] = ctl->grid_lon0 + dlon * (ix + 0.5);
10043#pragma omp parallel for default(shared)
10044 for (int iy = 0; iy < ctl->grid_ny; iy++) {
10045 lat[iy] = ctl->grid_lat0 + dlat * (iy + 0.5);
10046 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
10047 }
10048
10049 /* Set time interval for output... */
10050 const double t0 = t - 0.5 * ctl->dt_mod;
10051 const double t1 = t + 0.5 * ctl->dt_mod;
10052
10053 /* Get grid box indices... */
10054#pragma omp parallel for default(shared)
10055 for (int ip = 0; ip < atm->np; ip++) {
10056 ixs[ip] = (int) ((atm->lon[ip] - ctl->grid_lon0) / dlon);
10057 iys[ip] = (int) ((atm->lat[ip] - ctl->grid_lat0) / dlat);
10058 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->grid_z0) / dz);
10059 if (atm->time[ip] < t0 || atm->time[ip] > t1
10060 || ixs[ip] < 0 || ixs[ip] >= ctl->grid_nx
10061 || iys[ip] < 0 || iys[ip] >= ctl->grid_ny
10062 || izs[ip] < 0 || izs[ip] >= ctl->grid_nz)
10063 izs[ip] = -1;
10064 }
10065
10066 /* Average data... */
10067 for (int ip = 0; ip < atm->np; ip++)
10068 if (izs[ip] >= 0) {
10069 int idx =
10070 ARRAY_3D(ixs[ip], iys[ip], ctl->grid_ny, izs[ip], ctl->grid_nz);
10071 double kernel = kernel_weight(kz, kw, nk, atm->p[ip]);
10072 np[idx]++;
10073 for (int iq = 0; iq < ctl->nq; iq++) {
10074 mean[iq][idx] += kernel * atm->q[iq][ip];
10075 sigma[iq][idx] += SQR(kernel * atm->q[iq][ip]);
10076 }
10077 }
10078
10079 /* Calculate column density and volume mixing ratio... */
10080#pragma omp parallel for default(shared)
10081 for (int ix = 0; ix < ctl->grid_nx; ix++)
10082 for (int iy = 0; iy < ctl->grid_ny; iy++)
10083 for (int iz = 0; iz < ctl->grid_nz; iz++) {
10084
10085 /* Get grid index... */
10086 int idx = ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz);
10087
10088 /* Calculate column density... */
10089 cd[idx] = NAN;
10090 if (ctl->qnt_m >= 0)
10091 cd[idx] = mean[ctl->qnt_m][idx] / (1e6 * area[iy]);
10092
10093 /* Calculate volume mixing ratio (implicit)... */
10094 vmr_impl[idx] = NAN;
10095 if (ctl->qnt_m >= 0 && ctl->molmass > 0 && met0 != NULL
10096 && met1 != NULL) {
10097 vmr_impl[idx] = 0;
10098 if (mean[ctl->qnt_m][idx] > 0) {
10099
10100 /* Get temperature... */
10101 double temp;
10103 intpol_met_time_3d(met0, met0->t, met1, met1->t, t, press[iz],
10104 lon[ix], lat[iy], &temp, ci, cw, 1);
10105
10106 /* Calculate volume mixing ratio... */
10107 vmr_impl[idx] =
10108 MA / ctl->molmass * cd[idx] / (RHO(press[iz], temp) * dz * 1e3);
10109 }
10110 }
10111
10112 /* Calculate mean... */
10113 if (np[idx] > 0)
10114 for (int iq = 0; iq < ctl->nq; iq++) {
10115 mean[iq][idx] /= np[idx];
10116 double var = sigma[iq][idx] / np[idx] - SQR(mean[iq][idx]);
10117 sigma[iq][idx] = (var > 0 ? sqrt(var) : 0);
10118 } else
10119 for (int iq = 0; iq < ctl->nq; iq++) {
10120 mean[iq][idx] = NAN;
10121 sigma[iq][idx] = NAN;
10122 }
10123 }
10124
10125 /* Write ASCII data... */
10126 if (ctl->grid_type == 0)
10127 write_grid_asc(filename, ctl, cd, mean, sigma, vmr_impl,
10128 t, z, lon, lat, area, dz, np);
10129
10130 /* Write netCDF data... */
10131 else if (ctl->grid_type == 1)
10132 write_grid_nc(filename, ctl, cd, mean, sigma, vmr_impl,
10133 t, z, lon, lat, area, dz, np);
10134
10135 /* Error message... */
10136 else
10137 ERRMSG("Grid data format GRID_TYPE unknown!");
10138
10139 /* Free... */
10140 free(cd);
10141 for (int iq = 0; iq < ctl->nq; iq++) {
10142 free(mean[iq]);
10143 free(sigma[iq]);
10144 }
10145 free(vmr_impl);
10146 free(z);
10147 free(lon);
10148 free(lat);
10149 free(area);
10150 free(press);
10151 free(np);
10152 free(ixs);
10153 free(iys);
10154 free(izs);
10155}
10156
10157/*****************************************************************************/
10158
10160 const char *filename,
10161 const ctl_t *ctl,
10162 const double *cd,
10163 double *mean[NQ],
10164 double *sigma[NQ],
10165 const double *vmr_impl,
10166 const double t,
10167 const double *z,
10168 const double *lon,
10169 const double *lat,
10170 const double *area,
10171 const double dz,
10172 const int *np) {
10173
10174 FILE *out;
10175
10176 /* Check if gnuplot output is requested... */
10177 if (ctl->grid_gpfile[0] != '-') {
10178
10179 /* Create gnuplot pipe... */
10180 if (!(out = popen("gnuplot", "w")))
10181 ERRMSG("Cannot create pipe to gnuplot!");
10182
10183 /* Set plot filename... */
10184 fprintf(out, "set out \"%s.png\"\n", filename);
10185
10186 /* Set time string... */
10187 double r;
10188 int year, mon, day, hour, min, sec;
10189 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
10190 fprintf(out, "timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
10191 year, mon, day, hour, min);
10192
10193 /* Dump gnuplot file to pipe... */
10194 FILE *in;
10195 char line[LEN];
10196 if (!(in = fopen(ctl->grid_gpfile, "r")))
10197 ERRMSG("Cannot open file!");
10198 while (fgets(line, LEN, in))
10199 fprintf(out, "%s", line);
10200 fclose(in);
10201 }
10202
10203 else {
10204
10205 /* Create file... */
10206 if (!(out = fopen(filename, "w")))
10207 ERRMSG("Cannot create file!");
10208 }
10209
10210 /* Write header... */
10211 fprintf(out,
10212 "# $1 = time [s]\n"
10213 "# $2 = altitude [km]\n"
10214 "# $3 = longitude [deg]\n"
10215 "# $4 = latitude [deg]\n"
10216 "# $5 = surface area [km^2]\n"
10217 "# $6 = layer depth [km]\n"
10218 "# $7 = column density (implicit) [kg/m^2]\n"
10219 "# $8 = volume mixing ratio (implicit) [ppv]\n"
10220 "# $9 = number of particles [1]\n");
10221 for (int iq = 0; iq < ctl->nq; iq++)
10222 fprintf(out, "# $%i = %s (mean) [%s]\n", 10 + iq, ctl->qnt_name[iq],
10223 ctl->qnt_unit[iq]);
10224 if (ctl->grid_stddev)
10225 for (int iq = 0; iq < ctl->nq; iq++)
10226 fprintf(out, "# $%i = %s (stddev) [%s]\n", 10 + ctl->nq + iq,
10227 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
10228 fprintf(out, "\n");
10229
10230 /* Write data... */
10231 for (int ix = 0; ix < ctl->grid_nx; ix++) {
10232 if (ix > 0 && ctl->grid_ny > 1 && !ctl->grid_sparse)
10233 fprintf(out, "\n");
10234 for (int iy = 0; iy < ctl->grid_ny; iy++) {
10235 if (iy > 0 && ctl->grid_nz > 1 && !ctl->grid_sparse)
10236 fprintf(out, "\n");
10237 for (int iz = 0; iz < ctl->grid_nz; iz++) {
10238 int idx = ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz);
10239 if (!ctl->grid_sparse || vmr_impl[idx] > 0) {
10240 fprintf(out, "%.2f %g %g %g %g %g %g %g %d", t, z[iz], lon[ix],
10241 lat[iy], area[iy], dz, cd[idx], vmr_impl[idx], np[idx]);
10242 for (int iq = 0; iq < ctl->nq; iq++) {
10243 fprintf(out, " ");
10244 fprintf(out, ctl->qnt_format[iq], mean[iq][idx]);
10245 }
10246 if (ctl->grid_stddev)
10247 for (int iq = 0; iq < ctl->nq; iq++) {
10248 fprintf(out, " ");
10249 fprintf(out, ctl->qnt_format[iq], sigma[iq][idx]);
10250 }
10251 fprintf(out, "\n");
10252 }
10253 }
10254 }
10255 }
10256
10257 /* Close file... */
10258 fclose(out);
10259}
10260
10261/*****************************************************************************/
10262
10264 const char *filename,
10265 const ctl_t *ctl,
10266 const double *cd,
10267 double *mean[NQ],
10268 double *sigma[NQ],
10269 const double *vmr_impl,
10270 const double t,
10271 const double *z,
10272 const double *lon,
10273 const double *lat,
10274 const double *area,
10275 const double dz,
10276 const int *np) {
10277
10278 char longname[2 * LEN], varname[2 * LEN];
10279
10280 double *help;
10281
10282 int *help2, ncid, dimid[10], varid;
10283
10284 size_t start[2], count[2];
10285
10286 /* Allocate... */
10287 ALLOC(help, double,
10288 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10289 ALLOC(help2, int,
10290 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
10291
10292 /* Create file... */
10293 NC(nc_create(filename, NC_NETCDF4, &ncid));
10294
10295 /* Define dimensions... */
10296 NC(nc_def_dim(ncid, "time", 1, &dimid[0]));
10297 NC(nc_def_dim(ncid, "z", (size_t) ctl->grid_nz, &dimid[1]));
10298 NC(nc_def_dim(ncid, "lat", (size_t) ctl->grid_ny, &dimid[2]));
10299 NC(nc_def_dim(ncid, "lon", (size_t) ctl->grid_nx, &dimid[3]));
10300 NC(nc_def_dim(ncid, "dz", 1, &dimid[4]));
10301
10302 /* Define variables and their attributes... */
10303 NC_DEF_VAR("time", NC_DOUBLE, 1, &dimid[0], "time",
10304 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
10305 NC_DEF_VAR("z", NC_DOUBLE, 1, &dimid[1], "altitude", "km", 0, 0);
10306 NC_DEF_VAR("lat", NC_DOUBLE, 1, &dimid[2], "latitude", "degrees_north", 0,
10307 0);
10308 NC_DEF_VAR("lon", NC_DOUBLE, 1, &dimid[3], "longitude", "degrees_east", 0,
10309 0);
10310 NC_DEF_VAR("dz", NC_DOUBLE, 1, &dimid[1], "layer depth", "km", 0, 0);
10311 NC_DEF_VAR("area", NC_DOUBLE, 1, &dimid[2], "surface area", "km**2", 0, 0);
10312
10313 NC_DEF_VAR("cd", NC_FLOAT, 4, dimid, "column density", "kg m**-2",
10314 ctl->grid_nc_level, 0);
10315 NC_DEF_VAR("vmr_impl", NC_FLOAT, 4, dimid, "volume mixing ratio (implicit)",
10316 "ppv", ctl->grid_nc_level, 0);
10317 NC_DEF_VAR("np", NC_INT, 4, dimid, "number of particles", "1", 0, 0);
10318 for (int iq = 0; iq < ctl->nq; iq++) {
10319 sprintf(varname, "%s_mean", ctl->qnt_name[iq]);
10320 sprintf(longname, "%s (mean)", ctl->qnt_longname[iq]);
10321 NC_DEF_VAR(varname, NC_DOUBLE, 4, dimid, longname, ctl->qnt_unit[iq],
10322 ctl->grid_nc_level, ctl->grid_nc_quant[iq]);
10323 if (ctl->grid_stddev) {
10324 sprintf(varname, "%s_stddev", ctl->qnt_name[iq]);
10325 sprintf(longname, "%s (stddev)", ctl->qnt_longname[iq]);
10326 NC_DEF_VAR(varname, NC_DOUBLE, 4, dimid, longname, ctl->qnt_unit[iq],
10327 ctl->grid_nc_level, ctl->grid_nc_quant[iq]);
10328 }
10329 }
10330 /* End definitions... */
10331 NC(nc_enddef(ncid));
10332
10333 /* Write data... */
10334 NC_PUT_DOUBLE("time", &t, 0);
10335 NC_PUT_DOUBLE("lon", lon, 0);
10336 NC_PUT_DOUBLE("lat", lat, 0);
10337 NC_PUT_DOUBLE("z", z, 0);
10338 NC_PUT_DOUBLE("area", area, 0);
10339 NC_PUT_DOUBLE("dz", &dz, 0);
10340
10341 for (int ix = 0; ix < ctl->grid_nx; ix++)
10342 for (int iy = 0; iy < ctl->grid_ny; iy++)
10343 for (int iz = 0; iz < ctl->grid_nz; iz++)
10344 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
10345 cd[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
10346 NC_PUT_DOUBLE("cd", help, 0);
10347
10348 for (int ix = 0; ix < ctl->grid_nx; ix++)
10349 for (int iy = 0; iy < ctl->grid_ny; iy++)
10350 for (int iz = 0; iz < ctl->grid_nz; iz++)
10351 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
10352 vmr_impl[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
10353 NC_PUT_DOUBLE("vmr_impl", help, 0);
10354
10355 for (int ix = 0; ix < ctl->grid_nx; ix++)
10356 for (int iy = 0; iy < ctl->grid_ny; iy++)
10357 for (int iz = 0; iz < ctl->grid_nz; iz++)
10358 help2[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
10359 np[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
10360 NC_PUT_INT("np", help2, 0);
10361
10362 for (int iq = 0; iq < ctl->nq; iq++) {
10363 sprintf(varname, "%s_mean", ctl->qnt_name[iq]);
10364 for (int ix = 0; ix < ctl->grid_nx; ix++)
10365 for (int iy = 0; iy < ctl->grid_ny; iy++)
10366 for (int iz = 0; iz < ctl->grid_nz; iz++)
10367 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
10368 mean[iq][ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
10369 NC_PUT_DOUBLE(varname, help, 0);
10370 }
10371
10372 if (ctl->grid_stddev)
10373 for (int iq = 0; iq < ctl->nq; iq++) {
10374 sprintf(varname, "%s_stddev", ctl->qnt_name[iq]);
10375 for (int ix = 0; ix < ctl->grid_nx; ix++)
10376 for (int iy = 0; iy < ctl->grid_ny; iy++)
10377 for (int iz = 0; iz < ctl->grid_nz; iz++)
10378 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
10379 sigma[iq][ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
10380 NC_PUT_DOUBLE(varname, help, 0);
10381 }
10382
10383 /* Close file... */
10384 NC(nc_close(ncid));
10385
10386 /* Free... */
10387 free(help);
10388 free(help2);
10389}
10390
10391/*****************************************************************************/
10392
10394 const char *filename,
10395 const ctl_t *ctl,
10396 met_t *met) {
10397
10398 /* Create file... */
10399 FILE *out;
10400 if (!(out = fopen(filename, "w")))
10401 ERRMSG("Cannot create file!");
10402
10403 /* Write type of binary data... */
10404 FWRITE(&ctl->met_type, int,
10405 1,
10406 out);
10407
10408 /* Write version of binary data... */
10409 int version = 103;
10410 FWRITE(&version, int,
10411 1,
10412 out);
10413
10414 /* Write grid data... */
10415 FWRITE(&met->time, double,
10416 1,
10417 out);
10418 FWRITE(&met->nx, int,
10419 1,
10420 out);
10421 FWRITE(&met->ny, int,
10422 1,
10423 out);
10424 FWRITE(&met->np, int,
10425 1,
10426 out);
10427 FWRITE(met->lon, double,
10428 (size_t) met->nx,
10429 out);
10430 FWRITE(met->lat, double,
10431 (size_t) met->ny,
10432 out);
10433 FWRITE(met->p, double,
10434 (size_t) met->np,
10435 out);
10436
10437 /* Write surface data... */
10438 write_met_bin_2d(out, met, met->ps, "PS");
10439 write_met_bin_2d(out, met, met->ts, "TS");
10440 write_met_bin_2d(out, met, met->zs, "ZS");
10441 write_met_bin_2d(out, met, met->us, "US");
10442 write_met_bin_2d(out, met, met->vs, "VS");
10443 write_met_bin_2d(out, met, met->ess, "ESS");
10444 write_met_bin_2d(out, met, met->nss, "NSS");
10445 write_met_bin_2d(out, met, met->shf, "SHF");
10446 write_met_bin_2d(out, met, met->lsm, "LSM");
10447 write_met_bin_2d(out, met, met->sst, "SST");
10448 write_met_bin_2d(out, met, met->pbl, "PBL");
10449 write_met_bin_2d(out, met, met->pt, "PT");
10450 write_met_bin_2d(out, met, met->tt, "TT");
10451 write_met_bin_2d(out, met, met->zt, "ZT");
10452 write_met_bin_2d(out, met, met->h2ot, "H2OT");
10453 write_met_bin_2d(out, met, met->pct, "PCT");
10454 write_met_bin_2d(out, met, met->pcb, "PCB");
10455 write_met_bin_2d(out, met, met->cl, "CL");
10456 write_met_bin_2d(out, met, met->plcl, "PLCL");
10457 write_met_bin_2d(out, met, met->plfc, "PLFC");
10458 write_met_bin_2d(out, met, met->pel, "PEL");
10459 write_met_bin_2d(out, met, met->cape, "CAPE");
10460 write_met_bin_2d(out, met, met->cin, "CIN");
10461 write_met_bin_2d(out, met, met->o3c, "O3C");
10462
10463 /* Write level data... */
10464 write_met_bin_3d(out, ctl, met, met->z, "Z",
10465 (ctl->met_zfp_tol_z <= 0 ? ctl->met_zfp_prec : 0),
10466 ctl->met_zfp_tol_z);
10467 write_met_bin_3d(out, ctl, met, met->t, "T",
10468 (ctl->met_zfp_tol_t <= 0 ? ctl->met_zfp_prec : 0),
10469 ctl->met_zfp_tol_t);
10470 write_met_bin_3d(out, ctl, met, met->u, "U", ctl->met_zfp_prec, 0);
10471 write_met_bin_3d(out, ctl, met, met->v, "V", ctl->met_zfp_prec, 0);
10472 write_met_bin_3d(out, ctl, met, met->w, "W", ctl->met_zfp_prec, 0);
10473 write_met_bin_3d(out, ctl, met, met->pv, "PV", ctl->met_zfp_prec, 0);
10474 write_met_bin_3d(out, ctl, met, met->h2o, "H2O", ctl->met_zfp_prec, 0);
10475 write_met_bin_3d(out, ctl, met, met->o3, "O3", ctl->met_zfp_prec, 0);
10476 write_met_bin_3d(out, ctl, met, met->lwc, "LWC", ctl->met_zfp_prec, 0);
10477 write_met_bin_3d(out, ctl, met, met->rwc, "RWC", ctl->met_zfp_prec, 0);
10478 write_met_bin_3d(out, ctl, met, met->iwc, "IWC", ctl->met_zfp_prec, 0);
10479 write_met_bin_3d(out, ctl, met, met->swc, "SWC", ctl->met_zfp_prec, 0);
10480 write_met_bin_3d(out, ctl, met, met->cc, "CC", ctl->met_zfp_prec, 0);
10481
10482 /* Write final flag... */
10483 int final = 999;
10484 FWRITE(&final, int,
10485 1,
10486 out);
10487
10488 /* Close file... */
10489 fclose(out);
10490}
10491
10492/*****************************************************************************/
10493
10495 FILE *out,
10496 met_t *met,
10497 float var[EX][EY],
10498 const char *varname) {
10499
10500 float *help;
10501
10502 /* Allocate... */
10503 ALLOC(help, float,
10504 EX * EY);
10505
10506 /* Copy data... */
10507 for (int ix = 0; ix < met->nx; ix++)
10508 for (int iy = 0; iy < met->ny; iy++)
10509 help[ARRAY_2D(ix, iy, met->ny)] = var[ix][iy];
10510
10511 /* Write uncompressed data... */
10512 LOG(2, "Write 2-D variable: %s (uncompressed)", varname);
10513 FWRITE(help, float,
10514 (size_t) (met->nx * met->ny),
10515 out);
10516
10517 /* Free... */
10518 free(help);
10519}
10520
10521/*****************************************************************************/
10522
10524 FILE *out,
10525 const ctl_t *ctl,
10526 met_t *met,
10527 float var[EX][EY][EP],
10528 const char *varname,
10529 const int precision,
10530 const double tolerance) {
10531
10532 float *help;
10533
10534 /* Allocate... */
10535 ALLOC(help, float,
10536 EX * EY * EP);
10537
10538 /* Copy data... */
10539#pragma omp parallel for default(shared) collapse(2)
10540 for (int ix = 0; ix < met->nx; ix++)
10541 for (int iy = 0; iy < met->ny; iy++)
10542 for (int ip = 0; ip < met->np; ip++)
10543 help[ARRAY_3D(ix, iy, met->ny, ip, met->np)] = var[ix][iy][ip];
10544
10545 /* Write uncompressed data... */
10546 if (ctl->met_type == 1) {
10547 LOG(2, "Write 3-D variable: %s (uncompressed)", varname);
10548 FWRITE(help, float,
10549 (size_t) (met->nx * met->ny * met->np),
10550 out);
10551 }
10552
10553 /* Write packed data... */
10554 else if (ctl->met_type == 2)
10555 compress_pck(varname, help, (size_t) (met->ny * met->nx),
10556 (size_t) met->np, 0, out);
10557
10558 /* Write zfp data... */
10559#ifdef ZFP
10560 else if (ctl->met_type == 3) {
10561 FWRITE(&precision, int,
10562 1,
10563 out);
10564 FWRITE(&tolerance, double,
10565 1,
10566 out);
10567 compress_zfp(varname, help, met->np, met->ny, met->nx, precision,
10568 tolerance, 0, out);
10569 }
10570#endif
10571
10572 /* Write zstd data... */
10573#ifdef ZSTD
10574 else if (ctl->met_type == 4)
10575 compress_zstd(varname, help, (size_t) (met->np * met->ny * met->nx), 0,
10576 out);
10577#endif
10578
10579 /* Write cmultiscale data... */
10580#ifdef CMS
10581 else if (ctl->met_type == 5) {
10582 compress_cms(ctl, varname, help, (size_t) met->nx, (size_t) met->ny,
10583 (size_t) met->np, 0, out);
10584 }
10585#endif
10586
10587 /* Unknown method... */
10588 else {
10589 ERRMSG("MET_TYPE not supported!");
10590 LOG(3, "%d %g", precision, tolerance);
10591 }
10592
10593 /* Free... */
10594 free(help);
10595}
10596
10597/*****************************************************************************/
10598
10600 const char *filename,
10601 const ctl_t *ctl,
10602 met_t *met) {
10603
10604 /* Create file... */
10605 int ncid, varid;
10606 size_t start[4], count[4];
10607 nc_create(filename, NC_NETCDF4, &ncid);
10608
10609 /* Define dimensions... */
10610 int tid, lonid, latid, levid;
10611 NC(nc_def_dim(ncid, "time", 1, &tid));
10612 NC(nc_def_dim(ncid, "lon", (size_t) met->nx, &lonid));
10613 NC(nc_def_dim(ncid, "lat", (size_t) met->ny, &latid));
10614 NC(nc_def_dim(ncid, "lev", (size_t) met->np, &levid));
10615
10616 /* Define grid... */
10617 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "time",
10618 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
10619 NC_DEF_VAR("lon", NC_DOUBLE, 1, &lonid, "longitude", "degrees_east", 0, 0);
10620 NC_DEF_VAR("lat", NC_DOUBLE, 1, &latid, "latitude", "degrees_north", 0, 0);
10621 NC_DEF_VAR("lev", NC_DOUBLE, 1, &levid, "pressure", "Pa", 0, 0);
10622
10623 /* Define surface variables... */
10624 int dimid2[2] = { latid, lonid };
10625 NC_DEF_VAR("sp", NC_FLOAT, 2, dimid2, "Surface pressure", "Pa",
10626 ctl->met_nc_level, 0);
10627 NC_DEF_VAR("z", NC_FLOAT, 2, dimid2, "Geopotential", "m**2 s**-2",
10628 ctl->met_nc_level, 0);
10629 NC_DEF_VAR("t2m", NC_FLOAT, 2, dimid2, "2 metre temperature", "K",
10630 ctl->met_nc_level, 0);
10631 NC_DEF_VAR("u10m", NC_FLOAT, 2, dimid2, "10 metre U wind component",
10632 "m s**-1", ctl->met_nc_level, 0);
10633 NC_DEF_VAR("v10m", NC_FLOAT, 2, dimid2, "10 metre V wind component",
10634 "m s**-1", ctl->met_nc_level, 0);
10635 NC_DEF_VAR("iews", NC_FLOAT, 2, dimid2,
10636 "Instantaneous eastward turbulent surface stress", "N m**-2",
10637 ctl->met_nc_level, 0);
10638 NC_DEF_VAR("inss", NC_FLOAT, 2, dimid2,
10639 "Instantaneous northward turbulent surface stress", "N m**-2",
10640 ctl->met_nc_level, 0);
10641 NC_DEF_VAR("ishf", NC_FLOAT, 2, dimid2,
10642 "Instantaneous surface sensible heat flux", "W m**-1",
10643 ctl->met_nc_level, 0);
10644 NC_DEF_VAR("lsm", NC_FLOAT, 2, dimid2, "Land/sea mask", "-",
10645 ctl->met_nc_level, 0);
10646 NC_DEF_VAR("sstk", NC_FLOAT, 2, dimid2, "Sea surface temperature", "K",
10647 ctl->met_nc_level, 0);
10648 NC_DEF_VAR("blp", NC_FLOAT, 2, dimid2, "Boundary layer pressure", "Pa",
10649 ctl->met_nc_level, 0);
10650 NC_DEF_VAR("pt", NC_FLOAT, 2, dimid2, "Tropopause pressure", "Pa",
10651 ctl->met_nc_level, 0);
10652 NC_DEF_VAR("tt", NC_FLOAT, 2, dimid2, "Tropopause temperature", "K",
10653 ctl->met_nc_level, 0);
10654 NC_DEF_VAR("zt", NC_FLOAT, 2, dimid2, "Tropopause height", "m",
10655 ctl->met_nc_level, 0);
10656 NC_DEF_VAR("h2ot", NC_FLOAT, 2, dimid2, "Tropopause water vapor", "ppv",
10657 ctl->met_nc_level, 0);
10658 NC_DEF_VAR("pct", NC_FLOAT, 2, dimid2, "Cloud top pressure", "Pa",
10659 ctl->met_nc_level, 0);
10660 NC_DEF_VAR("pcb", NC_FLOAT, 2, dimid2, "Cloud bottom pressure", "Pa",
10661 ctl->met_nc_level, 0);
10662 NC_DEF_VAR("cl", NC_FLOAT, 2, dimid2, "Total column cloud water", "kg m**2",
10663 ctl->met_nc_level, 0);
10664 NC_DEF_VAR("plcl", NC_FLOAT, 2, dimid2,
10665 "Pressure at lifted condensation level (LCL)", "Pa",
10666 ctl->met_nc_level, 0);
10667 NC_DEF_VAR("plfc", NC_FLOAT, 2, dimid2,
10668 "Pressure at level of free convection (LFC)", "Pa",
10669 ctl->met_nc_level, 0);
10670 NC_DEF_VAR("pel", NC_FLOAT, 2, dimid2, "Pressure at equilibrium level (EL)",
10671 "Pa", ctl->met_nc_level, 0);
10672 NC_DEF_VAR("cape", NC_FLOAT, 2, dimid2,
10673 "Convective available potential energy", "J kg**-1",
10674 ctl->met_nc_level, 0);
10675 NC_DEF_VAR("cin", NC_FLOAT, 2, dimid2, "Convective inhibition", "J kg**-1",
10676 ctl->met_nc_level, 0);
10677 NC_DEF_VAR("o3c", NC_FLOAT, 2, dimid2, "Total column ozone", "DU",
10678 ctl->met_nc_level, 0);
10679
10680 /* Define level data... */
10681 int dimid3[3] = { levid, latid, lonid };
10682 NC_DEF_VAR("t", NC_FLOAT, 3, dimid3, "Temperature", "K",
10683 ctl->met_nc_level, ctl->met_nc_quant);
10684 NC_DEF_VAR("u", NC_FLOAT, 3, dimid3, "U velocity", "m s**-1",
10685 ctl->met_nc_level, ctl->met_nc_quant);
10686 NC_DEF_VAR("v", NC_FLOAT, 3, dimid3, "V velocity", "m s**-1",
10687 ctl->met_nc_level, ctl->met_nc_quant);
10688 NC_DEF_VAR("w", NC_FLOAT, 3, dimid3, "Vertical velocity", "Pa s**-1",
10689 ctl->met_nc_level, ctl->met_nc_quant);
10690 NC_DEF_VAR("q", NC_FLOAT, 3, dimid3, "Specific humidity", "kg kg**-1",
10691 ctl->met_nc_level, ctl->met_nc_quant);
10692 NC_DEF_VAR("o3", NC_FLOAT, 3, dimid3, "Ozone mass mixing ratio",
10693 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
10694 NC_DEF_VAR("clwc", NC_FLOAT, 3, dimid3, "Cloud liquid water content",
10695 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
10696 NC_DEF_VAR("crwc", NC_FLOAT, 3, dimid3, "Cloud rain water content",
10697 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
10698 NC_DEF_VAR("ciwc", NC_FLOAT, 3, dimid3, "Cloud ice water content",
10699 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
10700 NC_DEF_VAR("cswc", NC_FLOAT, 3, dimid3, "Cloud snow water content",
10701 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
10702 NC_DEF_VAR("cc", NC_FLOAT, 3, dimid3, "Cloud cover", "-",
10703 ctl->met_nc_level, ctl->met_nc_quant);
10704
10705 /* End definitions... */
10706 NC(nc_enddef(ncid));
10707
10708 /* Write grid data... */
10709 NC_PUT_DOUBLE("time", &met->time, 0);
10710 NC_PUT_DOUBLE("lon", met->lon, 0);
10711 NC_PUT_DOUBLE("lat", met->lat, 0);
10712 double phelp[EP];
10713 for (int ip = 0; ip < met->np; ip++)
10714 phelp[ip] = 100. * met->p[ip];
10715 NC_PUT_DOUBLE("lev", phelp, 0);
10716
10717 /* Write surface data... */
10718 write_met_nc_2d(ncid, "sp", met, met->ps, 100.0f);
10719 write_met_nc_2d(ncid, "z", met, met->zs, (float) (1000. * G0));
10720 write_met_nc_2d(ncid, "t2m", met, met->ts, 1.0f);
10721 write_met_nc_2d(ncid, "u10m", met, met->us, 1.0f);
10722 write_met_nc_2d(ncid, "v10m", met, met->vs, 1.0f);
10723 write_met_nc_2d(ncid, "iews", met, met->ess, 1.0f);
10724 write_met_nc_2d(ncid, "inss", met, met->nss, 1.0f);
10725 write_met_nc_2d(ncid, "ishf", met, met->shf, 1.0f);
10726 write_met_nc_2d(ncid, "lsm", met, met->lsm, 1.0f);
10727 write_met_nc_2d(ncid, "sstk", met, met->sst, 1.0f);
10728 write_met_nc_2d(ncid, "blp", met, met->pbl, 100.0f);
10729 write_met_nc_2d(ncid, "pt", met, met->pt, 100.0f);
10730 write_met_nc_2d(ncid, "tt", met, met->tt, 1.0f);
10731 write_met_nc_2d(ncid, "zt", met, met->zt, 1000.0f);
10732 write_met_nc_2d(ncid, "h2ot", met, met->h2ot, 1.0f);
10733 write_met_nc_2d(ncid, "pct", met, met->pct, 100.0f);
10734 write_met_nc_2d(ncid, "pcb", met, met->pcb, 100.0f);
10735 write_met_nc_2d(ncid, "cl", met, met->cl, 1.0f);
10736 write_met_nc_2d(ncid, "plcl", met, met->plcl, 100.0f);
10737 write_met_nc_2d(ncid, "plfc", met, met->plfc, 100.0f);
10738 write_met_nc_2d(ncid, "pel", met, met->pel, 100.0f);
10739 write_met_nc_2d(ncid, "cape", met, met->cape, 1.0f);
10740 write_met_nc_2d(ncid, "cin", met, met->cin, 1.0f);
10741 write_met_nc_2d(ncid, "o3c", met, met->o3c, 1.0f);
10742
10743 /* Write level data... */
10744 write_met_nc_3d(ncid, "t", met, met->t, 1.0f);
10745 write_met_nc_3d(ncid, "u", met, met->u, 1.0f);
10746 write_met_nc_3d(ncid, "v", met, met->v, 1.0f);
10747 write_met_nc_3d(ncid, "w", met, met->w, 100.0f);
10748 write_met_nc_3d(ncid, "q", met, met->h2o, (float) (MH2O / MA));
10749 write_met_nc_3d(ncid, "o3", met, met->o3, (float) (MO3 / MA));
10750 write_met_nc_3d(ncid, "clwc", met, met->lwc, 1.0f);
10751 write_met_nc_3d(ncid, "crwc", met, met->rwc, 1.0f);
10752 write_met_nc_3d(ncid, "ciwc", met, met->iwc, 1.0f);
10753 write_met_nc_3d(ncid, "cswc", met, met->swc, 1.0f);
10754 write_met_nc_3d(ncid, "cc", met, met->cc, 1.0f);
10755
10756 /* Close file... */
10757 NC(nc_close(ncid));
10758}
10759
10760/*****************************************************************************/
10761
10763 const int ncid,
10764 const char *varname,
10765 met_t *met,
10766 float var[EX][EY],
10767 const float scl) {
10768
10769 int varid;
10770 size_t start[4], count[4];
10771
10772 /* Allocate... */
10773 float *help;
10774 ALLOC(help, float,
10775 EX * EY);
10776
10777 /* Copy data... */
10778 for (int ix = 0; ix < met->nx; ix++)
10779 for (int iy = 0; iy < met->ny; iy++)
10780 help[ARRAY_2D(iy, ix, met->nx)] = scl * var[ix][iy];
10781
10782 /* Write data... */
10783 NC_PUT_FLOAT(varname, help, 0);
10784
10785 /* Free... */
10786 free(help);
10787}
10788
10789/*****************************************************************************/
10790
10792 const int ncid,
10793 const char *varname,
10794 met_t *met,
10795 float var[EX][EY][EP],
10796 const float scl) {
10797
10798 int varid;
10799 size_t start[4], count[4];
10800
10801 /* Allocate... */
10802 float *help;
10803 ALLOC(help, float,
10804 EX * EY * EP);
10805
10806 /* Copy data... */
10807 for (int ix = 0; ix < met->nx; ix++)
10808 for (int iy = 0; iy < met->ny; iy++)
10809 for (int ip = 0; ip < met->np; ip++)
10810 help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)] = scl * var[ix][iy][ip];
10811
10812 /* Write data... */
10813 NC_PUT_FLOAT(varname, help, 0);
10814
10815 /* Free... */
10816 free(help);
10817}
10818
10819/*****************************************************************************/
10820
10822 const char *filename,
10823 const ctl_t *ctl,
10824 met_t *met0,
10825 met_t *met1,
10826 const atm_t *atm,
10827 const double t) {
10828
10829 static FILE *out;
10830
10831 static double *mass, *obsmean, *rt, *rz, *rlon, *rlat, *robs, *area,
10832 dz, dlon, dlat, *lon, *lat, *z, *press, temp, vmr, h2o, o3;
10833
10834 static int nobs, *obscount, ip, okay;
10835
10836 /* Set timer... */
10837 SELECT_TIMER("WRITE_PROF", "OUTPUT", NVTX_WRITE);
10838
10839 /* Init... */
10840 if (t == ctl->t_start) {
10841
10842 /* Check quantity index for mass... */
10843 if (ctl->qnt_m < 0)
10844 ERRMSG("Need quantity mass!");
10845
10846 /* Check molar mass... */
10847 if (ctl->molmass <= 0)
10848 ERRMSG("Specify molar mass!");
10849
10850 /* Allocate... */
10851 ALLOC(lon, double,
10852 ctl->prof_nx);
10853 ALLOC(lat, double,
10854 ctl->prof_ny);
10855 ALLOC(area, double,
10856 ctl->prof_ny);
10857 ALLOC(z, double,
10858 ctl->prof_nz);
10859 ALLOC(press, double,
10860 ctl->prof_nz);
10861 ALLOC(rt, double,
10862 NOBS);
10863 ALLOC(rz, double,
10864 NOBS);
10865 ALLOC(rlon, double,
10866 NOBS);
10867 ALLOC(rlat, double,
10868 NOBS);
10869 ALLOC(robs, double,
10870 NOBS);
10871
10872 /* Read observation data... */
10873 read_obs(ctl->prof_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
10874
10875 /* Create new output file... */
10876 LOG(1, "Write profile data: %s", filename);
10877 if (!(out = fopen(filename, "w")))
10878 ERRMSG("Cannot create file!");
10879
10880 /* Write header... */
10881 fprintf(out,
10882 "# $1 = time [s]\n"
10883 "# $2 = altitude [km]\n"
10884 "# $3 = longitude [deg]\n"
10885 "# $4 = latitude [deg]\n"
10886 "# $5 = pressure [hPa]\n"
10887 "# $6 = temperature [K]\n"
10888 "# $7 = volume mixing ratio [ppv]\n"
10889 "# $8 = H2O volume mixing ratio [ppv]\n"
10890 "# $9 = O3 volume mixing ratio [ppv]\n"
10891 "# $10 = observed BT index [K]\n"
10892 "# $11 = number of observations\n");
10893
10894 /* Set grid box size... */
10895 dz = (ctl->prof_z1 - ctl->prof_z0) / ctl->prof_nz;
10896 dlon = (ctl->prof_lon1 - ctl->prof_lon0) / ctl->prof_nx;
10897 dlat = (ctl->prof_lat1 - ctl->prof_lat0) / ctl->prof_ny;
10898
10899 /* Set vertical coordinates... */
10900 for (int iz = 0; iz < ctl->prof_nz; iz++) {
10901 z[iz] = ctl->prof_z0 + dz * (iz + 0.5);
10902 press[iz] = P(z[iz]);
10903 }
10904
10905 /* Set horizontal coordinates... */
10906 for (int ix = 0; ix < ctl->prof_nx; ix++)
10907 lon[ix] = ctl->prof_lon0 + dlon * (ix + 0.5);
10908 for (int iy = 0; iy < ctl->prof_ny; iy++) {
10909 lat[iy] = ctl->prof_lat0 + dlat * (iy + 0.5);
10910 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
10911 }
10912 }
10913
10914 /* Set time interval... */
10915 const double t0 = t - 0.5 * ctl->dt_mod;
10916 const double t1 = t + 0.5 * ctl->dt_mod;
10917
10918 /* Allocate... */
10919 ALLOC(mass, double,
10920 ctl->prof_nx * ctl->prof_ny * ctl->prof_nz);
10921 ALLOC(obsmean, double,
10922 ctl->prof_nx * ctl->prof_ny);
10923 ALLOC(obscount, int,
10924 ctl->prof_nx * ctl->prof_ny);
10925
10926 /* Loop over observations... */
10927 for (int i = 0; i < nobs; i++) {
10928
10929 /* Check time... */
10930 if (rt[i] < t0)
10931 continue;
10932 else if (rt[i] >= t1)
10933 break;
10934
10935 /* Check observation data... */
10936 if (!isfinite(robs[i]))
10937 continue;
10938
10939 /* Calculate indices... */
10940 int ix = (int) ((rlon[i] - ctl->prof_lon0) / dlon);
10941 int iy = (int) ((rlat[i] - ctl->prof_lat0) / dlat);
10942
10943 /* Check indices... */
10944 if (ix < 0 || ix >= ctl->prof_nx || iy < 0 || iy >= ctl->prof_ny)
10945 continue;
10946
10947 /* Get mean observation index... */
10948 int idx = ARRAY_2D(ix, iy, ctl->prof_ny);
10949 obsmean[idx] += robs[i];
10950 obscount[idx]++;
10951 }
10952
10953 /* Analyze model data... */
10954 for (ip = 0; ip < atm->np; ip++) {
10955
10956 /* Check time... */
10957 if (atm->time[ip] < t0 || atm->time[ip] > t1)
10958 continue;
10959
10960 /* Get indices... */
10961 int ix = (int) ((atm->lon[ip] - ctl->prof_lon0) / dlon);
10962 int iy = (int) ((atm->lat[ip] - ctl->prof_lat0) / dlat);
10963 int iz = (int) ((Z(atm->p[ip]) - ctl->prof_z0) / dz);
10964
10965 /* Check indices... */
10966 if (ix < 0 || ix >= ctl->prof_nx ||
10967 iy < 0 || iy >= ctl->prof_ny || iz < 0 || iz >= ctl->prof_nz)
10968 continue;
10969
10970 /* Get total mass in grid cell... */
10971 int idx = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
10972 mass[idx] += atm->q[ctl->qnt_m][ip];
10973 }
10974
10975 /* Extract profiles... */
10976 for (int ix = 0; ix < ctl->prof_nx; ix++)
10977 for (int iy = 0; iy < ctl->prof_ny; iy++) {
10978 int idx2 = ARRAY_2D(ix, iy, ctl->prof_ny);
10979 if (obscount[idx2] > 0) {
10980
10981 /* Check profile... */
10982 okay = 0;
10983 for (int iz = 0; iz < ctl->prof_nz; iz++) {
10984 int idx3 = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
10985 if (mass[idx3] > 0) {
10986 okay = 1;
10987 break;
10988 }
10989 }
10990 if (!okay)
10991 continue;
10992
10993 /* Write output... */
10994 fprintf(out, "\n");
10995
10996 /* Loop over altitudes... */
10997 for (int iz = 0; iz < ctl->prof_nz; iz++) {
10998
10999 /* Get temperature, water vapor, and ozone... */
11001 intpol_met_time_3d(met0, met0->t, met1, met1->t, t, press[iz],
11002 lon[ix], lat[iy], &temp, ci, cw, 1);
11003 intpol_met_time_3d(met0, met0->h2o, met1, met1->h2o, t, press[iz],
11004 lon[ix], lat[iy], &h2o, ci, cw, 0);
11005 intpol_met_time_3d(met0, met0->o3, met1, met1->o3, t, press[iz],
11006 lon[ix], lat[iy], &o3, ci, cw, 0);
11007
11008 /* Calculate volume mixing ratio... */
11009 const int idx3 = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
11010 vmr = MA / ctl->molmass * mass[idx3]
11011 / (RHO(press[iz], temp) * area[iy] * dz * 1e9);
11012
11013 /* Write output... */
11014 fprintf(out, "%.2f %g %g %g %g %g %g %g %g %g %d\n",
11015 t, z[iz], lon[ix], lat[iy], press[iz], temp, vmr, h2o, o3,
11016 obsmean[idx2] / obscount[idx2], obscount[idx2]);
11017 }
11018 }
11019 }
11020
11021 /* Free... */
11022 free(mass);
11023 free(obsmean);
11024 free(obscount);
11025
11026 /* Finalize... */
11027 if (t == ctl->t_stop) {
11028
11029 /* Close output file... */
11030 fclose(out);
11031
11032 /* Free... */
11033 free(lon);
11034 free(lat);
11035 free(area);
11036 free(z);
11037 free(press);
11038 free(rt);
11039 free(rz);
11040 free(rlon);
11041 free(rlat);
11042 free(robs);
11043 }
11044}
11045
11046/*****************************************************************************/
11047
11049 const char *filename,
11050 const ctl_t *ctl,
11051 met_t *met0,
11052 met_t *met1,
11053 const atm_t *atm,
11054 const double t) {
11055
11056 static FILE *out;
11057
11058 static double area, dlat, rmax2, *rt, *rz, *rlon, *rlat, *robs, kz[EP],
11059 kw[EP];
11060
11061 static int nobs, nk;
11062
11063 /* Set timer... */
11064 SELECT_TIMER("WRITE_SAMPLE", "OUTPUT", NVTX_WRITE);
11065
11066 /* Init... */
11067 if (t == ctl->t_start) {
11068
11069 /* Allocate... */
11070 ALLOC(rt, double,
11071 NOBS);
11072 ALLOC(rz, double,
11073 NOBS);
11074 ALLOC(rlon, double,
11075 NOBS);
11076 ALLOC(rlat, double,
11077 NOBS);
11078 ALLOC(robs, double,
11079 NOBS);
11080
11081 /* Read observation data... */
11082 read_obs(ctl->sample_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
11083
11084 /* Read kernel data... */
11085 if (ctl->sample_kernel[0] != '-')
11086 read_kernel(ctl->sample_kernel, kz, kw, &nk);
11087
11088 /* Create output file... */
11089 LOG(1, "Write sample data: %s", filename);
11090 if (!(out = fopen(filename, "w")))
11091 ERRMSG("Cannot create file!");
11092
11093 /* Write header... */
11094 fprintf(out,
11095 "# $1 = time [s]\n"
11096 "# $2 = altitude [km]\n"
11097 "# $3 = longitude [deg]\n"
11098 "# $4 = latitude [deg]\n"
11099 "# $5 = surface area [km^2]\n"
11100 "# $6 = layer depth [km]\n"
11101 "# $7 = number of particles [1]\n"
11102 "# $8 = column density [kg/m^2]\n"
11103 "# $9 = volume mixing ratio [ppv]\n"
11104 "# $10 = observed BT index [K]\n\n");
11105
11106 /* Set latitude range, squared radius, and area... */
11107 dlat = DY2DEG(ctl->sample_dx);
11108 rmax2 = SQR(ctl->sample_dx);
11109 area = M_PI * rmax2;
11110 }
11111
11112 /* Set time interval for output... */
11113 const double t0 = t - 0.5 * ctl->dt_mod;
11114 const double t1 = t + 0.5 * ctl->dt_mod;
11115
11116 /* Loop over observations... */
11117 for (int i = 0; i < nobs; i++) {
11118
11119 /* Check time... */
11120 if (rt[i] < t0)
11121 continue;
11122 else if (rt[i] >= t1)
11123 break;
11124
11125 /* Calculate Cartesian coordinates... */
11126 double x0[3];
11127 geo2cart(0, rlon[i], rlat[i], x0);
11128
11129 /* Set pressure range... */
11130 const double rp = P(rz[i]);
11131 const double ptop = P(rz[i] + ctl->sample_dz);
11132 const double pbot = P(rz[i] - ctl->sample_dz);
11133
11134 /* Init... */
11135 double mass = 0;
11136 int np = 0;
11137
11138 /* Loop over air parcels... */
11139 //#pragma omp parallel for default(shared) reduction(+:mass,np)
11140 for (int ip = 0; ip < atm->np; ip++) {
11141
11142 /* Check time... */
11143 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11144 continue;
11145
11146 /* Check latitude... */
11147 if (fabs(rlat[i] - atm->lat[ip]) > dlat)
11148 continue;
11149
11150 /* Check horizontal distance... */
11151 double x1[3];
11152 geo2cart(0, atm->lon[ip], atm->lat[ip], x1);
11153 if (DIST2(x0, x1) > rmax2)
11154 continue;
11155
11156 /* Check pressure... */
11157 if (ctl->sample_dz > 0)
11158 if (atm->p[ip] > pbot || atm->p[ip] < ptop)
11159 continue;
11160
11161 /* Add mass... */
11162 if (ctl->qnt_m >= 0)
11163 mass +=
11164 kernel_weight(kz, kw, nk, atm->p[ip]) * atm->q[ctl->qnt_m][ip];
11165 np++;
11166 }
11167
11168 /* Calculate column density... */
11169 const double cd = mass / (1e6 * area);
11170
11171 /* Calculate volume mixing ratio... */
11172 double vmr = 0;
11173 if (ctl->molmass > 0 && ctl->sample_dz > 0) {
11174 if (mass > 0) {
11175
11176 /* Get temperature... */
11177 double temp;
11179 intpol_met_time_3d(met0, met0->t, met1, met1->t, rt[i], rp,
11180 rlon[i], rlat[i], &temp, ci, cw, 1);
11181
11182 /* Calculate volume mixing ratio... */
11183 vmr = MA / ctl->molmass * cd / (RHO(rp, temp) * ctl->sample_dz * 1e3);
11184 }
11185 } else
11186 vmr = NAN;
11187
11188 /* Write output... */
11189 fprintf(out, "%.2f %g %g %g %g %g %d %g %g %g\n", rt[i], rz[i],
11190 rlon[i], rlat[i], area, ctl->sample_dz, np, cd, vmr, robs[i]);
11191 }
11192
11193 /* Finalize...... */
11194 if (t == ctl->t_stop) {
11195
11196 /* Close output file... */
11197 fclose(out);
11198
11199 /* Free... */
11200 free(rt);
11201 free(rz);
11202 free(rlon);
11203 free(rlat);
11204 free(robs);
11205 }
11206}
11207
11208/*****************************************************************************/
11209
11211 const char *filename,
11212 const ctl_t *ctl,
11213 atm_t *atm,
11214 const double t) {
11215
11216 static FILE *out;
11217
11218 static double rmax2, x0[3], x1[3];
11219
11220 /* Set timer... */
11221 SELECT_TIMER("WRITE_STATION", "OUTPUT", NVTX_WRITE);
11222
11223 /* Init... */
11224 if (t == ctl->t_start) {
11225
11226 /* Write info... */
11227 LOG(1, "Write station data: %s", filename);
11228
11229 /* Create new file... */
11230 if (!(out = fopen(filename, "w")))
11231 ERRMSG("Cannot create file!");
11232
11233 /* Write header... */
11234 fprintf(out,
11235 "# $1 = time [s]\n"
11236 "# $2 = altitude [km]\n"
11237 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
11238 for (int iq = 0; iq < ctl->nq; iq++)
11239 fprintf(out, "# $%i = %s [%s]\n", (iq + 5),
11240 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
11241 fprintf(out, "\n");
11242
11243 /* Set geolocation and search radius... */
11244 geo2cart(0, ctl->stat_lon, ctl->stat_lat, x0);
11245 rmax2 = SQR(ctl->stat_r);
11246 }
11247
11248 /* Set time interval for output... */
11249 const double t0 = t - 0.5 * ctl->dt_mod;
11250 const double t1 = t + 0.5 * ctl->dt_mod;
11251
11252 /* Loop over air parcels... */
11253 for (int ip = 0; ip < atm->np; ip++) {
11254
11255 /* Check time... */
11256 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11257 continue;
11258
11259 /* Check time range for station output... */
11260 if (atm->time[ip] < ctl->stat_t0 || atm->time[ip] > ctl->stat_t1)
11261 continue;
11262
11263 /* Check station flag... */
11264 if (ctl->qnt_stat >= 0)
11265 if ((int) atm->q[ctl->qnt_stat][ip])
11266 continue;
11267
11268 /* Get Cartesian coordinates... */
11269 geo2cart(0, atm->lon[ip], atm->lat[ip], x1);
11270
11271 /* Check horizontal distance... */
11272 if (DIST2(x0, x1) > rmax2)
11273 continue;
11274
11275 /* Set station flag... */
11276 if (ctl->qnt_stat >= 0)
11277 atm->q[ctl->qnt_stat][ip] = 1;
11278
11279 /* Write data... */
11280 fprintf(out, "%.2f %g %g %g",
11281 atm->time[ip], Z(atm->p[ip]), atm->lon[ip], atm->lat[ip]);
11282 for (int iq = 0; iq < ctl->nq; iq++) {
11283 fprintf(out, " ");
11284 fprintf(out, ctl->qnt_format[iq], atm->q[iq][ip]);
11285 }
11286 fprintf(out, "\n");
11287 }
11288
11289 /* Close file... */
11290 if (t == ctl->t_stop)
11291 fclose(out);
11292}
11293
11294/*****************************************************************************/
11295
11297 const char *filename,
11298 const ctl_t *ctl,
11299 const atm_t *atm,
11300 const double t) {
11301
11302 FILE *out;
11303
11304 /* Set timer... */
11305 SELECT_TIMER("WRITE_VTK", "OUTPUT", NVTX_WRITE);
11306
11307 /* Write info... */
11308 LOG(1, "Write VTK data: %s", filename);
11309
11310 /* Set time interval for output... */
11311 const double t0 = t - 0.5 * ctl->dt_mod;
11312 const double t1 = t + 0.5 * ctl->dt_mod;
11313
11314 /* Create file... */
11315 if (!(out = fopen(filename, "w")))
11316 ERRMSG("Cannot create file!");
11317
11318 /* Count data points... */
11319 int np = 0;
11320 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
11321 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11322 continue;
11323 np++;
11324 }
11325
11326 /* Write header... */
11327 fprintf(out,
11328 "# vtk DataFile Version 3.0\n"
11329 "vtk output\n" "ASCII\n" "DATASET POLYDATA\n");
11330
11331 /* Write point coordinates... */
11332 fprintf(out, "POINTS %d float\n", np);
11333 if (ctl->vtk_sphere) {
11334 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
11335 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11336 continue;
11337 const double radius = (RE + Z(atm->p[ip]) * ctl->vtk_scale
11338 + ctl->vtk_offset) / RE;
11339 const double coslat = cos(DEG2RAD(atm->lat[ip]));
11340 const double x = radius * coslat * cos(DEG2RAD(atm->lon[ip]));
11341 const double y = radius * coslat * sin(DEG2RAD(atm->lon[ip]));
11342 const double z = radius * sin(DEG2RAD(atm->lat[ip]));
11343 fprintf(out, "%g %g %g\n", x, y, z);
11344 }
11345 } else
11346 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
11347 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11348 continue;
11349 fprintf(out, "%g %g %g\n", atm->lon[ip], atm->lat[ip],
11350 Z(atm->p[ip]) * ctl->vtk_scale + ctl->vtk_offset);
11351 }
11352
11353 /* Write point data... */
11354 fprintf(out, "POINT_DATA %d\n", np);
11355 for (int iq = 0; iq < ctl->nq; iq++) {
11356 fprintf(out, "SCALARS %s float 1\n" "LOOKUP_TABLE default\n",
11357 ctl->qnt_name[iq]);
11358 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
11359 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11360 continue;
11361 fprintf(out, "%g\n", atm->q[iq][ip]);
11362 }
11363 }
11364
11365 /* Close file... */
11366 fclose(out);
11367}
void read_met_geopot(const ctl_t *ctl, met_t *met)
Calculates geopotential heights from meteorological data.
Definition: mptrac.c:6973
void mptrac_write_atm(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to a file in various formats.
Definition: mptrac.c:5657
void day2doy(const int year, const int mon, const int day, int *doy)
Get day of year from date.
Definition: mptrac.c:897
void read_met_extrapolate(met_t *met)
Extrapolates meteorological data.
Definition: mptrac.c:6933
void read_met_levels(const int ncid, const ctl_t *ctl, met_t *met)
Reads meteorological variables at different vertical levels from a NetCDF file.
Definition: mptrac.c:7219
int read_met_nc(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met)
Reads meteorological data from a NetCDF file and processes it.
Definition: mptrac.c:7497
void write_atm_clams_traj(const char *dirname, const ctl_t *ctl, const atm_t *atm, const double t)
Writes CLaMS trajectory data to a NetCDF file.
Definition: mptrac.c:9402
void write_met_nc_2d(const int ncid, const char *varname, met_t *met, float var[EX][EY], const float scl)
Writes a 2D meteorological variable to a NetCDF file.
Definition: mptrac.c:10762
void mptrac_alloc(ctl_t **ctl, cache_t **cache, clim_t **clim, met_t **met0, met_t **met1, atm_t **atm)
Allocates and initializes memory resources for MPTRAC.
Definition: mptrac.c:4187
void read_met_sample(const ctl_t *ctl, met_t *met)
Downsamples meteorological data based on specified parameters.
Definition: mptrac.c:8265
void write_met_bin_3d(FILE *out, const ctl_t *ctl, met_t *met, float var[EX][EY][EP], const char *varname, const int precision, const double tolerance)
Writes a 3-dimensional meteorological variable to a binary file.
Definition: mptrac.c:10523
void read_obs(const char *filename, const ctl_t *ctl, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a file and stores it in arrays.
Definition: mptrac.c:8745
void module_advect(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Performs the advection of atmospheric particles using meteorological data.
Definition: mptrac.c:2069
void module_timesteps(const ctl_t *ctl, cache_t *cache, met_t *met0, atm_t *atm, const double t)
Calculate time steps for air parcels based on specified conditions.
Definition: mptrac.c:3914
int mptrac_read_met(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met)
Reads meteorological data from a file, supporting multiple formats and MPI broadcasting.
Definition: mptrac.c:5353
void module_meteo(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Update atmospheric properties using meteorological data.
Definition: mptrac.c:3227
void read_clim_photo(const char *filename, clim_photo_t *photo)
Reads photolysis rates from a NetCDF file and populates the given photolysis structure.
Definition: mptrac.c:6081
void read_met_cloud(met_t *met)
Calculates cloud-related variables for each grid point.
Definition: mptrac.c:6772
void module_decay(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, atm_t *atm)
Simulate exponential decay processes for atmospheric particles.
Definition: mptrac.c:2613
double sedi(const double p, const double T, const double rp, const double rhop)
Calculates the sedimentation velocity of a particle in air.
Definition: mptrac.c:8918
void intpol_met_space_2d(const met_t *met, float array[EX][EY], const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 2D space.
Definition: mptrac.c:1442
int read_atm_nc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a generic netCDF file and populates the given atmospheric structure.
Definition: mptrac.c:6048
void read_met_pbl(const ctl_t *ctl, met_t *met)
Computes the planetary boundary layer (PBL) pressure based on meteorological data.
Definition: mptrac.c:7873
void read_met_detrend(const ctl_t *ctl, met_t *met)
Detrends meteorological data.
Definition: mptrac.c:6829
int read_met_nc_2d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const char *varname5, const char *varname6, const ctl_t *ctl, const met_t *met, float dest[EX][EY], const float scl, const int init)
Reads a 2-dimensional meteorological variable from a NetCDF file.
Definition: mptrac.c:7569
void read_met_tropo(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates the tropopause and related meteorological variables based on various methods and stores th...
Definition: mptrac.c:8573
void read_obs_asc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from an ASCII file.
Definition: mptrac.c:8789
void module_chem_init(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Initializes the chemistry modules by setting atmospheric composition.
Definition: mptrac.c:2498
int locate_reg(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a regular grid.
Definition: mptrac.c:2030
void get_tropo(const int met_tropo, ctl_t *ctl, clim_t *clim, met_t *met, const double *lons, const int nx, const double *lats, const int ny, double *pt, double *zt, double *tt, double *qt, double *o3t, double *ps, double *zs)
Calculate tropopause data.
Definition: mptrac.c:1092
void mptrac_get_met(ctl_t *ctl, clim_t *clim, const double t, met_t **met0, met_t **met1)
Retrieves meteorological data for the specified time.
Definition: mptrac.c:4260
int read_clim_ts(const char *filename, clim_ts_t *ts)
Reads a climatological time series from a file and populates the given time series structure.
Definition: mptrac.c:6200
void read_met_periodic(met_t *met)
Applies periodic boundary conditions to meteorological data along longitudinal axis.
Definition: mptrac.c:8010
void module_timesteps_init(ctl_t *ctl, const atm_t *atm)
Initialize start time and time interval for time-stepping.
Definition: mptrac.c:3951
void write_ens(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes ensemble data to a file.
Definition: mptrac.c:9871
void module_mixing(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const double t)
Update atmospheric properties through interparcel mixing.
Definition: mptrac.c:3331
double clim_zm(const clim_zm_t *zm, const double t, const double lat, const double p)
Interpolates monthly mean zonal mean climatological variables.
Definition: mptrac.c:401
void read_clim_photo_help(const int ncid, const char *varname, const clim_photo_t *photo, double var[CP][CSZA][CO3])
Reads a 3D climatological photochemistry variable from a NetCDF file.
Definition: mptrac.c:6172
void read_met_ml2pl(const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname)
Interpolates meteorological data to specified pressure levels.
Definition: mptrac.c:7375
double clim_tropo(const clim_t *clim, const double t, const double lat)
Calculates the tropopause pressure based on climatological data.
Definition: mptrac.c:200
void read_obs_nc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a NetCDF file.
Definition: mptrac.c:8817
void read_met_grid(const char *filename, const int ncid, const ctl_t *ctl, met_t *met)
Reads meteorological grid information from a NetCDF file.
Definition: mptrac.c:7101
void read_met_bin_2d(FILE *in, const met_t *met, float var[EX][EY], const char *varname)
Reads a 2-dimensional meteorological variable from a binary file and stores it in the provided array.
Definition: mptrac.c:6542
int locate_irr(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a sorted array.
Definition: mptrac.c:1966
void module_isosurf_init(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initialize the isosurface module based on atmospheric data.
Definition: mptrac.c:3052
void level_definitions(ctl_t *ctl)
Defines pressure levels for meteorological data.
Definition: mptrac.c:1760
void intpol_met_4d_coord(const met_t *met0, float heights0[EX][EY][EP], float array0[EX][EY][EP], const met_t *met1, float heights1[EX][EY][EP], float array1[EX][EY][EP], const double ts, const double height, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables to a given position and time.
Definition: mptrac.c:1135
void write_grid_asc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to an ASCII file.
Definition: mptrac.c:10159
void mptrac_update_device(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates device memory for specified data structures.
Definition: mptrac.c:5545
void time2jsec(const int year, const int mon, const int day, const int hour, const int min, const int sec, const double remain, double *jsec)
Converts time components to seconds since January 1, 2000, 12:00:00 UTC.
Definition: mptrac.c:9060
void mptrac_init(ctl_t *ctl, cache_t *cache, clim_t *clim, atm_t *atm, const int ntask)
Initializes the MPTRAC model and its associated components.
Definition: mptrac.c:4381
void intpol_met_time_3d(const met_t *met0, float array0[EX][EY][EP], const met_t *met1, float array1[EX][EY][EP], const double ts, const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 3D space and time.
Definition: mptrac.c:1502
void intpol_met_space_3d_ml(const met_t *met, float zs[EX][EY][EP], float array[EX][EY][EP], const double z, const double lon, const double lat, double *var)
Interpolates meteorological data in 3D space.
Definition: mptrac.c:1373
void fft_help(double *fcReal, double *fcImag, const int n)
Computes the Fast Fourier Transform (FFT) of a complex sequence.
Definition: mptrac.c:946
void module_wet_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Perform wet deposition calculations for air parcels.
Definition: mptrac.c:4052
void compress_pck(const char *varname, float *array, const size_t nxy, const size_t nz, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats.
Definition: mptrac.c:657
double nat_temperature(const double p, const double h2o, const double hno3)
Calculates the nitric acid trihydrate (NAT) temperature.
Definition: mptrac.c:5848
void spline(const double *x, const double *y, const int n, const double *x2, double *y2, const int n2, const int method)
Performs spline interpolation or linear interpolation.
Definition: mptrac.c:8951
void module_chem_grid(const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double tt)
Calculate grid data for chemistry modules.
Definition: mptrac.c:2351
double clim_photo(const double rate[CP][CSZA][CO3], const clim_photo_t *photo, const double p, const double sza, const double o3c)
Calculates the photolysis rate for a given set of atmospheric conditions.
Definition: mptrac.c:149
void read_clim_zm(const char *filename, const char *varname, clim_zm_t *zm)
Reads zonally averaged climatological data from a netCDF file and populates the given structure.
Definition: mptrac.c:6254
void module_sedi(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate sedimentation of particles in the atmosphere.
Definition: mptrac.c:3789
void timer(const char *name, const char *group, const int output)
Measures and reports elapsed time for named and grouped timers.
Definition: mptrac.c:9091
void read_met_monotonize(met_t *met)
Makes zeta and pressure profiles monotone.
Definition: mptrac.c:7417
void write_atm_asc(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to an ASCII file or gnuplot.
Definition: mptrac.c:9217
void intpol_met_space_3d(const met_t *met, float array[EX][EY][EP], const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 3D space.
Definition: mptrac.c:1313
void read_met_surface(const int ncid, const ctl_t *ctl, met_t *met)
Reads surface meteorological data from a netCDF file and stores it in the meteorological data structu...
Definition: mptrac.c:8437
void intpol_met_time_3d_ml(const met_t *met0, float zs0[EX][EY][EP], float array0[EX][EY][EP], const met_t *met1, float zs1[EX][EY][EP], float array1[EX][EY][EP], const double ts, const double p, const double lon, const double lat, double *var)
Interpolates meteorological data in both space and time.
Definition: mptrac.c:1531
void module_convection(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Performs convective mixing of atmospheric particles.
Definition: mptrac.c:2540
void read_kernel(const char *filename, double kz[EP], double kw[EP], int *nk)
Reads kernel function data from a file and populates the provided arrays.
Definition: mptrac.c:6353
void module_bound_cond(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Apply boundary conditions to particles based on meteorological and climatological data.
Definition: mptrac.c:2255
double scan_ctl(const char *filename, int argc, char *argv[], const char *varname, const int arridx, const char *defvalue, char *value)
Scans a control file or command-line arguments for a specified variable.
Definition: mptrac.c:8846
void module_advect_init(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initializes the advection module by setting up pressure fields.
Definition: mptrac.c:2228
void module_sort_help(double *a, const int *p, const int np)
Reorder an array based on a given permutation.
Definition: mptrac.c:3878
float stddev(const float *data, const int n)
Calculates the standard deviation of a set of data.
Definition: mptrac.c:8998
void intpol_tropo_3d(const double time0, float array0[EX][EY], const double time1, float array1[EX][EY], const double lons[EX], const double lats[EY], const int nlon, const int nlat, const double time, const double lon, const double lat, const int method, double *var, double *sigma)
Interpolates tropopause data in 3D (latitude, longitude, and time).
Definition: mptrac.c:1589
int read_met_nc_3d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const ctl_t *ctl, const met_t *met, float dest[EX][EY][EP], const float scl)
Reads a 3-dimensional meteorological variable from a NetCDF file.
Definition: mptrac.c:7727
void read_met_bin_3d(FILE *in, const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname, const float bound_min, const float bound_max)
Reads 3D meteorological data from a binary file, potentially using different compression methods.
Definition: mptrac.c:6571
int locate_irr_float(const float *xx, const int n, const double x, const int ig)
Locate the index of the interval containing a given value in an irregularly spaced array.
Definition: mptrac.c:1996
double time_from_filename(const char *filename, const int offset)
Extracts and converts a timestamp from a filename to Julian seconds.
Definition: mptrac.c:9159
void write_prof(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes profile data to a specified file.
Definition: mptrac.c:10821
void mptrac_read_clim(const ctl_t *ctl, clim_t *clim)
Reads various climatological data and populates the given climatology structure.
Definition: mptrac.c:4471
double tropo_weight(const clim_t *clim, const atm_t *atm, const int ip)
Computes a weighting factor based on tropopause pressure.
Definition: mptrac.c:9194
void write_met_nc(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a NetCDF file.
Definition: mptrac.c:10599
void module_rng_init(const int ntask)
Initialize random number generators for parallel tasks.
Definition: mptrac.c:3653
int mptrac_read_atm(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a specified file into the given atmospheric structure.
Definition: mptrac.c:4400
void mptrac_update_host(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates host memory for specified data structures.
Definition: mptrac.c:5601
void mptrac_write_output(const char *dirname, const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double t)
Writes various types of output data to files in a specified directory.
Definition: mptrac.c:5757
double clim_oh(const ctl_t *ctl, const clim_t *clim, const double t, const double lon, const double lat, const double p)
Calculates the hydroxyl radical (OH) concentration from climatology data, with an optional diurnal co...
Definition: mptrac.c:89
void read_met_ozone(met_t *met)
Calculates the total column ozone from meteorological ozone data.
Definition: mptrac.c:8236
void mptrac_free(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Frees memory resources allocated for MPTRAC.
Definition: mptrac.c:4234
void clim_tropo_init(clim_t *clim)
Initializes the tropopause data in the climatology structure.
Definition: mptrac.c:228
void module_rng(const ctl_t *ctl, double *rs, const size_t n, const int method)
Generate random numbers using various methods and distributions.
Definition: mptrac.c:3684
void get_met_help(const ctl_t *ctl, const double t, const int direct, const char *metbase, const double dt_met, char *filename)
Generates a formatted filename for meteorological data files based on the input parameters.
Definition: mptrac.c:1003
void write_station(const char *filename, const ctl_t *ctl, atm_t *atm, const double t)
Writes station data to a specified file.
Definition: mptrac.c:11210
void cart2geo(const double *x, double *z, double *lon, double *lat)
State variables of cuRAND random number generator.
Definition: mptrac.c:74
double sza_calc(const double sec, const double lon, const double lat)
Calculates the solar zenith angle.
Definition: mptrac.c:9019
void module_mixing_help(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const int *ixs, const int *iys, const int *izs, const int qnt_idx)
Perform interparcel mixing for a specific quantity.
Definition: mptrac.c:3421
void doy2day(const int year, const int doy, int *mon, int *day)
Converts a given day of the year (DOY) to a date (month and day).
Definition: mptrac.c:916
void intpol_met_time_2d(const met_t *met0, float array0[EX][EY], const met_t *met1, float array1[EX][EY], const double ts, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 2D space and time.
Definition: mptrac.c:1556
void module_position(const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Update the positions and pressure levels of atmospheric particles.
Definition: mptrac.c:3599
void clim_oh_diurnal_correction(const ctl_t *ctl, clim_t *clim)
Applies a diurnal correction to the hydroxyl radical (OH) concentration in climatology data.
Definition: mptrac.c:116
void locate_vert(float profiles[EX][EY][EP], const int np, const int lon_ap_ind, const int lat_ap_ind, const double height_ap, int *ind)
Locate the four vertical indizes of a box for a given height value.
Definition: mptrac.c:2049
void write_met_bin_2d(FILE *out, met_t *met, float var[EX][EY], const char *varname)
Writes a 2-dimensional meteorological variable to a binary file.
Definition: mptrac.c:10494
void read_met_pv(met_t *met)
Calculates potential vorticity (PV) from meteorological data.
Definition: mptrac.c:8130
int read_atm_bin(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a binary file and populates the given atmospheric structure.
Definition: mptrac.c:5936
void get_met_replace(char *orig, char *search, char *repl)
Replaces occurrences of a substring in a string with another substring.
Definition: mptrac.c:1068
void module_diff_meso(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate mesoscale diffusion for atmospheric particles.
Definition: mptrac.c:2652
void module_sort(const ctl_t *ctl, met_t *met0, atm_t *atm)
Sort particles according to box index.
Definition: mptrac.c:3818
double clim_ts(const clim_ts_t *ts, const double t)
Interpolates a time series of climatological variables.
Definition: mptrac.c:383
void jsec2time(const double jsec, int *year, int *mon, int *day, int *hour, int *min, int *sec, double *remain)
Converts Julian seconds to calendar date and time components.
Definition: mptrac.c:1683
int read_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Reads meteorological data from a binary file.
Definition: mptrac.c:6394
void mptrac_run_timestep(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t **met0, met_t **met1, atm_t *atm, double t)
Executes a single timestep of the MPTRAC model simulation.
Definition: mptrac.c:5408
void write_atm_clams(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file in the CLaMS format.
Definition: mptrac.c:9349
void module_diff_turb(const ctl_t *ctl, cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Applies turbulent diffusion processes to atmospheric particles.
Definition: mptrac.c:2854
int read_atm_clams(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a CLaMS netCDF file and populates the given atmospheric structure.
Definition: mptrac.c:5992
void write_vtk(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes VTK (Visualization Toolkit) data to a specified file.
Definition: mptrac.c:11296
void module_tracer_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Simulate chemical reactions involving long-lived atmospheric tracers.
Definition: mptrac.c:3982
void mptrac_read_ctl(const char *filename, int argc, char *argv[], ctl_t *ctl)
Reads control parameters from a configuration file and populates the given structure.
Definition: mptrac.c:4531
void read_met_polar_winds(met_t *met)
Applies a fix for polar winds in meteorological data.
Definition: mptrac.c:8071
void module_h2o2_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform chemical reactions involving H2O2 within cloud particles.
Definition: mptrac.c:2969
void write_grid_nc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to a NetCDF file.
Definition: mptrac.c:10263
double pbl_weight(const ctl_t *ctl, const atm_t *atm, const int ip, const double pbl, const double ps)
Computes a weighting factor based on planetary boundary layer pressure.
Definition: mptrac.c:5872
void module_diff_pbl(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Computes particle diffusion within the planetary boundary layer (PBL).
Definition: mptrac.c:2729
void write_met_nc_3d(const int ncid, const char *varname, met_t *met, float var[EX][EY][EP], const float scl)
Writes a 3D meteorological variable to a NetCDF file.
Definition: mptrac.c:10791
void module_isosurf(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Apply the isosurface module to adjust atmospheric properties.
Definition: mptrac.c:3122
void module_oh_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform hydroxyl chemistry calculations for atmospheric particles.
Definition: mptrac.c:3515
void geo2cart(const double z, const double lon, const double lat, double *x)
Converts geographic coordinates (longitude, latitude, altitude) to Cartesian coordinates.
Definition: mptrac.c:985
double kernel_weight(const double kz[EP], const double kw[EP], const int nk, const double p)
Calculates the kernel weight based on altitude and given kernel data.
Definition: mptrac.c:1716
int read_atm_asc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from an ASCII file and populates the given atmospheric structure.
Definition: mptrac.c:5894
void write_sample(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes sample data to a specified file.
Definition: mptrac.c:11048
void write_grid(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes grid data to a file in ASCII or netCDF format.
Definition: mptrac.c:9968
void module_dry_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate dry deposition of atmospheric particles.
Definition: mptrac.c:2906
void write_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data in binary format to a specified file.
Definition: mptrac.c:10393
void write_atm_bin(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a binary file.
Definition: mptrac.c:9299
void read_met_cape(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates Convective Available Potential Energy (CAPE) for each grid point.
Definition: mptrac.c:6657
void mptrac_write_met(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a file, supporting multiple formats and compression options.
Definition: mptrac.c:5717
double lapse_rate(const double t, const double h2o)
Calculates the moist adiabatic lapse rate in Kelvin per kilometer.
Definition: mptrac.c:1742
void write_csi(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes Critical Success Index (CSI) data to a file.
Definition: mptrac.c:9609
void write_atm_nc(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file.
Definition: mptrac.c:9560
MPTRAC library declarations.
#define NN(x0, y0, x1, y1, x)
Perform nearest-neighbor interpolation.
Definition: mptrac.h:1232
#define LEN
Maximum length of ASCII data lines.
Definition: mptrac.h:241
#define RE
Mean radius of Earth [km].
Definition: mptrac.h:222
#define TVIRT(t, h2o)
Compute virtual temperature.
Definition: mptrac.h:1719
#define ARRAY_3D(ix, iy, ny, iz, nz)
Compute the linear index of a 3D array element.
Definition: mptrac.h:391
#define PARTICLE_LOOP(ip0, ip1, check_dt,...)
Loop over particle indices with OpenACC acceleration.
Definition: mptrac.h:1274
#define MA
Molar mass of dry air [g/mol].
Definition: mptrac.h:197
#define AVO
Avogadro constant [1/mol].
Definition: mptrac.h:157
#define KB
Boltzmann constant [kg m^2/(K s^2)].
Definition: mptrac.h:192
#define MH2O
Molar mass of water vapor [g/mol].
Definition: mptrac.h:202
#define NENS
Maximum number of data points for ensemble analysis.
Definition: mptrac.h:276
#define FWRITE(ptr, type, size, out)
Write data from memory to a file stream.
Definition: mptrac.h:667
#define PW(p, h2o)
Calculate partial water vapor pressure.
Definition: mptrac.h:1379
#define H0
Scale height [km].
Definition: mptrac.h:177
#define NC_PUT_ATT_GLOBAL(attname, text)
Add a global text attribute to a NetCDF file.
Definition: mptrac.h:1212
#define MOLEC_DENS(p, t)
Calculate the density of a gas molecule.
Definition: mptrac.h:1002
#define LAPSE(p1, t1, p2, t2)
Calculate lapse rate.
Definition: mptrac.h:840
#define NC(cmd)
Execute a NetCDF command and check for errors.
Definition: mptrac.h:1016
#define RA
Specific gas constant of dry air [J/(kg K)].
Definition: mptrac.h:217
#define KARMAN
Karman's constant.
Definition: mptrac.h:187
#define INTPOL_INIT
Initialize arrays for interpolation.
Definition: mptrac.h:682
#define MIN(a, b)
Macro to determine the minimum of two values.
Definition: mptrac.h:987
#define ERRMSG(...)
Print an error message with contextual information and terminate the program.
Definition: mptrac.h:1904
#define NC_PUT_INT(varname, ptr, hyperslab)
Write integer data to a NetCDF variable.
Definition: mptrac.h:1173
void compress_cms(const ctl_t *ctl, const char *varname, float *array, const size_t nx, const size_t ny, const size_t np, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using a custom multiscale compression algorithm.
void compress_zfp(const char *varname, float *array, const int nx, const int ny, const int nz, const int precision, const double tolerance, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using the ZFP library.
#define EY
Maximum number of latitudes for meteo data.
Definition: mptrac.h:271
#define SH(h2o)
Compute specific humidity from water vapor volume mixing ratio.
Definition: mptrac.h:1544
#define INTPOL_3D(var, init)
Perform 3D interpolation for a meteorological variable.
Definition: mptrac.h:713
#define NOBS
Maximum number of observation data points.
Definition: mptrac.h:281
#define NTHREADS
Maximum number of OpenMP threads.
Definition: mptrac.h:286
#define ARRAY_2D(ix, iy, ny)
Macro for computing the linear index of a 2D array element.
Definition: mptrac.h:372
#define Z(p)
Convert pressure to altitude.
Definition: mptrac.h:1741
#define P(z)
Compute pressure at given altitude.
Definition: mptrac.h:1304
#define LV
Latent heat of vaporization of water [J/kg].
Definition: mptrac.h:182
#define G0
Standard gravity [m/s^2].
Definition: mptrac.h:172
#define CP
Maximum number of pressure levels for climatological data.
Definition: mptrac.h:301
#define NQ
Maximum number of quantities per data point.
Definition: mptrac.h:251
#define FREAD(ptr, type, size, in)
Read data from a file stream and store it in memory.
Definition: mptrac.h:647
#define DX2DEG(dx, lat)
Convert a distance in kilometers to degrees longitude at a given latitude.
Definition: mptrac.h:525
#define DEG2DY(dlat)
Convert a latitude difference to a distance in the y-direction (north-south).
Definition: mptrac.h:461
#define EX
Maximum number of longitudes for meteo data.
Definition: mptrac.h:266
#define EPS
Ratio of the specific gas constant of dry air and water vapor [1].
Definition: mptrac.h:167
#define PSICE(t)
Compute saturation pressure over ice (WMO, 2018).
Definition: mptrac.h:1352
#define THETA(p, t)
Compute potential temperature.
Definition: mptrac.h:1644
#define RI
Ideal gas constant [J/(mol K)].
Definition: mptrac.h:227
#define NORM(a)
Compute the norm (magnitude) of a vector.
Definition: mptrac.h:1247
#define SET_QNT(qnt, name, longname, unit)
Set atmospheric quantity index.
Definition: mptrac.h:1523
#define TICE(p, h2o)
Calculate frost point temperature (WMO, 2018).
Definition: mptrac.h:1620
#define TOK(line, tok, format, var)
Get string tokens.
Definition: mptrac.h:1694
#define ZDIFF(lnp0, t0, h2o0, lnp1, t1, h2o1)
Calculate geopotential height difference.
Definition: mptrac.h:1772
#define THETAVIRT(p, t, h2o)
Compute virtual potential temperature.
Definition: mptrac.h:1673
#define DZ2DP(dz, p)
Convert a change in altitude to a change in pressure.
Definition: mptrac.h:562
#define WARN(...)
Print a warning message with contextual information.
Definition: mptrac.h:1871
#define ZETA(ps, p, t)
Computes the value of the zeta vertical coordinate.
Definition: mptrac.h:1791
#define RHICE(p, t, h2o)
Compute relative humidity over ice.
Definition: mptrac.h:1456
#define INTPOL_TIME_ALL(time, p, lon, lat)
Interpolate multiple meteorological variables in time.
Definition: mptrac.h:786
#define ALLOC(ptr, type, n)
Allocate memory for a pointer with error handling.
Definition: mptrac.h:349
#define SET_ATM(qnt, val)
Set atmospheric quantity value.
Definition: mptrac.h:1500
#define CTS
Maximum number of data points of climatological time series.
Definition: mptrac.h:316
#define DEG2RAD(deg)
Converts degrees to radians.
Definition: mptrac.h:478
void broadcast_large_data(void *data, size_t N)
Broadcasts large data across all processes in an MPI communicator.
#define MO3
Molar mass of ozone [g/mol].
Definition: mptrac.h:207
#define SQR(x)
Compute the square of a value.
Definition: mptrac.h:1557
#define RAD2DEG(rad)
Converts radians to degrees.
Definition: mptrac.h:1396
#define NC_INQ_DIM(dimname, ptr, min, max)
Inquire the length of a dimension in a NetCDF file.
Definition: mptrac.h:1103
#define NP
Maximum number of atmospheric data points.
Definition: mptrac.h:246
#define NTIMER
Maximum number of timers.
Definition: mptrac.h:1948
#define SELECT_TIMER(id, group, color)
Select and start a timer with specific attributes.
Definition: mptrac.h:1984
#define INTPOL_2D(var, init)
Perform 2D interpolation for a meteorological variable.
Definition: mptrac.h:696
#define RH(p, t, h2o)
Compute relative humidity over water.
Definition: mptrac.h:1426
#define NC_PUT_FLOAT(varname, ptr, hyperslab)
Write a float array to a NetCDF file.
Definition: mptrac.h:1150
#define CY
Maximum number of latitudes for climatological data.
Definition: mptrac.h:291
#define LOG(level,...)
Print a log message with a specified logging level.
Definition: mptrac.h:1834
void thrustSortWrapper(double *__restrict__ c, int n, int *__restrict__ index)
Wrapper to Thrust sorting function.
#define NC_DEF_VAR(varname, type, ndims, dims, long_name, units, level, quant)
Define a NetCDF variable with attributes.
Definition: mptrac.h:1045
#define TDEW(p, h2o)
Calculate dew point temperature.
Definition: mptrac.h:1595
#define ARRHENIUS(a, b, t)
Calculate the Arrhenius rate constant.
Definition: mptrac.h:416
#define NCSI
Maximum number of data points for CSI calculation.
Definition: mptrac.h:256
#define NC_GET_DOUBLE(varname, ptr, force)
Retrieve a double-precision variable from a NetCDF file.
Definition: mptrac.h:1075
#define EP
Maximum number of pressure levels for meteo data.
Definition: mptrac.h:261
#define PSAT(t)
Compute saturation pressure over water.
Definition: mptrac.h:1328
void compress_zstd(const char *varname, float *array, const size_t n, const int decompress, FILE *inout)
Compresses or decompresses an array of floats using the Zstandard (ZSTD) library.
#define RHO(p, t)
Compute density of air.
Definition: mptrac.h:1481
void module_kpp_chem(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
KPP chemistry module.
#define CO3
Maximum number of total column ozone data for climatological data.
Definition: mptrac.h:296
#define NC_PUT_DOUBLE(varname, ptr, hyperslab)
Write double precision data to a NetCDF variable.
Definition: mptrac.h:1126
#define LIN(x0, y0, x1, y1, x)
Linear interpolation.
Definition: mptrac.h:859
#define DIST2(a, b)
Calculate the squared Euclidean distance between two points in Cartesian coordinates.
Definition: mptrac.h:594
#define DEG2DX(dlon, lat)
Convert a longitude difference to a distance in the x-direction (east-west) at a specific latitude.
Definition: mptrac.h:440
#define CPD
Specific heat of dry air at constant pressure [J/(kg K)].
Definition: mptrac.h:162
#define CSZA
Maximum number of solar zenith angles for climatological data.
Definition: mptrac.h:306
#define DY2DEG(dy)
Convert a distance in kilometers to degrees latitude.
Definition: mptrac.h:543
#define MAX(a, b)
Macro to determine the maximum of two values.
Definition: mptrac.h:886
#define FMOD(x, y)
Calculate the floating-point remainder of dividing x by y.
Definition: mptrac.h:629
Air parcel data.
Definition: mptrac.h:3136
double time[NP]
Time [s].
Definition: mptrac.h:3142
double lat[NP]
Latitude [deg].
Definition: mptrac.h:3151
double lon[NP]
Longitude [deg].
Definition: mptrac.h:3148
int np
Number of air parcels.
Definition: mptrac.h:3139
double q[NQ][NP]
Quantity data (for various, user-defined attributes).
Definition: mptrac.h:3154
double p[NP]
Pressure [hPa].
Definition: mptrac.h:3145
Cache data structure.
Definition: mptrac.h:3164
double dt[NP]
Timesteps [s].
Definition: mptrac.h:3185
double iso_ts[NP]
Isosurface balloon time [s].
Definition: mptrac.h:3173
int iso_n
Isosurface balloon number of data points.
Definition: mptrac.h:3176
double iso_ps[NP]
Isosurface balloon pressure [hPa].
Definition: mptrac.h:3170
double rs[3 *NP+1]
Random numbers.
Definition: mptrac.h:3182
float uvwp[NP][3]
Wind perturbations [m/s].
Definition: mptrac.h:3179
double iso_var[NP]
Isosurface variables.
Definition: mptrac.h:3167
Climatological data in the form of photolysis rates.
Definition: mptrac.h:3196
int nsza
Number of solar zenith angles.
Definition: mptrac.h:3202
double sza[CSZA]
Solar zenith angle [rad].
Definition: mptrac.h:3211
double o3_1[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O1d + O2) [1/s].
Definition: mptrac.h:3232
double p[CP]
Pressure [hPa].
Definition: mptrac.h:3208
double ccl2f2[CP][CSZA][CO3]
CCl2F2 photolysis rate [1/s].
Definition: mptrac.h:3226
double o2[CP][CSZA][CO3]
O2 photolysis rate [1/s].
Definition: mptrac.h:3229
double ccl3f[CP][CSZA][CO3]
CCl3F photolysis rate [1/s].
Definition: mptrac.h:3223
double n2o[CP][CSZA][CO3]
N2O photolysis rate [1/s].
Definition: mptrac.h:3217
double h2o2[CP][CSZA][CO3]
H2O2 photolysis rate [1/s].
Definition: mptrac.h:3238
double h2o[CP][CSZA][CO3]
H2O photolysis rate [1/s].
Definition: mptrac.h:3241
double ccl4[CP][CSZA][CO3]
CCl4 photolysis rate [1/s].
Definition: mptrac.h:3220
double o3_2[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O3p + O2) [1/s].
Definition: mptrac.h:3235
double o3c[CO3]
Total column ozone [DU].
Definition: mptrac.h:3214
int np
Number of pressure levels.
Definition: mptrac.h:3199
int no3c
Number of total ozone columns.
Definition: mptrac.h:3205
Climatological data.
Definition: mptrac.h:3304
clim_ts_t ccl2f2
CFC-12 time series.
Definition: mptrac.h:3346
clim_photo_t photo
Photolysis rates.
Definition: mptrac.h:3322
clim_zm_t ho2
HO2 zonal means.
Definition: mptrac.h:3334
clim_zm_t hno3
HNO3 zonal means.
Definition: mptrac.h:3325
int tropo_ntime
Number of tropopause timesteps.
Definition: mptrac.h:3307
clim_ts_t sf6
SF6 time series.
Definition: mptrac.h:3352
clim_ts_t ccl4
CFC-10 time series.
Definition: mptrac.h:3340
clim_ts_t ccl3f
CFC-11 time series.
Definition: mptrac.h:3343
clim_zm_t o1d
O(1D) zonal means.
Definition: mptrac.h:3337
double tropo_lat[73]
Tropopause latitudes [deg].
Definition: mptrac.h:3316
clim_zm_t h2o2
H2O2 zonal means.
Definition: mptrac.h:3331
int tropo_nlat
Number of tropopause latitudes.
Definition: mptrac.h:3310
clim_zm_t oh
OH zonal means.
Definition: mptrac.h:3328
double tropo[12][73]
Tropopause pressure values [hPa].
Definition: mptrac.h:3319
double tropo_time[12]
Tropopause time steps [s].
Definition: mptrac.h:3313
clim_ts_t n2o
N2O time series.
Definition: mptrac.h:3349
Climatological data in the form of time series.
Definition: mptrac.h:3252
double vmr[CTS]
Volume mixing ratio [ppv].
Definition: mptrac.h:3261
double time[CTS]
Time [s].
Definition: mptrac.h:3258
int ntime
Number of timesteps.
Definition: mptrac.h:3255
Climatological data in the form of zonal means.
Definition: mptrac.h:3272
double time[CT]
Time [s].
Definition: mptrac.h:3284
int np
Number of pressure levels.
Definition: mptrac.h:3281
double p[CP]
Pressure [hPa].
Definition: mptrac.h:3290
double vmr[CT][CP][CY]
Volume mixing ratio [ppv].
Definition: mptrac.h:3293
int ntime
Number of timesteps.
Definition: mptrac.h:3275
int nlat
Number of latitudes.
Definition: mptrac.h:3278
double lat[CY]
Latitude [deg].
Definition: mptrac.h:3287
Control parameters.
Definition: mptrac.h:2158
double grid_z0
Lower altitude of gridded data [km].
Definition: mptrac.h:3016
int qnt_o3
Quantity array index for ozone volume mixing ratio.
Definition: mptrac.h:2270
double csi_lat1
Upper latitude of gridded CSI data [deg].
Definition: mptrac.h:2980
char csi_obsfile[LEN]
Observation data file for CSI analysis.
Definition: mptrac.h:2947
int qnt_Coh
Quantity array index for OH volume mixing ratio (chemistry code).
Definition: mptrac.h:2417
double wet_depo_ic_a
Coefficient A for wet deposition in cloud (exponential form).
Definition: mptrac.h:2868
int met_nc_scale
Check netCDF scaling factors (0=no, 1=yes).
Definition: mptrac.h:2489
int qnt_pel
Quantity array index for pressure at equilibrium level (EL).
Definition: mptrac.h:2303
int csi_nz
Number of altitudes of gridded CSI data.
Definition: mptrac.h:2956
double molmass
Molar mass [g/mol].
Definition: mptrac.h:2730
int qnt_p
Quantity array index for pressure.
Definition: mptrac.h:2249
int qnt_Cccl2f2
Quantity array index for CFC-12 volume mixing ratio (chemistry code).
Definition: mptrac.h:2441
char atm_gpfile[LEN]
Gnuplot file for atmospheric data.
Definition: mptrac.h:2908
int mixing_nx
Number of longitudes of mixing grid.
Definition: mptrac.h:2793
double chemgrid_z1
Upper altitude of chemistry grid [km].
Definition: mptrac.h:2817
char qnt_format[NQ][LEN]
Quantity output format.
Definition: mptrac.h:2177
int qnt_m
Quantity array index for mass.
Definition: mptrac.h:2189
int qnt_aoa
Quantity array index for age of air.
Definition: mptrac.h:2450
int qnt_rhop
Quantity array index for particle density.
Definition: mptrac.h:2198
int qnt_swc
Quantity array index for cloud snow water content.
Definition: mptrac.h:2282
double csi_obsmin
Minimum observation index to trigger detection.
Definition: mptrac.h:2950
int qnt_pcb
Quantity array index for cloud bottom pressure.
Definition: mptrac.h:2291
char clim_n2o_timeseries[LEN]
Filename of N2O time series.
Definition: mptrac.h:2769
double bound_dzs
Boundary conditions surface layer depth [km].
Definition: mptrac.h:2718
double csi_lon1
Upper longitude of gridded CSI data [deg].
Definition: mptrac.h:2971
int qnt_u
Quantity array index for zonal wind.
Definition: mptrac.h:2258
double stat_lon
Longitude of station [deg].
Definition: mptrac.h:3094
double mixing_trop
Interparcel exchange parameter for mixing in the troposphere.
Definition: mptrac.h:2778
double sort_dt
Time step for sorting of particle data [s].
Definition: mptrac.h:2630
double mixing_z1
Upper altitude of mixing grid [km].
Definition: mptrac.h:2790
double stat_r
Search radius around station [km].
Definition: mptrac.h:3100
double wet_depo_bc_a
Coefficient A for wet deposition below cloud (exponential form).
Definition: mptrac.h:2862
int csi_ny
Number of latitudes of gridded CSI data.
Definition: mptrac.h:2974
int vtk_sphere
Spherical projection for VTK data (0=no, 1=yes).
Definition: mptrac.h:3124
double chemgrid_z0
Lower altitude of chemistry grid [km].
Definition: mptrac.h:2814
double met_pbl_min
Minimum depth of planetary boundary layer [km].
Definition: mptrac.h:2598
int qnt_iwc
Quantity array index for cloud ice water content.
Definition: mptrac.h:2279
double chemgrid_lat0
Lower latitude of chemistry grid [deg].
Definition: mptrac.h:2832
double conv_cape
CAPE threshold for convection module [J/kg].
Definition: mptrac.h:2682
int qnt_Co1d
Quantity array index for O(1D) volume mixing ratio (chemistry code).
Definition: mptrac.h:2429
double met_cms_eps_pv
cmultiscale compression epsilon for potential vorticity.
Definition: mptrac.h:2529
int qnt_pw
Quantity array index for partial water vapor pressure.
Definition: mptrac.h:2357
char prof_basename[LEN]
Basename for profile output file.
Definition: mptrac.h:3043
double grid_z1
Upper altitude of gridded data [km].
Definition: mptrac.h:3019
int direction
Direction flag (1=forward calculation, -1=backward calculation).
Definition: mptrac.h:2453
char balloon[LEN]
Balloon position filename.
Definition: mptrac.h:2637
int qnt_Cccl4
Quantity array index for CFC-10 volume mixing ratio (chemistry code).
Definition: mptrac.h:2435
int met_dp
Stride for pressure levels.
Definition: mptrac.h:2559
double met_dt_out
Time step for sampling of meteo data along trajectories [s].
Definition: mptrac.h:2617
int qnt_h2o2
Quantity array index for H2O2 volume mixing ratio (climatology).
Definition: mptrac.h:2321
int qnt_vh
Quantity array index for horizontal wind.
Definition: mptrac.h:2384
char species[LEN]
Species.
Definition: mptrac.h:2727
int csi_nx
Number of longitudes of gridded CSI data.
Definition: mptrac.h:2965
double csi_lat0
Lower latitude of gridded CSI data [deg].
Definition: mptrac.h:2977
double turb_dz_trop
Vertical turbulent diffusion coefficient (troposphere) [m^2/s].
Definition: mptrac.h:2664
int met_pbl
Planetary boundary layer data (0=file, 1=z2p, 2=Richardson, 3=theta).
Definition: mptrac.h:2595
int qnt_lwc
Quantity array index for cloud liquid water content.
Definition: mptrac.h:2273
double turb_mesoz
Vertical scaling factor for mesoscale wind fluctuations.
Definition: mptrac.h:2673
int grid_nc_level
zlib compression level of netCDF grid data files (0=off).
Definition: mptrac.h:3004
int grid_nx
Number of longitudes of gridded data.
Definition: mptrac.h:3022
int atm_type
Type of atmospheric data files (0=ASCII, 1=binary, 2=netCDF, 3=CLaMS_traj, 4=CLaMS_pos).
Definition: mptrac.h:2921
double bound_mass
Boundary conditions mass per particle [kg].
Definition: mptrac.h:2691
double grid_lat0
Lower latitude of gridded data [deg].
Definition: mptrac.h:3034
int qnt_ts
Quantity array index for surface temperature.
Definition: mptrac.h:2204
int qnt_loss_rate
Quantity array index for total loss rate.
Definition: mptrac.h:2348
double met_cms_eps_h2o
cmultiscale compression epsilon for water vapor.
Definition: mptrac.h:2532
int qnt_plfc
Quantity array index for pressure at level of free convection (LCF).
Definition: mptrac.h:2300
double grid_lon0
Lower longitude of gridded data [deg].
Definition: mptrac.h:3025
int qnt_o1d
Quantity array index for O(1D) volume mixing ratio (climatology).
Definition: mptrac.h:2327
int met_tropo_spline
Tropopause interpolation method (0=linear, 1=spline).
Definition: mptrac.h:2614
char sample_kernel[LEN]
Kernel data file for sample output.
Definition: mptrac.h:3079
int qnt_tvirt
Quantity array index for virtual temperature.
Definition: mptrac.h:2378
double dt_met
Time step of meteo data [s].
Definition: mptrac.h:2472
char clim_ho2_filename[LEN]
Filename of HO2 climatology.
Definition: mptrac.h:2751
double chemgrid_lat1
Upper latitude of chemistry grid [deg].
Definition: mptrac.h:2835
int met_geopot_sy
Latitudinal smoothing of geopotential heights.
Definition: mptrac.h:2586
char grid_gpfile[LEN]
Gnuplot file for gridded data.
Definition: mptrac.h:2995
double met_cms_eps_u
cmultiscale compression epsilon for zonal wind.
Definition: mptrac.h:2520
double turb_dx_strat
Horizontal turbulent diffusion coefficient (stratosphere) [m^2/s].
Definition: mptrac.h:2658
int qnt_vmr
Quantity array index for volume mixing ratio.
Definition: mptrac.h:2192
int qnt_lsm
Quantity array index for land-sea mask.
Definition: mptrac.h:2225
int qnt_theta
Quantity array index for potential temperature.
Definition: mptrac.h:2369
double bound_lat1
Boundary conditions maximum longitude [deg].
Definition: mptrac.h:2706
double stat_t1
Stop time for station output [s].
Definition: mptrac.h:3106
char csi_kernel[LEN]
Kernel data file for CSI output.
Definition: mptrac.h:2941
double turb_dx_trop
Horizontal turbulent diffusion coefficient (troposphere) [m^2/s].
Definition: mptrac.h:2655
int grid_type
Type of grid data files (0=ASCII, 1=netCDF).
Definition: mptrac.h:3040
double csi_lon0
Lower longitude of gridded CSI data [deg].
Definition: mptrac.h:2968
int qnt_pbl
Quantity array index for boundary layer pressure.
Definition: mptrac.h:2231
double oh_chem[4]
Coefficients for OH reaction rate (A, E/R or k0, n, kinf, m).
Definition: mptrac.h:2841
int grid_stddev
Include standard deviations in grid output (0=no, 1=yes).
Definition: mptrac.h:3010
int qnt_psice
Quantity array index for saturation pressure over ice.
Definition: mptrac.h:2354
double chemgrid_lon0
Lower longitude of chemistry grid [deg].
Definition: mptrac.h:2823
int bound_pbl
Boundary conditions planetary boundary layer (0=no, 1=yes).
Definition: mptrac.h:2724
int qnt_mloss_wet
Quantity array index for total mass loss due to wet deposition.
Definition: mptrac.h:2339
int met_geopot_sx
Longitudinal smoothing of geopotential heights.
Definition: mptrac.h:2583
int met_sy
Smoothing for latitudes.
Definition: mptrac.h:2565
int qnt_ps
Quantity array index for surface pressure.
Definition: mptrac.h:2201
int rng_type
Random number generator (0=GSL, 1=Squares, 2=cuRAND).
Definition: mptrac.h:2646
char prof_obsfile[LEN]
Observation data file for profile output.
Definition: mptrac.h:3046
int isosurf
Isosurface parameter (0=none, 1=pressure, 2=density, 3=theta, 4=balloon).
Definition: mptrac.h:2634
double bound_p1
Boundary conditions top pressure [hPa].
Definition: mptrac.h:2712
int qnt_zs
Quantity array index for surface geopotential height.
Definition: mptrac.h:2207
int prof_nz
Number of altitudes of gridded profile data.
Definition: mptrac.h:3049
double csi_dt_out
Time step for CSI output [s].
Definition: mptrac.h:2944
int met_cape
Convective available potential energy data (0=file, 1=calculate).
Definition: mptrac.h:2592
double csi_modmin
Minimum column density to trigger detection [kg/m^2].
Definition: mptrac.h:2953
int met_sx
Smoothing for longitudes.
Definition: mptrac.h:2562
double chemgrid_lon1
Upper longitude of chemistry grid [deg].
Definition: mptrac.h:2826
double turb_mesox
Horizontal scaling factor for mesoscale wind fluctuations.
Definition: mptrac.h:2670
double met_cms_eps_iwc
cmultiscale compression epsilon for cloud ice water content.
Definition: mptrac.h:2544
double met_cms_eps_swc
cmultiscale compression epsilon for cloud snow water content.
Definition: mptrac.h:2547
char grid_kernel[LEN]
Kernel data file for grid output.
Definition: mptrac.h:2992
int met_zfp_prec
ZFP compression precision for all variables, except z and T.
Definition: mptrac.h:2498
double met_cms_eps_v
cmultiscale compression epsilon for meridional wind.
Definition: mptrac.h:2523
double prof_z0
Lower altitude of gridded profile data [km].
Definition: mptrac.h:3052
int qnt_w
Quantity array index for vertical velocity.
Definition: mptrac.h:2264
double bound_vmr
Boundary conditions volume mixing ratio [ppv].
Definition: mptrac.h:2697
double met_tropo_pv
Dynamical tropopause potential vorticity threshold [PVU].
Definition: mptrac.h:2608
int prof_nx
Number of longitudes of gridded profile data.
Definition: mptrac.h:3058
int qnt_stat
Quantity array index for station flag.
Definition: mptrac.h:2186
int met_tropo
Tropopause definition (0=none, 1=clim, 2=cold point, 3=WMO_1st, 4=WMO_2nd, 5=dynamical).
Definition: mptrac.h:2605
int qnt_rp
Quantity array index for particle radius.
Definition: mptrac.h:2195
int met_mpi_share
Use MPI to share meteo (0=no, 1=yes).
Definition: mptrac.h:2623
double mixing_strat
Interparcel exchange parameter for mixing in the stratosphere.
Definition: mptrac.h:2781
int qnt_vz
Quantity array index for vertical velocity.
Definition: mptrac.h:2387
int qnt_ho2
Quantity array index for HO2 volume mixing ratio (climatology).
Definition: mptrac.h:2324
double csi_z1
Upper altitude of gridded CSI data [km].
Definition: mptrac.h:2962
double stat_t0
Start time for station output [s].
Definition: mptrac.h:3103
double oh_chem_beta
Beta parameter for diurnal variablity of OH.
Definition: mptrac.h:2844
char clim_o1d_filename[LEN]
Filename of O(1D) climatology.
Definition: mptrac.h:2754
char clim_photo[LEN]
Filename of photolysis rates climatology.
Definition: mptrac.h:2739
double wet_depo_so2_ph
pH value used to calculate effective Henry constant of SO2.
Definition: mptrac.h:2880
double mixing_z0
Lower altitude of mixing grid [km].
Definition: mptrac.h:2787
int qnt_mloss_decay
Quantity array index for total mass loss due to exponential decay.
Definition: mptrac.h:2345
int atm_type_out
Type of atmospheric data files for output (-1=same as ATM_TYPE, 0=ASCII, 1=binary,...
Definition: mptrac.h:2926
double dt_kpp
Time step for KPP chemistry [s].
Definition: mptrac.h:2853
char csi_basename[LEN]
Basename of CSI data files.
Definition: mptrac.h:2938
double dry_depo_dp
Dry deposition surface layer [hPa].
Definition: mptrac.h:2889
int qnt_shf
Quantity array index for surface sensible heat flux.
Definition: mptrac.h:2222
int qnt_vs
Quantity array index for surface meridional wind.
Definition: mptrac.h:2213
int qnt_Cco
Quantity array index for CO volume mixing ratio (chemistry code).
Definition: mptrac.h:2414
double vtk_dt_out
Time step for VTK data output [s].
Definition: mptrac.h:3112
double t_stop
Stop time of simulation [s].
Definition: mptrac.h:2459
double conv_dt
Time interval for convection module [s].
Definition: mptrac.h:2688
char sample_obsfile[LEN]
Observation data file for sample output.
Definition: mptrac.h:3082
int qnt_hno3
Quantity array index for HNO3 volume mixing ratio (climatology).
Definition: mptrac.h:2315
char grid_basename[LEN]
Basename of grid data files.
Definition: mptrac.h:2989
int met_clams
Read MPTRAC or CLaMS meteo data (0=MPTRAC, 1=CLaMS).
Definition: mptrac.h:2486
int qnt_h2ot
Quantity array index for tropopause water vapor volume mixing ratio.
Definition: mptrac.h:2243
int qnt_rh
Quantity array index for relative humidity over water.
Definition: mptrac.h:2363
double met_cms_eps_cc
cmultiscale compression epsilon for cloud cover.
Definition: mptrac.h:2550
double bound_lat0
Boundary conditions minimum longitude [deg].
Definition: mptrac.h:2703
double met_pbl_max
Maximum depth of planetary boundary layer [km].
Definition: mptrac.h:2601
int met_dx
Stride for longitudes.
Definition: mptrac.h:2553
int mixing_ny
Number of latitudes of mixing grid.
Definition: mptrac.h:2802
int met_convention
Meteo data layout (0=[lev, lat, lon], 1=[lon, lat, lev]).
Definition: mptrac.h:2475
int qnt_zeta_d
Quantity array index for diagnosed zeta vertical coordinate.
Definition: mptrac.h:2375
char clim_h2o2_filename[LEN]
Filename of H2O2 climatology.
Definition: mptrac.h:2748
int tracer_chem
Switch for first order tracer chemistry module (0=off, 1=on).
Definition: mptrac.h:2856
double dt_mod
Time step of simulation [s].
Definition: mptrac.h:2462
int diffusion
Diffusion scheme (0=off, 1=fixed-K, 2=PBL).
Definition: mptrac.h:2649
int qnt_tnat
Quantity array index for T_NAT.
Definition: mptrac.h:2402
int qnt_tice
Quantity array index for T_ice.
Definition: mptrac.h:2396
int qnt_zg
Quantity array index for geopotential height.
Definition: mptrac.h:2246
double vtk_offset
Vertical offset for VTK data [km].
Definition: mptrac.h:3121
int qnt_v
Quantity array index for meridional wind.
Definition: mptrac.h:2261
int qnt_mloss_dry
Quantity array index for total mass loss due to dry deposition.
Definition: mptrac.h:2342
double bound_vmr_trend
Boundary conditions volume mixing ratio trend [ppv/s].
Definition: mptrac.h:2700
int met_cache
Preload meteo data into disk cache (0=no, 1=yes).
Definition: mptrac.h:2620
int qnt_oh
Quantity array index for OH volume mixing ratio (climatology).
Definition: mptrac.h:2318
char qnt_unit[NQ][LEN]
Quantity units.
Definition: mptrac.h:2174
int qnt_Ch
Quantity array index for H volume mixing ratio (chemistry code).
Definition: mptrac.h:2420
int met_press_level_def
Use predefined pressure levels or not.
Definition: mptrac.h:2580
int oh_chem_reaction
Reaction type for OH chemistry (0=none, 2=bimolecular, 3=termolecular).
Definition: mptrac.h:2838
int qnt_h2o
Quantity array index for water vapor volume mixing ratio.
Definition: mptrac.h:2267
int prof_ny
Number of latitudes of gridded profile data.
Definition: mptrac.h:3067
int qnt_rhice
Quantity array index for relative humidity over ice.
Definition: mptrac.h:2366
int qnt_rho
Quantity array index for density of air.
Definition: mptrac.h:2255
double sample_dz
Layer depth for sample output [km].
Definition: mptrac.h:3088
double tdec_strat
Life time of particles in the stratosphere [s].
Definition: mptrac.h:2736
int obs_type
Type of observation data files (0=ASCII, 1=netCDF).
Definition: mptrac.h:2935
int grid_nc_quant[NQ]
Number of digits for quantization of netCDF grid data files (0=off).
Definition: mptrac.h:3007
double met_cms_eps_lwc
cmultiscale compression epsilon for cloud liquid water content.
Definition: mptrac.h:2538
int qnt_us
Quantity array index for surface zonal wind.
Definition: mptrac.h:2210
double met_cms_eps_z
cmultiscale compression epsilon for geopotential height.
Definition: mptrac.h:2514
double grid_lon1
Upper longitude of gridded data [deg].
Definition: mptrac.h:3028
int qnt_Cn2o
Quantity array index for N2O volume mixing ratio (chemistry code).
Definition: mptrac.h:2444
int qnt_Cccl3f
Quantity array index for CFC-11 volume mixing ratio (chemistry code).
Definition: mptrac.h:2438
char qnt_name[NQ][LEN]
Quantity names.
Definition: mptrac.h:2168
char atm_basename[LEN]
Basename of atmospheric data files.
Definition: mptrac.h:2905
double mixing_lat0
Lower latitude of mixing grid [deg].
Definition: mptrac.h:2805
int qnt_pt
Quantity array index for tropopause pressure.
Definition: mptrac.h:2234
int qnt_cl
Quantity array index for total column cloud water.
Definition: mptrac.h:2294
int advect
Advection scheme (0=off, 1=Euler, 2=midpoint, 4=Runge-Kutta).
Definition: mptrac.h:2640
double prof_z1
Upper altitude of gridded profile data [km].
Definition: mptrac.h:3055
int qnt_t
Quantity array index for temperature.
Definition: mptrac.h:2252
int atm_filter
Time filter for atmospheric data output (0=none, 1=missval, 2=remove).
Definition: mptrac.h:2914
int kpp_chem
Switch for KPP chemistry module (0=off, 1=on).
Definition: mptrac.h:2850
int qnt_zeta
Quantity array index for zeta vertical coordinate.
Definition: mptrac.h:2372
double conv_pbl_trans
Depth of PBL transition layer (fraction of PBL depth).
Definition: mptrac.h:2679
char ens_basename[LEN]
Basename of ensemble data file.
Definition: mptrac.h:2983
double wet_depo_pre[2]
Coefficients for precipitation calculation.
Definition: mptrac.h:2859
int met_vert_coord
Vertical coordinate of input meteo data (0=pressure-level, 1=model-level_pfield, 2=model-level_abcoef...
Definition: mptrac.h:2479
double csi_z0
Lower altitude of gridded CSI data [km].
Definition: mptrac.h:2959
int qnt_lapse
Quantity array index for lapse rate.
Definition: mptrac.h:2381
double stat_lat
Latitude of station [deg].
Definition: mptrac.h:3097
int qnt_Cho2
Quantity array index for HO2 volume mixing ratio (chemistry code).
Definition: mptrac.h:2423
double wet_depo_bc_h[2]
Coefficients for wet deposition below cloud (Henry's law: Hb, Cb).
Definition: mptrac.h:2877
int grid_ny
Number of latitudes of gridded data.
Definition: mptrac.h:3031
int qnt_Csf6
Quantity array index for SF6 volume mixing ratio (chemistry code).
Definition: mptrac.h:2447
int qnt_Ch2o
Quantity array index for H2O volume mixing ratio (chemistry code).
Definition: mptrac.h:2408
double met_detrend
FWHM of horizontal Gaussian used for detrending [km].
Definition: mptrac.h:2571
int conv_mix_pbl
Vertical mixing in the PBL (0=off, 1=on).
Definition: mptrac.h:2676
char metbase[LEN]
Basename for meteo data.
Definition: mptrac.h:2469
double bound_dps
Boundary conditions surface layer depth [hPa].
Definition: mptrac.h:2715
double met_cms_eps_t
cmultiscale compression epsilon for temperature.
Definition: mptrac.h:2517
int chemgrid_nz
Number of altitudes of chemistry grid.
Definition: mptrac.h:2811
int qnt_cape
Quantity array index for convective available potential energy (CAPE).
Definition: mptrac.h:2306
double bound_mass_trend
Boundary conditions mass per particle trend [kg/s].
Definition: mptrac.h:2694
int mixing_nz
Number of altitudes of mixing grid.
Definition: mptrac.h:2784
int qnt_o3c
Quantity array index for total column ozone.
Definition: mptrac.h:2312
double bound_p0
Boundary conditions bottom pressure [hPa].
Definition: mptrac.h:2709
double mixing_lon0
Lower longitude of mixing grid [deg].
Definition: mptrac.h:2796
char clim_ccl4_timeseries[LEN]
Filename of CFC-10 time series.
Definition: mptrac.h:2760
int qnt_Co3
Quantity array index for O3 volume mixing ratio (chemistry code).
Definition: mptrac.h:2411
int qnt_tsts
Quantity array index for T_STS.
Definition: mptrac.h:2399
int grid_nz
Number of altitudes of gridded data.
Definition: mptrac.h:3013
char clim_oh_filename[LEN]
Filename of OH climatology.
Definition: mptrac.h:2745
int qnt_nss
Quantity array index for northward turbulent surface stress.
Definition: mptrac.h:2219
double ens_dt_out
Time step for ensemble output [s].
Definition: mptrac.h:2986
char sample_basename[LEN]
Basename of sample data file.
Definition: mptrac.h:3076
int atm_stride
Particle index stride for atmospheric data files.
Definition: mptrac.h:2917
int met_relhum
Try to read relative humidity (0=no, 1=yes).
Definition: mptrac.h:2589
double mixing_lat1
Upper latitude of mixing grid [deg].
Definition: mptrac.h:2808
double atm_dt_out
Time step for atmospheric data output [s].
Definition: mptrac.h:2911
char clim_sf6_timeseries[LEN]
Filename of SF6 time series.
Definition: mptrac.h:2772
double prof_lat1
Upper latitude of gridded profile data [deg].
Definition: mptrac.h:3073
int met_cms_batch
cmultiscale batch size.
Definition: mptrac.h:2507
double psc_h2o
H2O volume mixing ratio for PSC analysis.
Definition: mptrac.h:2895
int met_sp
Smoothing for pressure levels.
Definition: mptrac.h:2568
double prof_lon0
Lower longitude of gridded profile data [deg].
Definition: mptrac.h:3061
int chemgrid_nx
Number of longitudes of chemistry grid.
Definition: mptrac.h:2820
int qnt_pct
Quantity array index for cloud top pressure.
Definition: mptrac.h:2288
int qnt_mloss_kpp
Quantity array index for total mass loss due to KPP chemistry.
Definition: mptrac.h:2336
int qnt_psat
Quantity array index for saturation pressure over water.
Definition: mptrac.h:2351
double prof_lat0
Lower latitude of gridded profile data [deg].
Definition: mptrac.h:3070
int qnt_cin
Quantity array index for convective inhibition (CIN).
Definition: mptrac.h:2309
double psc_hno3
HNO3 volume mixing ratio for PSC analysis.
Definition: mptrac.h:2898
double prof_lon1
Upper longitude of gridded profile data [deg].
Definition: mptrac.h:3064
double met_cms_eps_rwc
cmultiscale compression epsilon for cloud rain water content.
Definition: mptrac.h:2541
int met_nc_quant
Number of digits for quantization of netCDF meteo files (0=off).
Definition: mptrac.h:2495
int h2o2_chem_reaction
Reaction type for H2O2 chemistry (0=none, 1=SO2).
Definition: mptrac.h:2847
int qnt_Co3p
Quantity array index for O(3P) volume mixing ratio (chemistry code).
Definition: mptrac.h:2432
int atm_nc_quant[NQ]
Number of digits for quantization of netCDF atmospheric data files (0=off).
Definition: mptrac.h:2932
double wet_depo_bc_ret_ratio
Coefficients for wet deposition below cloud: retention ratio.
Definition: mptrac.h:2886
int chemgrid_ny
Number of latitudes of chemistry grid.
Definition: mptrac.h:2829
char clim_ccl3f_timeseries[LEN]
Filename of CFC-11 time series.
Definition: mptrac.h:2763
double met_cms_eps_o3
cmultiscale compression epsilon for ozone.
Definition: mptrac.h:2535
int grid_sparse
Sparse output in grid data files (0=no, 1=yes).
Definition: mptrac.h:3001
char vtk_basename[LEN]
Basename of VTK data files.
Definition: mptrac.h:3109
double dry_depo_vdep
Dry deposition velocity [m/s].
Definition: mptrac.h:2892
int qnt_tt
Quantity array index for tropopause temperature.
Definition: mptrac.h:2237
int met_np
Number of target pressure levels.
Definition: mptrac.h:2574
int qnt_ens
Quantity array index for ensemble IDs.
Definition: mptrac.h:2183
int met_nc_level
zlib compression level of netCDF meteo files (0=off).
Definition: mptrac.h:2492
double met_zfp_tol_t
ZFP compression tolerance for temperature.
Definition: mptrac.h:2501
double mixing_dt
Time interval for mixing [s].
Definition: mptrac.h:2775
int qnt_mloss_h2o2
Quantity array index for total mass loss due to H2O2 chemistry.
Definition: mptrac.h:2333
double met_zfp_tol_z
ZFP compression tolerance for geopotential height.
Definition: mptrac.h:2504
double vtk_scale
Vertical scaling factor for VTK data.
Definition: mptrac.h:3118
char clim_ccl2f2_timeseries[LEN]
Filename of CFC-12 time series.
Definition: mptrac.h:2766
double met_cms_eps_w
cmultiscale compression epsilon for vertical velocity.
Definition: mptrac.h:2526
double wet_depo_ic_h[2]
Coefficients for wet deposition in cloud (Henry's law: Hb, Cb).
Definition: mptrac.h:2874
double turb_dx_pbl
Horizontal turbulent diffusion coefficient (PBL) [m^2/s].
Definition: mptrac.h:2652
double conv_cin
CIN threshold for convection module [J/kg].
Definition: mptrac.h:2685
int qnt_pv
Quantity array index for potential vorticity.
Definition: mptrac.h:2390
int advect_vert_coord
Vertical coordinate of air parcels (0=pressure, 1=zeta, 2=eta).
Definition: mptrac.h:2643
int qnt_mloss_oh
Quantity array index for total mass loss due to OH chemistry.
Definition: mptrac.h:2330
int qnt_Ch2o2
Quantity array index for H2O2 volume mixing ratio (chemistry code).
Definition: mptrac.h:2426
int qnt_sst
Quantity array index for sea surface temperature.
Definition: mptrac.h:2228
double mixing_lon1
Upper longitude of mixing grid [deg].
Definition: mptrac.h:2799
int atm_nc_level
zlib compression level of netCDF atmospheric data files (0=off).
Definition: mptrac.h:2929
char clim_hno3_filename[LEN]
Filename of HNO3 climatology.
Definition: mptrac.h:2742
int met_cms_heur
cmultiscale coarsening heuristics (0=default, 1=mean diff, 2=median diff, 3=max diff).
Definition: mptrac.h:2511
double wet_depo_ic_ret_ratio
Coefficients for wet deposition in cloud: retention ratio.
Definition: mptrac.h:2883
int qnt_sh
Quantity array index for specific humidity.
Definition: mptrac.h:2360
int qnt_ess
Quantity array index for eastward turbulent surface stress.
Definition: mptrac.h:2216
double wet_depo_ic_b
Coefficient B for wet deposition in cloud (exponential form).
Definition: mptrac.h:2871
double wet_depo_bc_b
Coefficient B for wet deposition below cloud (exponential form).
Definition: mptrac.h:2865
int met_dy
Stride for latitudes.
Definition: mptrac.h:2556
int qnt_Cx
Quantity array index for trace species x volume mixing ratio (chemistry code).
Definition: mptrac.h:2405
double turb_dz_strat
Vertical turbulent diffusion coefficient (stratosphere) [m^2/s].
Definition: mptrac.h:2667
double bound_zetas
Boundary conditions surface layer zeta [K].
Definition: mptrac.h:2721
int qnt_idx
Quantity array index for air parcel IDs.
Definition: mptrac.h:2180
double met_tropo_theta
Dynamical tropopause potential temperature threshold [K].
Definition: mptrac.h:2611
int qnt_rwc
Quantity array index for cloud rain water content.
Definition: mptrac.h:2276
double t_start
Start time of simulation [s].
Definition: mptrac.h:2456
char qnt_longname[NQ][LEN]
Quantity long names.
Definition: mptrac.h:2171
double met_p[EP]
Target pressure levels [hPa].
Definition: mptrac.h:2577
int nq
Number of quantities.
Definition: mptrac.h:2165
double tdec_trop
Life time of particles in the troposphere [s].
Definition: mptrac.h:2733
double sample_dx
Horizontal radius for sample output [km].
Definition: mptrac.h:3085
int vtk_stride
Particle index stride for VTK data.
Definition: mptrac.h:3115
char stat_basename[LEN]
Basename of station data file.
Definition: mptrac.h:3091
double turb_dz_pbl
Vertical turbulent diffusion coefficient (PBL) [m^2/s].
Definition: mptrac.h:2661
double grid_lat1
Upper latitude of gridded data [deg].
Definition: mptrac.h:3037
int qnt_zt
Quantity array index for tropopause geopotential height.
Definition: mptrac.h:2240
int met_type
Type of meteo data files (0=netCDF, 1=binary, 2=pck, 3=zfp, 4=zstd, 5=cms).
Definition: mptrac.h:2483
int qnt_cc
Quantity array index for cloud cover.
Definition: mptrac.h:2285
int qnt_plcl
Quantity array index for pressure at lifted condensation level (LCL).
Definition: mptrac.h:2297
double grid_dt_out
Time step for gridded data output [s].
Definition: mptrac.h:2998
int qnt_tdew
Quantity array index for dew point temperature.
Definition: mptrac.h:2393
Meteo data structure.
Definition: mptrac.h:3363
float zt[EX][EY]
Tropopause geopotential height [km].
Definition: mptrac.h:3432
float sst[EX][EY]
Sea surface temperature [K].
Definition: mptrac.h:3420
float rwc[EX][EY][EP]
Cloud rain water content [kg/kg].
Definition: mptrac.h:3492
float o3c[EX][EY]
Total column ozone [DU].
Definition: mptrac.h:3462
float zeta_dotl[EX][EY][EP]
Vertical velocity on model levels [K/s].
Definition: mptrac.h:3519
float h2o[EX][EY][EP]
Water vapor volume mixing ratio [1].
Definition: mptrac.h:3483
float cape[EX][EY]
Convective available potential energy [J/kg].
Definition: mptrac.h:3456
float w[EX][EY][EP]
Vertical velocity [hPa/s].
Definition: mptrac.h:3477
float pct[EX][EY]
Cloud top pressure [hPa].
Definition: mptrac.h:3438
double hybrid[EP]
Model hybrid levels.
Definition: mptrac.h:3390
int nx
Number of longitudes.
Definition: mptrac.h:3369
int ny
Number of latitudes.
Definition: mptrac.h:3372
float shf[EX][EY]
Surface sensible heat flux [W/m^2].
Definition: mptrac.h:3414
float ps[EX][EY]
Surface pressure [hPa].
Definition: mptrac.h:3393
float lwc[EX][EY][EP]
Cloud liquid water content [kg/kg].
Definition: mptrac.h:3489
float us[EX][EY]
Surface zonal wind [m/s].
Definition: mptrac.h:3402
float wl[EX][EY][EP]
Vertical velocity on model levels [hPa/s].
Definition: mptrac.h:3513
float vl[EX][EY][EP]
Meridional wind on model levels [m/s].
Definition: mptrac.h:3510
float zs[EX][EY]
Surface geopotential height [km].
Definition: mptrac.h:3399
float o3[EX][EY][EP]
Ozone volume mixing ratio [1].
Definition: mptrac.h:3486
float cc[EX][EY][EP]
Cloud cover [1].
Definition: mptrac.h:3501
int np
Number of pressure levels.
Definition: mptrac.h:3375
float t[EX][EY][EP]
Temperature [K].
Definition: mptrac.h:3468
float ts[EX][EY]
Surface temperature [K].
Definition: mptrac.h:3396
float u[EX][EY][EP]
Zonal wind [m/s].
Definition: mptrac.h:3471
float ess[EX][EY]
Eastward turbulent surface stress [N/m^2].
Definition: mptrac.h:3408
float ul[EX][EY][EP]
Zonal wind on model levels [m/s].
Definition: mptrac.h:3507
float pcb[EX][EY]
Cloud bottom pressure [hPa].
Definition: mptrac.h:3441
float pel[EX][EY]
Pressure at equilibrium level (EL) [hPa].
Definition: mptrac.h:3453
float cin[EX][EY]
Convective inhibition [J/kg].
Definition: mptrac.h:3459
float plcl[EX][EY]
Pressure at lifted condensation level (LCL) [hPa].
Definition: mptrac.h:3447
double lon[EX]
Longitude [deg].
Definition: mptrac.h:3381
float pt[EX][EY]
Tropopause pressure [hPa].
Definition: mptrac.h:3426
float tt[EX][EY]
Tropopause temperature [K].
Definition: mptrac.h:3429
float pbl[EX][EY]
Boundary layer pressure [hPa].
Definition: mptrac.h:3423
float vs[EX][EY]
Surface meridional wind [m/s].
Definition: mptrac.h:3405
float z[EX][EY][EP]
Geopotential height [km].
Definition: mptrac.h:3465
float v[EX][EY][EP]
Meridional wind [m/s].
Definition: mptrac.h:3474
int npl
Number of model levels.
Definition: mptrac.h:3378
float lsm[EX][EY]
Land-sea mask [1].
Definition: mptrac.h:3417
float iwc[EX][EY][EP]
Cloud ice water content [kg/kg].
Definition: mptrac.h:3495
float h2ot[EX][EY]
Tropopause water vapor volume mixing ratio [ppv].
Definition: mptrac.h:3435
float pv[EX][EY][EP]
Potential vorticity [PVU].
Definition: mptrac.h:3480
double time
Time [s].
Definition: mptrac.h:3366
float cl[EX][EY]
Total column cloud water [kg/m^2].
Definition: mptrac.h:3444
float nss[EX][EY]
Northward turbulent surface stress [N/m^2].
Definition: mptrac.h:3411
float pl[EX][EY][EP]
Pressure on model levels [hPa].
Definition: mptrac.h:3504
float plfc[EX][EY]
Pressure at level of free convection (LFC) [hPa].
Definition: mptrac.h:3450
double lat[EY]
Latitude [deg].
Definition: mptrac.h:3384
float swc[EX][EY][EP]
Cloud snow water content [kg/kg].
Definition: mptrac.h:3498
float zetal[EX][EY][EP]
Zeta on model levels [K].
Definition: mptrac.h:3516
double p[EP]
Pressure levels [hPa].
Definition: mptrac.h:3387