MPTRAC
mptrac.c
Go to the documentation of this file.
1/*
2 This file is part of MPTRAC.
3
4 MPTRAC is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
8
9 MPTRAC is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with MPTRAC. If not, see <http://www.gnu.org/licenses/>.
16
17 Copyright (C) 2013-2025 Forschungszentrum Juelich GmbH
18*/
19
25#include "mptrac.h"
26
27#ifdef KPP
28#include "kpp_chem.h"
29#endif
30
32static gsl_rng *rng[NTHREADS];
33
35static uint64_t rng_ctr;
36
38#ifdef CURAND
39static curandGenerator_t rng_curand;
40#endif
41
42/*****************************************************************************/
43
44#ifdef MPI
46 void *data,
47 size_t N) {
48
49#define CHUNK_SIZE 2147483647
50
51 /* Broadcast the size of the data first... */
52 MPI_Bcast(&N, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD);
53
54 /* Calculate the number of chunks... */
55 const size_t num_chunks = (N + CHUNK_SIZE - 1) / CHUNK_SIZE;
56
57 /* Loop over chunks... */
58 for (size_t i = 0; i < num_chunks; i++) {
59
60 /* Determine the start and end indices for the current chunk... */
61 const size_t start = i * CHUNK_SIZE;
62 const size_t end = (start + CHUNK_SIZE > N) ? N : start + CHUNK_SIZE;
63 const size_t chunk_size = end - start;
64
65 /* Broadcast the current chunk... */
66 MPI_Bcast((char *) data + start, (int) chunk_size, MPI_BYTE, 0,
67 MPI_COMM_WORLD);
68 }
69}
70#endif
71
72/*****************************************************************************/
73
75 const double *x,
76 double *z,
77 double *lon,
78 double *lat) {
79
80 const double radius = sqrt(DOTP(x, x));
81
82 *lat = RAD2DEG(asin(x[2] / radius));
83 *lon = RAD2DEG(atan2(x[1], x[0]));
84 *z = radius - RE;
85}
86
87/*****************************************************************************/
88
89double clim_oh(
90 const ctl_t *ctl,
91 const clim_t *clim,
92 const double t,
93 const double lon,
94 const double lat,
95 const double p) {
96
97 /* Set SZA threshold... */
98 const double sza_thresh = DEG2RAD(85.), csza_thresh = cos(sza_thresh);
99
100 /* Get OH data from climatology... */
101 const double oh = clim_zm(&clim->oh, t, lat, p);
102
103 /* Check beta... */
104 if (ctl->oh_chem_beta <= 0)
105 return oh;
106
107 /* Apply diurnal correction... */
108 const double csza = cos_sza(t, lon, lat);
109 const double denom = (csza >= csza_thresh) ? csza : csza_thresh;
110 return oh * exp(-ctl->oh_chem_beta / denom);
111}
112
113/*****************************************************************************/
114
116 const ctl_t *ctl,
117 clim_t *clim) {
118
119 /* Set SZA threshold... */
120 const double sza_thresh = DEG2RAD(85.), csza_thresh = cos(sza_thresh);
121
122 /* Loop over climatology data points... */
123 for (int it = 0; it < clim->oh.ntime; it++)
124 for (int iz = 0; iz < clim->oh.np; iz++)
125 for (int iy = 0; iy < clim->oh.nlat; iy++) {
126
127 /* Init... */
128 int n = 0;
129 double sum = 0;
130
131 /* Integrate day/night correction factor over longitude... */
132 for (double lon = -180; lon < 180; lon += 1.0) {
133 const double csza =
134 cos_sza(clim->oh.time[it], lon, clim->oh.lat[iy]);
135 const double denom = (csza >= csza_thresh) ? csza : csza_thresh;
136 sum += exp(-ctl->oh_chem_beta / denom);
137 n++;
138 }
139
140 /* Apply scaling factor to OH data... */
141 clim->oh.vmr[it][iz][iy] /= (sum / (double) n);
142 }
143}
144
145/*****************************************************************************/
146
148 const double rate[CP][CSZA][CO3],
149 const clim_photo_t *photo,
150 const double p,
151 const double sza,
152 const double o3c) {
153
154 /* Check pressure range... */
155 double p_help = p;
156 if (p < photo->p[photo->np - 1])
157 p_help = photo->p[photo->np - 1];
158 else if (p > photo->p[0])
159 p_help = photo->p[0];
160
161 /* Check sza range... */
162 double sza_help = sza;
163 if (sza < photo->sza[0])
164 sza_help = photo->sza[0];
165 else if (sza > photo->sza[photo->nsza - 1])
166 sza_help = photo->sza[photo->nsza - 1];
167
168 /* Check ozone column range... */
169 double o3c_help = o3c;
170 if (o3c < photo->o3c[0])
171 o3c_help = photo->o3c[0];
172 else if (o3c > photo->o3c[photo->no3c - 1])
173 o3c_help = photo->o3c[photo->no3c - 1];
174
175 /* Get indices... */
176 const int ip = locate_irr(photo->p, photo->np, p_help);
177 const int isza = locate_reg(photo->sza, photo->nsza, sza_help);
178 const int io3c = locate_reg(photo->o3c, photo->no3c, o3c_help);
179
180 /* Interpolate photolysis rate... */
181 const double aux00 = LIN(photo->p[ip], rate[ip][isza][io3c],
182 photo->p[ip + 1], rate[ip + 1][isza][io3c],
183 p_help);
184 const double aux01 = LIN(photo->p[ip], rate[ip][isza][io3c + 1],
185 photo->p[ip + 1], rate[ip + 1][isza][io3c + 1],
186 p_help);
187 const double aux10 = LIN(photo->p[ip], rate[ip][isza + 1][io3c],
188 photo->p[ip + 1], rate[ip + 1][isza + 1][io3c],
189 p_help);
190 const double aux11 = LIN(photo->p[ip], rate[ip][isza + 1][io3c + 1],
191 photo->p[ip + 1], rate[ip + 1][isza + 1][io3c + 1],
192 p_help);
193 const double aux0 =
194 LIN(photo->o3c[io3c], aux00, photo->o3c[io3c + 1], aux01, o3c_help);
195 const double aux1 =
196 LIN(photo->o3c[io3c], aux10, photo->o3c[io3c + 1], aux11, o3c_help);
197 const double aux =
198 LIN(photo->sza[isza], aux0, photo->sza[isza + 1], aux1, sza_help);
199 return MAX(aux, 0.0);
200}
201
202/*****************************************************************************/
203
205 const clim_t *clim,
206 const double t,
207 const double lat) {
208
209 /* Get seconds since begin of year... */
210 double sec = FMOD(t, 365.25 * 86400.);
211 while (sec < 0)
212 sec += 365.25 * 86400.;
213
214 /* Get indices... */
215 const int isec = locate_irr(clim->tropo_time, clim->tropo_ntime, sec);
216 const int ilat = locate_reg(clim->tropo_lat, clim->tropo_nlat, lat);
217
218 /* Interpolate tropopause pressure... */
219 const double p0 = LIN(clim->tropo_lat[ilat],
220 clim->tropo[isec][ilat],
221 clim->tropo_lat[ilat + 1],
222 clim->tropo[isec][ilat + 1], lat);
223 const double p1 = LIN(clim->tropo_lat[ilat],
224 clim->tropo[isec + 1][ilat],
225 clim->tropo_lat[ilat + 1],
226 clim->tropo[isec + 1][ilat + 1], lat);
227 return LIN(clim->tropo_time[isec], p0, clim->tropo_time[isec + 1], p1, sec);
228}
229
230/*****************************************************************************/
231
233 clim_t *clim) {
234
235 /* Write info... */
236 LOG(1, "Initialize tropopause data...");
237
238 /* Set time [s]... */
239 clim->tropo_ntime = 12;
240 double tropo_time[12] = {
241 1209600.00, 3888000.00, 6393600.00,
242 9072000.00, 11664000.00, 14342400.00,
243 16934400.00, 19612800.00, 22291200.00,
244 24883200.00, 27561600.00, 30153600.00
245 };
246 memcpy(clim->tropo_time, tropo_time, sizeof(clim->tropo_time));
247
248 /* Set latitudes [deg]... */
249 clim->tropo_nlat = 73;
250 const double tropo_lat[73] = {
251 -90, -87.5, -85, -82.5, -80, -77.5, -75, -72.5, -70, -67.5,
252 -65, -62.5, -60, -57.5, -55, -52.5, -50, -47.5, -45, -42.5,
253 -40, -37.5, -35, -32.5, -30, -27.5, -25, -22.5, -20, -17.5,
254 -15, -12.5, -10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10, 12.5,
255 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5,
256 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5,
257 75, 77.5, 80, 82.5, 85, 87.5, 90
258 };
259 memcpy(clim->tropo_lat, tropo_lat, sizeof(clim->tropo_lat));
260
261 /* Set tropopause pressure [hPa] (NCEP/NCAR Reanalysis 1)... */
262 const double tropo[12][73] = {
263 {324.1, 325.6, 325, 324.3, 322.5, 319.7, 314, 307.2, 301.8, 299.6,
264 297.1, 292.2, 285.6, 276.1, 264, 248.9, 231.9, 213.5, 194.4,
265 175.3, 157, 140.4, 126.7, 116.3, 109.5, 105.4, 103, 101.4, 100.4,
266 99.69, 99.19, 98.84, 98.56, 98.39, 98.39, 98.42, 98.44, 98.54,
267 98.68, 98.81, 98.89, 98.96, 99.12, 99.65, 101.4, 105.4, 113.5, 128,
268 152.1, 184.7, 214, 234.1, 247.3, 255.8, 262.6, 267.7, 271.7, 275,
269 277.2, 279, 280.1, 280.4, 280.6, 280.1, 279.3, 278.3, 276.8, 275.8,
270 275.3, 275.6, 275.4, 274.1, 273.5},
271 {337.3, 338.7, 337.8, 336.4, 333, 328.8, 321.1, 312.6, 306.6, 303.7,
272 300.2, 293.8, 285.4, 273.8, 259.6, 242.7, 224.4, 205.2, 186, 167.5,
273 150.3, 135, 122.8, 113.9, 108.2, 104.7, 102.5, 101.1, 100.2, 99.42,
274 98.88, 98.52, 98.25, 98.09, 98.07, 98.1, 98.12, 98.2, 98.25, 98.27,
275 98.26, 98.27, 98.36, 98.79, 100.2, 104.2, 113.7, 131.2, 159.5, 193,
276 220.4, 238.1, 250.2, 258.1, 264.7, 269.7, 273.7, 277.3, 280.2, 282.8,
277 284.9, 286.5, 288.1, 288.8, 289, 288.5, 287.2, 286.3, 286.1, 287.2,
278 287.5, 286.2, 285.8},
279 {335, 336, 335.7, 335.1, 332.3, 328.1, 320.6, 311.8, 305.1, 301.9,
280 297.6, 290, 280.4, 268.3, 254.6, 239.6, 223.9, 207.9, 192.2, 176.9,
281 161.7, 146.4, 132.2, 120.6, 112.3, 107.2, 104.3, 102.4, 101.3,
282 100.4, 99.86, 99.47, 99.16, 98.97, 98.94, 98.97, 99, 99.09, 99.2,
283 99.31, 99.35, 99.41, 99.51, 99.86, 101.1, 104.9, 114.3, 131, 156.8,
284 186.3, 209.3, 224.6, 236.8, 246.3, 254.9, 262.3, 268.8, 274.8,
285 279.9, 284.6, 288.6, 291.6, 294.9, 297.5, 299.8, 301.8, 303.1,
286 304.3, 304.9, 306, 306.6, 306.2, 306},
287 {306.2, 306.7, 305.7, 307.1, 307.3, 306.4, 301.8, 296.2, 292.4,
288 290.3, 287.1, 280.9, 273.4, 264.3, 254.1, 242.8, 231, 219, 207.2,
289 195.5, 183.3, 169.7, 154.7, 138.7, 124.1, 113.6, 107.8, 104.7,
290 102.8, 101.7, 100.9, 100.4, 100, 99.79, 99.7, 99.66, 99.68, 99.79,
291 99.94, 100.2, 100.5, 100.9, 101.4, 102.1, 103.4, 107, 115.2, 129.1,
292 148.7, 171, 190.8, 205.6, 218.4, 229.4, 239.6, 248.6, 256.5,
293 263.7, 270.3, 276.6, 282.6, 288.1, 294.5, 300.4, 306.3, 311.4,
294 315.1, 318.3, 320.3, 322.2, 322.8, 321.5, 321.1},
295 {266.5, 264.9, 260.8, 261, 262, 263, 261.3, 259.7, 259.2, 259.8,
296 260.1, 258.6, 256.7, 253.6, 249.5, 243.9, 237.4, 230, 222.1, 213.9,
297 205, 194.4, 180.4, 161.8, 140.7, 122.9, 112.1, 106.7, 104.1, 102.7,
298 101.8, 101.4, 101.1, 101, 101, 101, 101.1, 101.2, 101.5, 101.9,
299 102.4, 103, 103.8, 104.9, 106.8, 110.1, 115.6, 124, 135.2, 148.9,
300 165.2, 181.3, 198, 211.8, 223.5, 233.8, 242.9, 251.5, 259, 266.2,
301 273.1, 279.2, 286.2, 292.8, 299.6, 306, 311.1, 315.5, 318.8, 322.6,
302 325.3, 325.8, 325.8},
303 {220.1, 218.1, 210.8, 207.2, 207.6, 210.5, 211.4, 213.5, 217.3,
304 222.4, 227.9, 232.8, 237.4, 240.8, 242.8, 243, 241.5, 238.6, 234.2,
305 228.5, 221, 210.7, 195.1, 172.9, 147.8, 127.6, 115.6, 109.9, 107.1,
306 105.7, 105, 104.8, 104.8, 104.9, 105, 105.1, 105.3, 105.5, 105.8,
307 106.4, 107, 107.6, 108.1, 108.8, 110, 111.8, 114.2, 117.4, 121.6,
308 127.9, 137.3, 151.2, 169.5, 189, 205.8, 218.9, 229.1, 237.8, 245,
309 251.5, 257.1, 262.3, 268.2, 274, 280.4, 286.7, 292.4, 297.9, 302.9,
310 308.5, 312.2, 313.1, 313.3},
311 {187.4, 184.5, 173.3, 166.1, 165.4, 167.8, 169.6, 173.6, 179.6,
312 187.9, 198.9, 210, 220.5, 229.2, 235.7, 239.9, 241.8, 241.6, 239.6,
313 235.8, 229.4, 218.6, 200.9, 175.9, 149.4, 129.4, 118.3, 113.1,
314 110.8, 109.7, 109.3, 109.4, 109.7, 110, 110.2, 110.4, 110.5, 110.7,
315 111, 111.4, 111.8, 112.1, 112.3, 112.7, 113.2, 113.9, 115, 116.4,
316 117.9, 120.4, 124.1, 130.9, 142.2, 159.6, 179.6, 198.5, 212.9,
317 224.2, 232.7, 239.1, 243.8, 247.7, 252.4, 257.3, 263.2, 269.5,
318 275.4, 281.1, 286.3, 292, 296.3, 298.2, 298.8},
319 {166, 166.4, 155.7, 148.3, 147.1, 149, 152.1, 157, 163.6, 172.4,
320 185.3, 199.2, 212.6, 224, 233.2, 239.6, 243.3, 244.6, 243.6, 240.3,
321 233.9, 222.6, 203.7, 177, 149.5, 129.7, 119, 114, 111.7, 110.7,
322 110.3, 110.3, 110.6, 110.9, 111.1, 111.3, 111.5, 111.6, 111.9,
323 112.2, 112.5, 112.6, 112.8, 113, 113.4, 114, 115.1, 116.5, 118.3,
324 120.9, 124.4, 130.2, 139.4, 154.6, 173.8, 193.1, 208.1, 220.4,
325 230.1, 238.2, 244.7, 249.5, 254.5, 259.3, 264.5, 269.4, 273.7,
326 278.2, 282.6, 287.4, 290.9, 292.5, 293},
327 {171.9, 172.8, 166.2, 162.3, 161.4, 162.5, 165.2, 169.6, 175.3,
328 183.1, 193.8, 205.9, 218.3, 229.6, 238.5, 244.3, 246.9, 246.7,
329 243.8, 238.4, 230.2, 217.9, 199.6, 174.9, 148.9, 129.8, 119.5,
330 114.8, 112.3, 110.9, 110.3, 110.1, 110.2, 110.3, 110.4, 110.5,
331 110.6, 110.8, 111, 111.4, 111.8, 112, 112.2, 112.4, 112.9, 113.6,
332 114.7, 116.3, 118.4, 121.9, 127.1, 136.1, 149.8, 168.4, 186.9,
333 203.3, 217, 229.1, 238.7, 247, 254, 259.3, 264.3, 268.3, 272.5,
334 276.6, 280.4, 284.4, 288.4, 293.3, 297.2, 298.7, 299.1},
335 {191.6, 192.2, 189, 188.1, 190.2, 193.7, 197.8, 202.9, 208.5,
336 215.6, 224.2, 233.1, 241.2, 247.3, 250.8, 251.3, 248.9, 244.2,
337 237.3, 228.4, 217.2, 202.9, 184.5, 162.5, 140.7, 124.8, 116.2,
338 111.8, 109.4, 107.9, 107, 106.7, 106.6, 106.6, 106.7, 106.7,
339 106.8, 107, 107.4, 108, 108.7, 109.3, 109.8, 110.4, 111.2,
340 112.4, 114.2, 116.9, 121.1, 127.9, 139.3, 155.2, 173.6, 190.7,
341 206.1, 220.1, 232.3, 243, 251.8, 259.2, 265.7, 270.6, 275.3,
342 279.3, 283.3, 286.9, 289.7, 292.8, 296.1, 300.5, 303.9, 304.8,
343 305.1},
344 {241.5, 239.6, 236.8, 237.4, 239.4, 242.3, 244.2, 246.4, 249.2,
345 253.6, 258.6, 262.7, 264.8, 264.2, 260.6, 254.1, 245.5, 235.3,
346 223.9, 211.7, 198.3, 183.1, 165.6, 147.1, 130.5, 118.7, 111.9,
347 108.1, 105.8, 104.3, 103.4, 102.8, 102.5, 102.4, 102.5, 102.5,
348 102.5, 102.7, 103.1, 103.8, 104.6, 105.4, 106.1, 107, 108.2,
349 109.9, 112.8, 117.5, 126, 140.4, 161, 181.9, 201.2, 216.8, 230.4,
350 241.8, 251.4, 259.9, 266.9, 272.8, 277.4, 280.4, 282.9, 284.6,
351 286.1, 287.4, 288.3, 289.5, 290.9, 294.2, 296.9, 297.5, 297.6},
352 {301.2, 300.3, 296.6, 295.4, 295, 294.3, 291.2, 287.4, 284.9, 284.7,
353 284.1, 281.5, 277.1, 270.4, 261.7, 250.6, 237.6, 223.1, 207.9, 192,
354 175.8, 158.8, 142.1, 127.6, 116.8, 109.9, 106, 103.6, 102.1, 101.1,
355 100.4, 99.96, 99.6, 99.37, 99.32, 99.32, 99.31, 99.46, 99.77, 100.2,
356 100.7, 101.3, 101.8, 102.7, 104.1, 106.8, 111.9, 121, 136.7, 160,
357 186.9, 209.9, 228.1, 241.2, 251.5, 259.5, 265.7, 270.9, 274.8, 278,
358 280.3, 281.8, 283, 283.3, 283.7, 283.8, 283, 282.2, 281.2, 281.4,
359 281.7, 281.1, 281.2}
360 };
361 memcpy(clim->tropo, tropo, sizeof(clim->tropo));
362
363 /* Get range... */
364 double tropomin = 1e99, tropomax = -1e99;
365 for (int it = 0; it < clim->tropo_ntime; it++)
366 for (int iy = 0; iy < clim->tropo_nlat; iy++) {
367 tropomin = MIN(tropomin, clim->tropo[it][iy]);
368 tropomax = MAX(tropomax, clim->tropo[it][iy]);
369 }
370
371 /* Write info... */
372 LOG(2, "Number of time steps: %d", clim->tropo_ntime);
373 LOG(2, "Time steps: %.2f, %.2f ... %.2f s",
374 clim->tropo_time[0], clim->tropo_time[1],
375 clim->tropo_time[clim->tropo_ntime - 1]);
376 LOG(2, "Number of latitudes: %d", clim->tropo_nlat);
377 LOG(2, "Latitudes: %g, %g ... %g deg",
378 clim->tropo_lat[0], clim->tropo_lat[1],
379 clim->tropo_lat[clim->tropo_nlat - 1]);
380 LOG(2, "Tropopause altitude range: %g ... %g hPa", Z(tropomax),
381 Z(tropomin));
382 LOG(2, "Tropopause pressure range: %g ... %g hPa", tropomin, tropomax);
383}
384
385/*****************************************************************************/
386
387double clim_ts(
388 const clim_ts_t *ts,
389 const double t) {
390
391 /* Interpolate... */
392 if (t <= ts->time[0])
393 return ts->vmr[0];
394 else if (t >= ts->time[ts->ntime - 1])
395 return ts->vmr[ts->ntime - 1];
396 else {
397 const int idx = locate_irr(ts->time, ts->ntime, t);
398 return LIN(ts->time[idx], ts->vmr[idx],
399 ts->time[idx + 1], ts->vmr[idx + 1], t);
400 }
401}
402
403/*****************************************************************************/
404
405double clim_zm(
406 const clim_zm_t *zm,
407 const double t,
408 const double lat,
409 const double p) {
410
411 /* Get seconds since begin of year... */
412 double sec = FMOD(t, 365.25 * 86400.);
413 while (sec < 0)
414 sec += 365.25 * 86400.;
415
416 /* Check pressure range... */
417 double p_help = p;
418 if (p < zm->p[zm->np - 1])
419 p_help = zm->p[zm->np - 1];
420 else if (p > zm->p[0])
421 p_help = zm->p[0];
422
423 /* Check latitude range... */
424 double lat_help = lat;
425 if (lat < zm->lat[0])
426 lat_help = zm->lat[0];
427 else if (lat > zm->lat[zm->nlat - 1])
428 lat_help = zm->lat[zm->nlat - 1];
429
430 /* Get indices... */
431 const int isec = locate_irr(zm->time, zm->ntime, sec);
432 const int ilat = locate_reg(zm->lat, zm->nlat, lat_help);
433 const int ip = locate_irr(zm->p, zm->np, p_help);
434
435 /* Interpolate climatology data... */
436 const double aux00 = LIN(zm->p[ip], zm->vmr[isec][ip][ilat],
437 zm->p[ip + 1], zm->vmr[isec][ip + 1][ilat],
438 p_help);
439 const double aux01 = LIN(zm->p[ip], zm->vmr[isec][ip][ilat + 1],
440 zm->p[ip + 1], zm->vmr[isec][ip + 1][ilat + 1],
441 p_help);
442 const double aux10 = LIN(zm->p[ip], zm->vmr[isec + 1][ip][ilat],
443 zm->p[ip + 1], zm->vmr[isec + 1][ip + 1][ilat],
444 p_help);
445 const double aux11 = LIN(zm->p[ip], zm->vmr[isec + 1][ip][ilat + 1],
446 zm->p[ip + 1], zm->vmr[isec + 1][ip + 1][ilat + 1],
447 p_help);
448 const double aux0 =
449 LIN(zm->lat[ilat], aux00, zm->lat[ilat + 1], aux01, lat_help);
450 const double aux1 =
451 LIN(zm->lat[ilat], aux10, zm->lat[ilat + 1], aux11, lat_help);
452 const double aux = LIN(zm->time[isec], aux0, zm->time[isec + 1], aux1, sec);
453 return MAX(aux, 0.0);
454}
455
456/*****************************************************************************/
457
458#ifdef CMS
459void compress_cms(
460 const ctl_t *ctl,
461 const char *varname,
462 float *array,
463 const size_t nx,
464 const size_t ny,
465 const size_t np,
466 const double *plev,
467 const int decompress,
468 FILE *inout) {
469
470 /* Set lon-lat grid... */
471 const size_t nxy = nx * ny;
472 double lon[EX], lat[EY];
473 for (size_t ix = 0; ix < nx; ix++)
474 lon[ix] = 360. * (double) ix / ((double) nx - 1.);
475 for (size_t iy = 0; iy < ny; iy++)
476 lat[iy] = 90. - 180. * (double) iy / ((double) ny - 1.);
477
478 /* Set multiscale parameters... */
479 const char domain[] = "[0.0, 360.0]x[-90.0, 90.0]";
480 const int Nd0_x = ctl->met_cms_nd0x;
481 const int Nd0_y = ctl->met_cms_nd0y;
482 const int max_level_grid = ctl->met_cms_maxlev;
483 cms_param_t *cms_param
484 = cms_set_parameters(nx, ny, max_level_grid, Nd0_x, Nd0_y, domain);
485
486 /* Init... */
487 double cr = 0, t_coars = 0, t_eval = 0;
488
489 /* Read compressed stream and decompress array... */
490 if (decompress) {
491
492 /* Loop over levels... */
493 for (size_t ip = 0; ip < np; ip++) {
494
495 /* Initialize multiscale module... */
496 cms_module_t *cms_ptr = cms_init(cms_param);
497
498 /* Read binary data... */
499 cms_sol_t *cms_sol;
500 if (ctl->met_cms_zstd == 1)
501 cms_sol = cms_read_zstd_sol(cms_ptr, inout);
502 else
503 cms_sol = cms_read_sol(cms_ptr, inout);
504
505 /* Evaluate... */
506#pragma omp parallel for collapse(2) default(shared)
507 for (size_t ix = 0; ix < nx; ix++)
508 for (size_t iy = 0; iy < ny; iy++) {
509 double val;
510 const double x[] = { lon[ix], lat[iy] };
511 cms_eval(cms_ptr, cms_sol, x, &val);
512 array[ARRAY_3D(ix, iy, ny, ip, np)] = (float) val;
513 }
514
515 /* Calculate harmonic mean of compression rates... */
516 cr += 1.0 / cms_compression_rate(cms_ptr, cms_sol);
517
518 /* Free... */
519 cms_delete_sol(cms_sol);
520 cms_delete_module(cms_ptr);
521 }
522
523 /* Write info... */
524 LOG(2, "Read 3-D variable: %s (CMS, RATIO= %g)", varname,
525 (double) np / cr);
526 }
527
528 /* Compress array and output compressed stream... */
529 else {
530
531 /* Init... */
532 cms_module_t *cms_ptr[EP];
533 cms_sol_t *cms_sol[EP];
534
535 /* Loop over batches... */
536 const size_t dip = (ctl->met_cms_batch <= 0
537 ? (size_t) omp_get_max_threads()
538 : (size_t) ctl->met_cms_batch);
539 for (size_t ip0 = 0; ip0 < np; ip0 += dip) {
540
541 /* Measure time... */
542 double t0 = omp_get_wtime();
543
544 /* Loop over levels... */
545#pragma omp parallel for default(shared)
546 for (size_t ip = ip0; ip < MIN(ip0 + dip, np); ip++) {
547
548 /* Allocate... */
549 float *tmp_arr;
550 ALLOC(tmp_arr, float,
551 nxy);
552
553 /* Copy level data... */
554 for (size_t ix = 0; ix < nx; ++ix)
555 for (size_t iy = 0; iy < ny; ++iy)
556 tmp_arr[ARRAY_2D(ix, iy, ny)] =
557 array[ARRAY_3D(ix, iy, ny, ip, np)];
558
559 /* Set eps threshold value... */
560 double c_thresh_test;
561 if (strcasecmp(varname, "Z") == 0)
562 c_thresh_test = ctl->met_cms_eps_z;
563 else if (strcasecmp(varname, "T") == 0)
564 c_thresh_test = ctl->met_cms_eps_t;
565 else if (strcasecmp(varname, "U") == 0)
566 c_thresh_test = ctl->met_cms_eps_u;
567 else if (strcasecmp(varname, "V") == 0)
568 c_thresh_test = ctl->met_cms_eps_v;
569 else if (strcasecmp(varname, "W") == 0)
570 c_thresh_test = ctl->met_cms_eps_w;
571 else if (strcasecmp(varname, "PV") == 0)
572 c_thresh_test = ctl->met_cms_eps_pv;
573 else if (strcasecmp(varname, "H2O") == 0)
574 c_thresh_test = ctl->met_cms_eps_h2o;
575 else if (strcasecmp(varname, "O3") == 0)
576 c_thresh_test = ctl->met_cms_eps_o3;
577 else if (strcasecmp(varname, "LWC") == 0)
578 c_thresh_test = ctl->met_cms_eps_lwc;
579 else if (strcasecmp(varname, "RWC") == 0)
580 c_thresh_test = ctl->met_cms_eps_rwc;
581 else if (strcasecmp(varname, "IWC") == 0)
582 c_thresh_test = ctl->met_cms_eps_iwc;
583 else if (strcasecmp(varname, "SWC") == 0)
584 c_thresh_test = ctl->met_cms_eps_swc;
585 else if (strcasecmp(varname, "CC") == 0)
586 c_thresh_test = ctl->met_cms_eps_cc;
587 else
588 ERRMSG("Variable name unknown!");
589
590 /* Initialize multiscale module... */
591 cms_ptr[ip] = cms_init(cms_param);
592
593 /* Coarsening... */
594 cms_sol[ip] =
595 cms_read_arr_new(cms_ptr[ip], tmp_arr, lon, lat,
596 nx, ny, c_thresh_test);
597
598 /* Free... */
599 free(tmp_arr);
600 }
601
602 /* Measure time... */
603 t_coars += (omp_get_wtime() - t0);
604
605 /* Loop over levels... */
606 for (size_t ip = ip0; ip < MIN(ip0 + dip, np); ip++) {
607
608 /* Allocate... */
609 double *tmp_cms, *tmp_org, *tmp_diff;
610 ALLOC(tmp_cms, double,
611 nxy);
612 ALLOC(tmp_org, double,
613 nxy);
614 ALLOC(tmp_diff, double,
615 nxy);
616
617 /* Measure time... */
618 t0 = omp_get_wtime();
619
620 /* Evaluate... */
621#pragma omp parallel for collapse(2) default(shared)
622 for (size_t ix = 0; ix < nx; ix++)
623 for (size_t iy = 0; iy < ny; iy++) {
624 const size_t idx = ARRAY_2D(ix, iy, ny);
625 const double x[] = { lon[ix], lat[iy] };
626 cms_eval(cms_ptr[ip], cms_sol[ip], x, &tmp_cms[idx]);
627 tmp_org[idx] = array[ARRAY_3D(ix, iy, ny, ip, np)];
628 tmp_diff[idx] = tmp_cms[idx] - tmp_org[idx];
629 }
630
631 /* Measure time... */
632 t_eval += (omp_get_wtime() - t0);
633
634 /* Write info... */
635 const double bias = gsl_stats_mean(tmp_diff, 1, nxy);
636 const double stddev = gsl_stats_sd_m(tmp_diff, 1, nxy, bias);
637 const double rmse = sqrt(SQR(bias) + SQR(stddev));
638 const double range =
639 gsl_stats_max(tmp_org, 1, nxy) - gsl_stats_min(tmp_org, 1, nxy);
640 const double nrmse = (range > 0 ? rmse / range : NAN);
641 LOG(2,
642 "cmultiscale: var= %s / lev= %lu / plev= %g / ratio= %g / rho= %g"
643 " / mean= %g / sd= %g / min= %g / max= %g / NRMSE= %g", varname,
644 ip, plev[ip], cms_compression_rate(cms_ptr[ip], cms_sol[ip]),
645 gsl_stats_correlation(tmp_cms, 1, tmp_org, 1, nxy), bias, stddev,
646 gsl_stats_min(tmp_diff, 1, nxy), gsl_stats_max(tmp_diff, 1, nxy),
647 nrmse);
648
649 /* Calculate harmonic mean of compression rates... */
650 cr += 1.0 / cms_compression_rate(cms_ptr[ip], cms_sol[ip]);
651
652 /* Save binary data... */
653 if (ctl->met_cms_zstd == 1)
654 cms_save_zstd_sol(cms_sol[ip], inout, 3);
655 else
656 cms_save_sol(cms_sol[ip], inout);
657
658 /* Free... */
659 cms_delete_sol(cms_sol[ip]);
660 cms_delete_module(cms_ptr[ip]);
661 free(tmp_cms);
662 free(tmp_org);
663 free(tmp_diff);
664 }
665 }
666
667 /* Write info... */
668 LOG(2, "Write 3-D variable: %s"
669 " (CMS, RATIO= %g, T_COARS= %g s, T_EVAL= %g s)",
670 varname, (double) np / cr, t_coars, t_eval);
671 }
672
673 /* Free... */
674 cms_delete_param(cms_param);
675}
676#endif
677
678/*****************************************************************************/
679
681 const char *varname,
682 float *array,
683 const size_t nxy,
684 const size_t nz,
685 const int decompress,
686 FILE *inout) {
687
688 double min[EP], max[EP], off[EP], scl[EP];
689
690 unsigned short *sarray;
691
692 /* Allocate... */
693 ALLOC(sarray, unsigned short,
694 nxy * nz);
695
696 /* Read compressed stream and decompress array... */
697 if (decompress) {
698
699 /* Write info... */
700 LOG(2, "Read 3-D variable: %s (pck, RATIO= %g)",
701 varname, (double) sizeof(float) / (double) sizeof(unsigned short));
702
703 /* Read data... */
704 FREAD(&scl, double,
705 nz,
706 inout);
707 FREAD(&off, double,
708 nz,
709 inout);
710 FREAD(sarray, unsigned short,
711 nxy * nz,
712 inout);
713
714 /* Convert to float... */
715#pragma omp parallel for default(shared)
716 for (size_t ixy = 0; ixy < nxy; ixy++)
717 for (size_t iz = 0; iz < nz; iz++)
718 array[ixy * nz + iz]
719 = (float) (sarray[ixy * nz + iz] * scl[iz] + off[iz]);
720 }
721
722 /* Compress array and output compressed stream... */
723 else {
724
725 /* Write info... */
726 LOG(2, "Write 3-D variable: %s (pck, RATIO= %g)",
727 varname, (double) sizeof(float) / (double) sizeof(unsigned short));
728
729 /* Get range... */
730 for (size_t iz = 0; iz < nz; iz++) {
731 min[iz] = array[iz];
732 max[iz] = array[iz];
733 }
734 for (size_t ixy = 1; ixy < nxy; ixy++)
735 for (size_t iz = 0; iz < nz; iz++) {
736 if (array[ixy * nz + iz] < min[iz])
737 min[iz] = array[ixy * nz + iz];
738 if (array[ixy * nz + iz] > max[iz])
739 max[iz] = array[ixy * nz + iz];
740 }
741
742 /* Get offset and scaling factor... */
743 for (size_t iz = 0; iz < nz; iz++) {
744 scl[iz] = (max[iz] - min[iz]) / 65533.;
745 off[iz] = min[iz];
746 }
747
748 /* Convert to short... */
749#pragma omp parallel for default(shared)
750 for (size_t ixy = 0; ixy < nxy; ixy++)
751 for (size_t iz = 0; iz < nz; iz++)
752 if (scl[iz] != 0)
753 sarray[ixy * nz + iz] = (unsigned short)
754 ((array[ixy * nz + iz] - off[iz]) / scl[iz] + .5);
755 else
756 sarray[ixy * nz + iz] = 0;
757
758 /* Write data... */
759 FWRITE(&scl, double,
760 nz,
761 inout);
762 FWRITE(&off, double,
763 nz,
764 inout);
765 FWRITE(sarray, unsigned short,
766 nxy * nz,
767 inout);
768 }
769
770 /* Free... */
771 free(sarray);
772}
773
774/*****************************************************************************/
775
776#ifdef SZ3
777void compress_sz3(
778 const char *varname,
779 float *array,
780 int nx,
781 int ny,
782 int nz,
783 int precision,
784 double tolerance,
785 int decompress,
786 FILE *inout) {
787 if ((precision > 0) == (tolerance > 0.0))
788 ERRMSG("Exactly one of precision or tolerance must be set for SZ3!");
789
790 size_t r1 = (size_t) nx, r2 = (size_t) ny, r3 = (size_t) nz,
791 outSize = 0, total_elems = r1 * r2 * r3;
792
793 unsigned char *bytes = NULL;
794
795 /* Read compressed stream and decompress array... */
796 if (decompress) {
797
798 size_t sz3size;
799 FREAD(&sz3size, size_t,
800 1,
801 inout);
802 ALLOC(bytes, char,
803 sz3size);
804 FREAD(bytes, unsigned char,
805 sz3size,
806 inout);
807
808 void *outData = SZ_decompress(SZ_FLOAT, bytes, sz3size, 0, 0, r3, r2, r1);
809 if (!outData)
810 ERRMSG("Decompression failed!");
811
812 memcpy(array, outData, total_elems * sizeof(float));
813
814 free(outData);
815 free(bytes);
816
817 LOG(2, "Read 3-D variable: %s (SZ3, PREC=%d, TOL=%g, RATIO=%g)",
818 varname, precision, tolerance,
819 (double) (total_elems * sizeof(float)) / (double) sz3size);
820 }
821
822 /* Compress array and output compressed stream... */
823 else {
824
825 const int errBoundMode = (precision > 0) ? REL : ABS;
826 const double absBound = (errBoundMode == ABS) ? tolerance : 0.0;
827 const double relBound =
828 (errBoundMode == REL) ? pow(2.0, -(double) precision) : 0.0;
829
830 bytes = SZ_compress_args(SZ_FLOAT, array, &outSize,
831 errBoundMode, absBound, relBound, 0.0,
832 0, 0, r3, r2, r1);
833 if (!bytes || outSize == 0)
834 ERRMSG("Compression failed!");
835
836 FWRITE(&outSize, size_t,
837 1,
838 inout);
839 FWRITE(bytes, unsigned char,
840 outSize,
841 inout);
842
843 free(bytes);
844
845 LOG(2, "Write 3-D variable: %s (SZ3, PREC=%d, TOL=%g, RATIO=%g)",
846 varname, precision, tolerance,
847 (double) (total_elems * sizeof(float)) / (double) outSize);
848 }
849}
850#endif
851
852/*****************************************************************************/
853
854#ifdef ZFP
855void compress_zfp(
856 const char *varname,
857 float *array,
858 const int nx,
859 const int ny,
860 const int nz,
861 const int precision,
862 const double tolerance,
863 const int decompress,
864 FILE *inout) {
865
866 /* Allocate meta data for the 3D array a[nz][ny][nx]... */
867 const size_t snx = (size_t) nx;
868 const size_t sny = (size_t) ny;
869 const size_t snz = (size_t) nz;
870 const zfp_type type = zfp_type_float;
871 zfp_field *field = zfp_field_3d(array, type, snx, sny, snz);
872
873 /* Allocate meta data for a compressed stream... */
874 zfp_stream *zfp = zfp_stream_open(NULL);
875 if (!field || !zfp)
876 ERRMSG("Failed to allocate zfp structures!");
877
878 /* Set compression mode... */
879 int actual_prec = 0;
880 double actual_tol = 0;
881 if ((precision > 0 && tolerance > 0) || (precision <= 0 && tolerance <= 0)) {
882 ERRMSG("Exactly one of precision or tolerance must be set for zfp!");
883 } else if (precision > 0)
884 actual_prec =
885 (int) zfp_stream_set_precision(zfp, (unsigned int) precision);
886 else if (tolerance > 0)
887 actual_tol = zfp_stream_set_accuracy(zfp, tolerance);
888
889 /* Allocate buffer for compressed data... */
890 const size_t bufsize = zfp_stream_maximum_size(zfp, field);
891 void *buffer;
892 ALLOC(buffer, char,
893 bufsize);
894
895 /* Associate bit stream with allocated buffer... */
896 bitstream *stream = stream_open(buffer, bufsize);
897 zfp_stream_set_bit_stream(zfp, stream);
898 zfp_stream_rewind(zfp);
899
900 /* Read compressed stream and decompress array... */
901 size_t zfpsize;
902 if (decompress) {
903 FREAD(&zfpsize, size_t,
904 1,
905 inout);
906 if (zfpsize > bufsize)
907 ERRMSG("Compressed data size exceeds allocated buffer!");
908 FREAD(buffer, unsigned char,
909 zfpsize,
910 inout);
911 if (!zfp_decompress(zfp, field)) {
912 ERRMSG("Decompression failed!");
913 }
914 const double cr =
915 ((double) (snx * sny * snz * sizeof(float))) / (double) zfpsize;
916 const double bpv = (8.0 * (double) zfpsize) / (double) (snx * sny * snz);
917 LOG(2,
918 "Read 3-D variable: %s (ZFP, PREC= %d, TOL= %g, RATIO= %g, BPV= %g)",
919 varname, actual_prec, actual_tol, cr, bpv);
920 }
921
922 /* Compress array and output compressed stream... */
923 else {
924 zfpsize = zfp_compress(zfp, field);
925 if (!zfpsize) {
926 ERRMSG("Compression failed!");
927 } else {
928 FWRITE(&zfpsize, size_t,
929 1,
930 inout);
931 FWRITE(buffer, unsigned char,
932 zfpsize,
933 inout);
934 }
935 const double cr =
936 ((double) (snx * sny * snz * sizeof(float))) / (double) zfpsize;
937 const double bpv = (8.0 * (double) zfpsize) / (double) (snx * sny * snz);
938 LOG(2,
939 "Write 3-D variable: %s (ZFP, PREC= %d, TOL= %g, RATIO= %g, BPV= %g)",
940 varname, actual_prec, actual_tol, cr, bpv);
941 }
942
943 /* Free... */
944 zfp_field_free(field);
945 stream_close(stream);
946 zfp_stream_close(zfp);
947 free(buffer);
948}
949#endif
950
951/*****************************************************************************/
952
953#ifdef ZSTD
954void compress_zstd(
955 const char *varname,
956 float *array,
957 const size_t n,
958 const int decompress,
959 const int level,
960 FILE *inout) {
961
962 /* Get buffer sizes... */
963 const size_t uncomprLen = n * sizeof(float);
964 size_t compsize, comprLen = ZSTD_compressBound(uncomprLen);
965
966 /* Allocate... */
967 char *compr = calloc(comprLen, 1);
968 if (!compr)
969 ERRMSG("Memory allocation failed!");
970 char *uncompr = (char *) array;
971
972 /* Read compressed stream and decompress array... */
973 if (decompress) {
974 FREAD(&comprLen, size_t,
975 1,
976 inout);
977 FREAD(compr, unsigned char,
978 comprLen,
979 inout);
980 compsize = ZSTD_decompress(uncompr, uncomprLen, compr, comprLen);
981 if (ZSTD_isError(compsize) || compsize != uncomprLen)
982 ERRMSG("Decompression failed or size mismatch!");
983 LOG(2, "Read 3-D variable: %s (ZSTD, RATIO= %g)",
984 varname, ((double) uncomprLen) / (double) comprLen);
985 }
986
987 /* Compress array and output compressed stream... */
988 else {
989 compsize = ZSTD_compress(compr, comprLen, uncompr, uncomprLen, level);
990 if (ZSTD_isError(compsize)) {
991 ERRMSG("Compression failed!");
992 } else {
993 FWRITE(&compsize, size_t,
994 1,
995 inout);
996 FWRITE(compr, unsigned char,
997 compsize,
998 inout);
999 }
1000 LOG(2, "Write 3-D variable: %s (ZSTD, RATIO= %g)",
1001 varname, ((double) uncomprLen) / (double) compsize);
1002 }
1003
1004 /* Free... */
1005 free(compr);
1006}
1007#endif
1008
1009/*****************************************************************************/
1010
1011double cos_sza(
1012 const double sec,
1013 const double lon,
1014 const double lat) {
1015
1016 /* Number of days and fraction with respect to 2000-01-01T12:00Z... */
1017 const double D = sec / 86400 - 0.5;
1018
1019 /* Geocentric apparent ecliptic longitude [rad]... */
1020 const double g = DEG2RAD(357.529 + 0.98560028 * D);
1021 const double q = 280.459 + 0.98564736 * D;
1022 const double L = DEG2RAD(q + 1.915 * sin(g) + 0.020 * sin(2 * g));
1023
1024 /* Mean obliquity of the ecliptic [rad]... */
1025 const double e = DEG2RAD(23.439 - 0.00000036 * D);
1026
1027 /* Declination [rad]... */
1028 const double sindec = sin(e) * sin(L);
1029
1030 /* Right ascension [rad]... */
1031 const double ra = atan2(cos(e) * sin(L), cos(L));
1032
1033 /* Greenwich Mean Sidereal Time [h]... */
1034 const double GMST = 18.697374558 + 24.06570982441908 * D;
1035
1036 /* Local Sidereal Time [h]... */
1037 const double LST = GMST + lon / 15;
1038
1039 /* Hour angle [rad]... */
1040 const double h = LST / 12 * M_PI - ra;
1041
1042 /* Convert latitude... */
1043 const double lat_help = DEG2RAD(lat);
1044
1045 /* Return cosine of solar zenith angle... */
1046 return sin(lat_help) * sindec + cos(lat_help) * sqrt(1 -
1047 SQR(sindec)) * cos(h);
1048}
1049
1050/*****************************************************************************/
1051
1053 const int year,
1054 const int mon,
1055 const int day,
1056 int *doy) {
1057
1058 const int
1059 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
1060 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
1061
1062 /* Get day of year... */
1063 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0))
1064 *doy = d0l[mon - 1] + day - 1;
1065 else
1066 *doy = d0[mon - 1] + day - 1;
1067}
1068
1069/*****************************************************************************/
1070
1071#ifdef DD
1073 atm_t *atm,
1074 ctl_t *ctl,
1075 dd_t *dd,
1076 int init) {
1077
1078 SELECT_TIMER("DD_ASSIGN_RECT_SUBDOMAINS", "DD", NVTX_GPU);
1079
1080 if (init) {
1081#ifdef _OPENACC
1082#pragma acc enter data create(dd)
1083#pragma acc update device(dd->rank, dd->subdomain_lon_min, dd->subdomain_lon_max, dd->subdomain_lat_min, dd->subdomain_lat_max)
1084#pragma acc data present(atm, ctl, dd)
1085#pragma acc parallel loop independent gang vector
1086#endif
1087 for (int ip = 0; ip < atm->np; ip++) {
1088
1089 double lont = atm->lon[ip];
1090
1091 if (lont < 0)
1092 lont += 360;
1093
1094 if (lont >= dd->subdomain_lon_min && lont < dd->subdomain_lon_max
1095 && atm->lat[ip] >= dd->subdomain_lat_min
1096 && atm->lat[ip] < dd->subdomain_lat_max) {
1097 atm->q[ctl->qnt_subdomain][ip] = dd->rank;
1098 atm->q[ctl->qnt_destination][ip] = dd->rank;
1099 } else {
1100 WARN
1101 ("DD: Particle is outside the domain (lon: %f, lat: %f, subdomain: %d, subdomain bounds: [%f, %f], [%f, %f])",
1102 atm->lon[ip], atm->lat[ip], dd->rank, dd->subdomain_lon_min,
1104 dd->subdomain_lat_max);
1105 atm->q[ctl->qnt_subdomain][ip] = -1;
1106 atm->q[ctl->qnt_destination][ip] = -1;
1107 }
1108 }
1109#ifdef _OPENACC
1110#pragma acc exit data delete(dd)
1111#endif
1112 } else {
1113
1114 /* Classify air parcels into subdomain... */
1115#ifdef _OPENACC
1116#pragma acc enter data create(dd)
1117#pragma acc update device(dd->neighbours[:DD_NNMAX], dd->rank, dd->size, dd->subdomain_lon_min, dd->subdomain_lon_max, dd->subdomain_lat_min, dd->subdomain_lat_max)
1118#pragma acc data present(atm, ctl, dd)
1119#pragma acc parallel loop independent gang vector
1120#endif
1121 for (int ip = 0; ip < atm->np; ip++) {
1122
1123 /* Skip empty places in the particle array... */
1124 if ((int) atm->q[ctl->qnt_subdomain][ip] == -1)
1125 continue;
1126
1127 double lont = atm->lon[ip];
1128 double latt = atm->lat[ip];
1129
1130 double lon_max = dd->subdomain_lon_max;
1131 double lon_min = dd->subdomain_lon_min;
1132 double lat_max = dd->subdomain_lat_max;
1133 double lat_min = dd->subdomain_lat_min;
1134
1135 if (lont < 0)
1136 lont += 360;
1137
1138 int left = (dd->rank <= ctl->dd_subdomains_meridional - 1);
1139 int right = (dd->rank >= dd->size - ctl->dd_subdomains_meridional);
1140
1141 int bound = 0;
1142 if (left)
1143 bound = (lont - lon_max > 90) ? 1 : 0;
1144 if (right)
1145 bound = (lon_min - lont > 90) ? 1 : 0;
1146
1147 if (!bound) {
1148 if ((lont >= lon_max) && (latt >= lat_max)) {
1149 // Upper right...
1150 atm->q[ctl->qnt_destination][ip] = dd->neighbours[5];
1151 LOG(4,
1152 "DD: Particle crossing to upper right: from rank %d to rank %d (lon: %f, lat: %f)",
1153 dd->rank, dd->neighbours[5], atm->lon[ip], atm->lat[ip]);
1154 } else if ((lont >= lon_max) && (latt <= lat_min)) {
1155 // Lower right...
1156 atm->q[ctl->qnt_destination][ip] = dd->neighbours[4];
1157 LOG(4,
1158 "DD: Particle crossing to lower right: from rank %d to rank %d (lon: %f, lat: %f)",
1159 dd->rank, dd->neighbours[4], atm->lon[ip], atm->lat[ip]);
1160 } else if ((lont <= lon_min) && (latt >= lat_max)) {
1161 // Upper left...
1162 atm->q[ctl->qnt_destination][ip] = dd->neighbours[2];
1163 LOG(4,
1164 "DD: Particle crossing to upper left: from rank %d to rank %d (lon: %f, lat: %f)",
1165 dd->rank, dd->neighbours[2], atm->lon[ip], atm->lat[ip]);
1166 } else if ((lont <= lon_min) && (latt <= lat_min)) {
1167 // Lower left...
1168 atm->q[ctl->qnt_destination][ip] = dd->neighbours[1];
1169 LOG(4,
1170 "DD: Particle crossing to lower left: from rank %d to rank %d (lon: %f, lat: %f)",
1171 dd->rank, dd->neighbours[1], atm->lon[ip], atm->lat[ip]);
1172 } else if (lont >= lon_max) {
1173 // Right...
1174 atm->q[ctl->qnt_destination][ip] = dd->neighbours[3];
1175 LOG(4,
1176 "DD: Particle crossing to right: from rank %d to rank %d (lon: %f, lat: %f)",
1177 dd->rank, dd->neighbours[3], atm->lon[ip], atm->lat[ip]);
1178 } else if (lont <= lon_min) {
1179 // Left...
1180 atm->q[ctl->qnt_destination][ip] = dd->neighbours[0];
1181 LOG(4,
1182 "DD: Particle crossing to left: from rank %d to rank %d (lon: %f, lat: %f)",
1183 dd->rank, dd->neighbours[0], atm->lon[ip], atm->lat[ip]);
1184 } else if (latt <= lat_min) {
1185 // Down...
1186 atm->q[ctl->qnt_destination][ip] = dd->neighbours[7];
1187 LOG(4,
1188 "DD: Particle crossing downward: from rank %d to rank %d (lon: %f, lat: %f)",
1189 dd->rank, dd->neighbours[7], atm->lon[ip], atm->lat[ip]);
1190 } else if (latt >= lat_max) {
1191 // Up...
1192 atm->q[ctl->qnt_destination][ip] = dd->neighbours[6];
1193 LOG(4,
1194 "DD: Particle crossing upward: from rank %d to rank %d (lon: %f, lat: %f)",
1195 dd->rank, dd->neighbours[6], atm->lon[ip], atm->lat[ip]);
1196 } else {
1197 // Within...
1198 atm->q[ctl->qnt_destination][ip] = dd->rank;
1199 }
1200 } else {
1201 if ((lont >= lon_max) && (latt >= lat_max)) {
1202 // Upper right...
1203 atm->q[ctl->qnt_destination][ip] = dd->neighbours[2];
1204 LOG(4,
1205 "DD: Particle crossing to upper left (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1206 dd->rank, dd->neighbours[2], atm->lon[ip], atm->lat[ip]);
1207 } else if ((lont >= lon_max) && (latt <= lat_min)) {
1208 // Lower right...
1209 atm->q[ctl->qnt_destination][ip] = dd->neighbours[1];
1210 LOG(4,
1211 "DD: Particle crossing to lower left (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1212 dd->rank, dd->neighbours[1], atm->lon[ip], atm->lat[ip]);
1213 } else if ((lont <= lon_min) && (latt >= lat_max)) {
1214 // Upper left...
1215 atm->q[ctl->qnt_destination][ip] = dd->neighbours[5];
1216 LOG(4,
1217 "DD: Particle crossing to upper right (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1218 dd->rank, dd->neighbours[5], atm->lon[ip], atm->lat[ip]);
1219 } else if ((lont <= lon_min) && (latt <= lat_min)) {
1220 // Lower left...
1221 atm->q[ctl->qnt_destination][ip] = dd->neighbours[4];
1222 LOG(4,
1223 "DD: Particle crossing to lower right (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1224 dd->rank, dd->neighbours[4], atm->lon[ip], atm->lat[ip]);
1225 } else if (lont >= lon_max) {
1226 // Right...
1227 atm->q[ctl->qnt_destination][ip] = dd->neighbours[0];
1228 LOG(4,
1229 "DD: Particle crossing to left (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1230 dd->rank, dd->neighbours[0], atm->lon[ip], atm->lat[ip]);
1231 } else if (lont <= lon_min) {
1232 // Left...
1233 atm->q[ctl->qnt_destination][ip] = dd->neighbours[3];
1234 LOG(4,
1235 "DD: Particle crossing to right (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1236 dd->rank, dd->neighbours[3], atm->lon[ip], atm->lat[ip]);
1237 } else if (latt <= lat_min) {
1238 // Down...
1239 atm->q[ctl->qnt_destination][ip] = dd->neighbours[7];
1240 LOG(4,
1241 "DD: Particle crossing downward (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1242 dd->rank, dd->neighbours[7], atm->lon[ip], atm->lat[ip]);
1243 } else if (latt >= lat_max) {
1244 // Up...
1245 atm->q[ctl->qnt_destination][ip] = dd->neighbours[6];
1246 LOG(4,
1247 "DD: Particle crossing upward (bound case): from rank %d to rank %d (lon: %f, lat: %f)",
1248 dd->rank, dd->neighbours[6], atm->lon[ip], atm->lat[ip]);
1249 } else {
1250 // Within...
1251 atm->q[ctl->qnt_destination][ip] = dd->rank;
1252 }
1253 }
1254
1255 /* Handle particles assigned to poles by wrapping coordinates and calculating proper subdomain */
1256 /*
1257 if ((int)atm->q[ctl->qnt_destination][ip] < 0) {
1258 int calculated_rank = dd_calc_subdomain_from_coords(atm->lon[ip], atm->lat[ip], met, ctl, dd->size, help_nx_glob, help_ny_glob);
1259
1260 if ((int)atm->q[ctl->qnt_destination][ip] == DD_NPOLE) {
1261 LOG(3, "DD: Particle was assigned to NORTH POLE - redirecting to subdomain %d (lon: %f, lat: %f)",
1262 calculated_rank, atm->lon[ip], atm->lat[ip]);
1263 } else if ((int)atm->q[ctl->qnt_destination][ip] == DD_SPOLE) {
1264 LOG(3, "DD: Particle was assigned to SOUTH POLE - redirecting to subdomain %d (lon: %f, lat: %f)",
1265 calculated_rank, atm->lon[ip], atm->lat[ip]);
1266 } else {
1267 LOG(2, "DD: Particle had invalid destination %d - redirecting to subdomain %d (lon: %f, lat: %f)",
1268 (int)atm->q[ctl->qnt_destination][ip], calculated_rank, atm->lon[ip], atm->lat[ip]);
1269 } */
1270
1271 /* Assign particle to the calculated subdomain */
1272 /*atm->q[ctl->qnt_destination][ip] = calculated_rank;
1273 } */
1274 }
1275#ifdef _OPENACC
1276#pragma acc exit data delete(dd)
1277#endif
1278 }
1279}
1280#endif
1281
1282/*****************************************************************************/
1283
1284#ifdef DD
1285void dd_atm2particles(
1286 atm_t *atm,
1287 particle_t *particles,
1288 ctl_t *ctl,
1289 int *nparticles,
1290 cache_t *cache,
1291 int rank) {
1292
1293 SELECT_TIMER("DD_ATM2PARTICLES", "DD", NVTX_READ);
1294
1295 /* Select the particles that will be send... */
1296#ifdef _OPENACC
1297 int npart = *nparticles;
1298#pragma acc enter data create( nparticles, particles[:DD_NPART])
1299#pragma acc update device( nparticles)
1300#pragma acc parallel loop present( atm, ctl, particles, cache, nparticles)
1301#endif
1302 for (int ip = atm->np; ip < atm->np + *nparticles; ip++)
1303 if (((int) (atm->q[ctl->qnt_destination][ip]) != rank)
1304 && ((int) (atm->q[ctl->qnt_destination][ip]) >= 0)
1305 && ((int) atm->q[ctl->qnt_subdomain][ip] >= 0)) {
1306
1307 particles[ip - atm->np].time = atm->time[ip];
1308 particles[ip - atm->np].lon = atm->lon[ip];
1309 particles[ip - atm->np].lat = atm->lat[ip];
1310 particles[ip - atm->np].p = atm->p[ip];
1311
1312 for (int iq = 0; iq < ctl->nq; iq++)
1313 particles[ip - atm->np].q[iq] = atm->q[iq][ip];
1314
1315 LOG(3,
1316 "DD: Particle being prepared for transfer: subdomain %d -> destination %d (lon: %f, lat: %f)",
1317 (int) atm->q[ctl->qnt_subdomain][ip],
1318 (int) atm->q[ctl->qnt_destination][ip], atm->lon[ip], atm->lat[ip]);
1319 atm->q[ctl->qnt_subdomain][ip] = -1;
1320 cache->dt[ip] = 0;
1321 }
1322#ifdef _OPENACC
1323#pragma acc update host( particles[:npart])
1324#pragma acc exit data delete( nparticles, particles)
1325#endif
1326}
1327#endif
1328
1329/*****************************************************************************/
1330
1331#ifdef DD
1333 double lon,
1334 double lat,
1335 met_t *met,
1336 ctl_t *ctl,
1337 int mpi_size,
1338 int nx_glob,
1339 int ny_glob) {
1340
1341 /* Wrap longitude to [0, 360) */
1342 double wrapped_lon = lon;
1343 while (wrapped_lon < 0)
1344 wrapped_lon += 360;
1345 while (wrapped_lon >= 360)
1346 wrapped_lon -= 360;
1347
1348 /* Handle polar coordinates by wrapping latitude and adjusting longitude */
1349 double wrapped_lat = lat;
1350 if (lat > 90) {
1351 /* North pole overflow: wrap latitude and flip longitude */
1352 wrapped_lat = 180 - lat;
1353 wrapped_lon = fmod(wrapped_lon + 180, 360);
1354 } else if (lat < -90) {
1355 /* South pole overflow: wrap latitude and flip longitude */
1356 wrapped_lat = -180 - lat;
1357 wrapped_lon = fmod(wrapped_lon + 180, 360);
1358 }
1359
1360 /* Get global domain ranges */
1361 /* Handle both periodic (global) and non-periodic (regional) longitude grids */
1362 double lon_range = 360.0;
1363 //if (dd_is_periodic_longitude(met, nx_glob)) {
1364 /* For global grids with periodic boundaries, use full 360 degrees */
1365 //lon_range = 360.0;
1366 //LOG(3, "Detected periodic longitude boundaries, using lon_range = 360.0");
1367 //} else {
1368 /* For regional grids, use the actual data range */
1369 //lon_range = met->lon[nx_glob - 1] - met->lon[0];
1370 //LOG(3, "Detected non-periodic longitude boundaries, using lon_range = %g", lon_range);
1371 //}
1372
1373 LOG(2, "nx_glob: %d", nx_glob);
1374
1375 double lat_range = met->lat[ny_glob - 1] - met->lat[0];
1376 double global_lon_min = met->lon[0];
1377 double global_lat_min = met->lat[0];
1378
1379 /* Calculate subdomain indices */
1380 int lon_idx =
1381 (int) ((wrapped_lon -
1382 global_lon_min) * ctl->dd_subdomains_zonal / lon_range);
1383 int lat_idx =
1384 (int) ((wrapped_lat -
1385 global_lat_min) * ctl->dd_subdomains_meridional / lat_range);
1386
1387 // print wrapped coords, ranges, mins and idxs for debugging
1388 printf
1389 ("DD: Input Lon: %f, Lat: %f | Wrapped Lon: %f, Lat: %f | Lon Range: %f, Lat Range: %f | Lon Min: %f, Lat Min: %f | Lon Idx: %d, Lat Idx: %d\n",
1390 lon, lat, wrapped_lon, wrapped_lat, lon_range, lat_range, global_lon_min,
1391 global_lat_min, lon_idx, lat_idx);
1392
1393 /* Clamp to valid ranges */
1394 lon_idx =
1395 (lon_idx <
1396 0) ? 0 : ((lon_idx >=
1398 1 : lon_idx);
1399 lat_idx =
1400 (lat_idx <
1401 0) ? 0 : ((lat_idx >=
1402 ctl->dd_subdomains_meridional) ? ctl->
1403 dd_subdomains_meridional - 1 : lat_idx);
1404
1405 /* Calculate rank from indices */
1406 int target_rank = lon_idx * ctl->dd_subdomains_meridional + lat_idx;
1407
1408 /* Ensure rank is within valid range */
1409 if (target_rank >= mpi_size)
1410 target_rank = mpi_size - 1;
1411 if (target_rank < 0)
1412 target_rank = 0;
1413
1414 return target_rank;
1415}
1416#endif
1417
1418/*****************************************************************************/
1419
1420#ifdef DD
1422 particle_t *particles,
1423 int *nparticles,
1424 MPI_Datatype MPI_Particle,
1425 int *neighbours,
1426 int nneighbours,
1427 ctl_t ctl) {
1428
1429 /* Initialize the buffers... */
1430 int *nbs;
1431 int *nbr;
1432 ALLOC(nbs, int,
1433 nneighbours);
1434 ALLOC(nbr, int,
1435 nneighbours);
1436 particle_t *send_buffers[DD_NNMAX] = { NULL };
1437 particle_t *recieve_buffers[DD_NNMAX] = { NULL };
1438
1439 /* Get MPI rank... */
1440 int rank;
1441 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
1442
1443 /* Infos for MPI async... */
1444 MPI_Request *requests_snd_nbr =
1445 (MPI_Request *) calloc((size_t) nneighbours, sizeof(MPI_Request));
1446 MPI_Request *requests_rcv_nbr =
1447 (MPI_Request *) calloc((size_t) nneighbours, sizeof(MPI_Request));
1448 MPI_Request *requests_snd_part =
1449 (MPI_Request *) calloc((size_t) nneighbours, sizeof(MPI_Request));
1450 MPI_Request *requests_rcv_part =
1451 (MPI_Request *) calloc((size_t) nneighbours, sizeof(MPI_Request));
1452 MPI_Status *states =
1453 (MPI_Status *) calloc((size_t) nneighbours, sizeof(MPI_Status));
1454
1455 /* Initialize with MPI_REQUEST_NULL */
1456 for (int i = 0; i < nneighbours; i++) {
1457 requests_snd_nbr[i] = MPI_REQUEST_NULL;
1458 requests_rcv_nbr[i] = MPI_REQUEST_NULL;
1459 requests_snd_part[i] = MPI_REQUEST_NULL;
1460 requests_rcv_part[i] = MPI_REQUEST_NULL;
1461 }
1462
1463 /* Sending... */
1464 for (int idest = 0; idest < nneighbours; idest++) {
1465
1466 /* Ignore poles... */
1467 if (neighbours[idest] < 0)
1468 continue;
1469
1470 SELECT_TIMER("DD_COUNT_NUMBER", "DD", NVTX_CPU);
1471 /* Count number of particles in particle array that will be send... */
1472 int help_sum = 0;
1473 for (int ip = 0; ip < *nparticles; ip++)
1474 if ((int) particles[ip].q[ctl.qnt_destination] == neighbours[idest])
1475 help_sum++;
1476 nbs[idest] = help_sum;
1477
1478 if (help_sum > 0) {
1479 LOG(3, "DD: Rank %d sending %d particles to neighbour %d (rank %d)",
1480 rank, help_sum, idest, neighbours[idest]);
1481 }
1482
1483 SELECT_TIMER("DD_SEND_NUMBER", "DD", NVTX_CPU);
1484 /* Send buffer sizes... */
1485 MPI_Isend(&nbs[idest], 1, MPI_INT,
1486 neighbours[idest], 0, MPI_COMM_WORLD, &requests_snd_nbr[idest]);
1487
1488 /* Don't send empty signals... */
1489 if (nbs[idest] == 0)
1490 continue;
1491
1492 SELECT_TIMER("DD_PREP_BUFFER", "DD", NVTX_CPU);
1493 /* Allocate buffer for sending... */
1494 ALLOC(send_buffers[idest], particle_t, nbs[idest]);
1495
1496 /* Fill the send buffer in a sorted way... */
1497 int ibs = 0;
1498 for (int ip = 0; ip < *nparticles; ip++) {
1499 if ((int) particles[ip].q[ctl.qnt_destination] == neighbours[idest]) {
1500 memcpy(&send_buffers[idest][ibs], &particles[ip], sizeof(particle_t));
1501 ibs++;
1502 }
1503
1504 if (ibs == nbs[idest])
1505 break;
1506 }
1507
1508 SELECT_TIMER("DD_SEND_PARTICLES", "DD", NVTX_CPU);
1509
1510 /* Send the buffer... */
1511 MPI_Isend(send_buffers[idest], nbs[idest], MPI_Particle,
1512 neighbours[idest], 1, MPI_COMM_WORLD,
1513 &requests_snd_part[idest]);
1514 }
1515
1516 SELECT_TIMER("DD_RECIEVE_NUMBERS", "DD", NVTX_CPU);
1517
1518 /* Recieving... */
1519 for (int isourc = 0; isourc < nneighbours; isourc++) {
1520
1521 /* Ignore poles... */
1522 if (neighbours[isourc] < 0) {
1523 requests_rcv_nbr[isourc] = MPI_REQUEST_NULL;
1524 continue;
1525 }
1526
1527 /* Recieve buffer sizes... */
1528 MPI_Irecv(&nbr[isourc], 1, MPI_INT, neighbours[isourc], 0, MPI_COMM_WORLD,
1529 &requests_rcv_nbr[isourc]);
1530 }
1531
1532 /* Wait for all particle numbers to be recieved... */
1533 MPI_Waitall(nneighbours, requests_rcv_nbr, states);
1534
1535 SELECT_TIMER("DD_RECIEVE_PARTICLES", "DD", NVTX_CPU);
1536 for (int isourc = 0; isourc < nneighbours; isourc++) {
1537
1538 /* Ignore poles, and neighbours without signal... */
1539 if ((neighbours[isourc] < 0) || (nbr[isourc] == 0)) {
1540 requests_rcv_part[isourc] = MPI_REQUEST_NULL;
1541 continue;
1542 }
1543
1544 /* Allocate buffer for recieving... */
1545 ALLOC(recieve_buffers[isourc], particle_t, nbr[isourc]);
1546
1547 /* Receive... */
1548 MPI_Irecv(recieve_buffers[isourc], nbr[isourc], MPI_Particle,
1549 neighbours[isourc], 1, MPI_COMM_WORLD,
1550 &requests_rcv_part[isourc]);
1551 }
1552
1553 /* Wait for all particles to be recieved... */
1554 MPI_Waitall(nneighbours, requests_rcv_part, states);
1555
1556 SELECT_TIMER("DD_EMPTY_BUFFER", "DD", NVTX_CPU);
1557
1558 /* Start position for different buffer ranges... */
1559 int api = 0;
1560
1561 /* Putting buffer into particle array... */
1562 for (int isourc = 0; isourc < nneighbours; isourc++) {
1563
1564 /* Ignore poles... */
1565 if (neighbours[isourc] < 0)
1566 continue;
1567
1568 if (nbr[isourc] > 0) {
1569 LOG(3, "DD: Rank %d receiving %d particles from neighbour %d (rank %d)",
1570 rank, nbr[isourc], isourc, neighbours[isourc]);
1571 }
1572
1573 /* Getting particles from buffer... */
1574 for (int ip = 0; ip < nbr[isourc]; ip++) {
1575 memcpy(&particles[ip + api], &recieve_buffers[isourc][ip],
1576 sizeof(particle_t));
1577 particles[ip + api].q[ctl.qnt_destination] = rank;
1578 particles[ip + api].q[ctl.qnt_subdomain] = rank;
1579 }
1580 api += nbr[isourc];
1581 }
1582
1583 /* Set number of recieved particles... */
1584 *nparticles = api;
1585
1586 SELECT_TIMER("DD_FREE_BUFFER", "DD", NVTX_CPU);
1587
1588 /* Wait for all communication to be finished... */
1589 MPI_Waitall(nneighbours, requests_snd_part, states);
1590 MPI_Waitall(nneighbours, requests_snd_nbr, states);
1591
1592 /* Free buffers and buffersizes... */
1593 for (int i = 0; i < nneighbours; i++) {
1594
1595 if ((send_buffers[i] != NULL) && (nbs[i] != 0)) {
1596 free(send_buffers[i]);
1597 send_buffers[i] = NULL;
1598 }
1599
1600 if ((recieve_buffers[i] != NULL) && (nbr[i] != 0)) {
1601 free(recieve_buffers[i]);
1602 recieve_buffers[i] = NULL;
1603 }
1604 }
1605
1606 free(nbs);
1607 free(nbr);
1608}
1609#endif
1610
1611/*****************************************************************************/
1612
1613#ifdef DD
1615 const ctl_t ctl,
1616 dd_t *dd) {
1617 SELECT_TIMER("DD_GET_RECT_NEIGHBOUR", "DD", NVTX_GPU);
1618
1619 const int rank = dd->rank;
1620 const int size = dd->size;
1621 const int m = ctl.dd_subdomains_meridional;
1622 int *nb = dd->neighbours;
1623
1624 nb[0] = (size + rank - m) % size; // left
1625 nb[3] = (rank + m) % size; // right
1626 nb[1] = ((rank + 1) % m == 0) ? DD_SPOLE : (size + rank - m + 1) % size; // lower left
1627 nb[2] = (rank % m == 0) ? DD_NPOLE : (size + rank - m - 1) % size; // upper left
1628 nb[4] = ((rank + 1) % m == 0) ? DD_SPOLE : (rank + m + 1) % size; // lower right
1629 nb[5] = (rank % m == 0) ? DD_NPOLE : (rank + m - 1) % size; // upper right
1630 nb[6] = (rank % m == 0) ? DD_NPOLE : rank - 1; // upper
1631 nb[7] = ((rank + 1) % m == 0) ? DD_SPOLE : rank + 1; // lower
1632}
1633#endif
1634
1635/*****************************************************************************/
1636
1637#ifdef DD
1639 met_t *met,
1640 int nx_glob) {
1641
1642 /* Check if we have at least 2 longitude points... */
1643 if (nx_glob < 2)
1644 return 0;
1645
1646 /* Calculate the longitude spacing */
1647 double lon_spacing = met->lon[1] - met->lon[0];
1648
1649 /* Check if the total range plus one spacing equals 360 degrees
1650 This is the same logic as used in read_met_periodic() */
1651 double total_range = met->lon[nx_glob - 1] - met->lon[0] + lon_spacing;
1652
1653 /* Return 1 if periodic (global), 0 if not periodic (regional) */
1654 return (fabs(total_range - 360.0) < 0.01);
1655}
1656#endif
1657
1658/*****************************************************************************/
1659
1660#ifdef DD
1661int dd_init(
1662 ctl_t *ctl,
1663 dd_t *dd,
1664 atm_t *atm) {
1665
1666 /* Check if enough tasks are requested... */
1667 if (dd->size != ctl->dd_subdomains_meridional * ctl->dd_subdomains_zonal)
1668 ERRMSG("The number of tasks and subdomains is not identical.");
1669
1670#ifdef DD
1671 /* Register the MPI_Particle data type... */
1672 dd_register_MPI_type_particle(&dd->MPI_Particle);
1673#endif
1674
1675 /* Define grid neighbours ... */
1676 dd_get_rect_neighbour(*ctl, dd);
1677
1678 /* Check if particles are in subdomain... */
1679 dd_assign_rect_subdomains_atm(atm, ctl, dd, 1);
1680
1681 /* Set flag of initialization. */
1682 return 1;
1683}
1684#endif
1685
1686/*****************************************************************************/
1687
1688#ifdef DD
1689void dd_particles2atm(
1690 atm_t *atm,
1691 particle_t *particles,
1692 ctl_t *ctl,
1693 int *nparticles,
1694 cache_t *cache) {
1695
1696 SELECT_TIMER("DD_PARTICLES2ATM", "DD", NVTX_CPU);
1697
1698#ifdef _OPENACC
1699 int npart = *nparticles;
1700#pragma acc enter data create(nparticles, particles[:DD_NPART])
1701#pragma acc update device(particles[:npart], nparticles)
1702#pragma acc data present(atm, ctl, cache, particles, nparticles)
1703#pragma acc parallel loop
1704#endif
1705 for (int ip = atm->np; ip < atm->np + *nparticles; ip++) {
1706 atm->time[ip] = particles[ip - atm->np].time;
1707 atm->lon[ip] = particles[ip - atm->np].lon;
1708 atm->lat[ip] = particles[ip - atm->np].lat;
1709 atm->p[ip] = particles[ip - atm->np].p;
1710 for (int iq = 0; iq < ctl->nq; iq++)
1711 atm->q[iq][ip] = particles[ip - atm->np].q[iq];
1712 cache->dt[ip] = ctl->dt_mod;
1713 }
1714#ifdef _OPENACC
1715#pragma acc exit data delete(nparticles, particles)
1716#endif
1717
1718 /* Reset size... */
1719 atm->np += *nparticles;
1720#ifdef _OPENACC
1721#pragma acc update device(atm->np)
1722#endif
1723 if (atm->np > NP)
1724 ERRMSG("Number of particles to high. Increase NP!");
1725}
1726#endif
1727
1728/*****************************************************************************/
1729
1730#ifdef DD
1732 MPI_Datatype *MPI_Particle) {
1733 MPI_Datatype types[5] = { MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE,
1734 MPI_DOUBLE, MPI_DOUBLE
1735 };
1736 int blocklengths[5] = { 1, 1, 1, 1, NQ };
1737 MPI_Aint displacements[5] = { offsetof(particle_t, time),
1738 offsetof(particle_t, p),
1739 offsetof(particle_t, lon),
1740 offsetof(particle_t, lat),
1741 offsetof(particle_t, q)
1742 };
1743 MPI_Type_create_struct(5, blocklengths, displacements, types, MPI_Particle);
1744 MPI_Type_commit(MPI_Particle);
1745}
1746#endif
1747
1748/*****************************************************************************/
1749
1750#ifdef DD
1751void dd_sort(
1752 const ctl_t *ctl,
1753 met_t *met0,
1754 atm_t *atm,
1755 dd_t *dd,
1756 int *nparticles,
1757 int *rank) {
1758
1759 /* Set timer... */
1760 SELECT_TIMER("DD_SORT", "DD", NVTX_GPU);
1761
1762 /* Allocate... */
1763 const int np = atm->np;
1764 double amax = (met0->nx * met0->ny + met0->ny) * met0->np + met0->np;
1765#ifdef _OPENACC
1766#pragma acc enter data create(amax, rank)
1767#pragma acc update device(rank, amax)
1768#pragma acc data present(ctl,met0,atm,dd,amax,rank)
1769#endif
1770
1771 /* Get box index... */
1772#ifdef _OPENACC
1773#pragma acc parallel loop independent gang vector
1774#else
1775#pragma omp parallel for default(shared)
1776#endif
1777 for (int ip = 0; ip < np; ip++) {
1778 if ((int) atm->q[ctl->qnt_subdomain][ip] != -1) {
1779 if ((int) atm->q[ctl->qnt_destination][ip] == *rank)
1780 dd->a[ip] =
1781 (double) ((locate_reg(met0->lon, met0->nx, atm->lon[ip]) *
1782 met0->ny + locate_irr(met0->lat, met0->ny, atm->lat[ip]))
1783 * met0->np + locate_irr(met0->p, met0->np, atm->p[ip]));
1784 else
1785 dd->a[ip] = amax + 1;
1786 } else {
1787 dd->a[ip] = amax + 2;
1788 }
1789 dd->p[ip] = ip;
1790 }
1791
1792 /* Sorting... */
1793#ifdef THRUST
1794#ifdef _OPENACC
1795#pragma acc host_data use_device(dd->a,dd->p)
1796#endif
1797 thrustSortWrapper(dd->a, np, dd->p);
1798#else
1799#ifdef _OPENACC
1800 ERRMSG("GSL sort fallback not available on GPU, use THRUST!");
1801#endif
1802 gsl_sort_index((size_t *) (dd->p), (dd->a), 1, (size_t) np);
1803#endif
1804
1805 /* Sort data... */
1806 dd_sort_help(atm->time, dd, np);
1807 dd_sort_help(atm->p, dd, np);
1808 dd_sort_help(atm->lon, dd, np);
1809 dd_sort_help(atm->lat, dd, np);
1810 for (int iq = 0; iq < ctl->nq; iq++)
1811 dd_sort_help(atm->q[iq], dd, np);
1812
1813 /* Reset the size... */
1814 int npt = 0;
1815#ifdef _OPENACC
1816#pragma acc parallel loop reduction(+:npt) present(atm, rank, ctl)
1817#endif
1818 for (int ip = 0; ip < np; ip++)
1819 if (((int) atm->q[ctl->qnt_subdomain][ip] != -1)
1820 && ((int) atm->q[ctl->qnt_destination][ip] == *rank))
1821 npt++;
1822
1823 /* Count number of particles to send... */
1824 int nparticlest = 0;
1825#ifdef _OPENACC
1826#pragma acc parallel loop reduction(+:nparticlest) present(atm, rank, ctl)
1827#endif
1828 for (int ip = npt; ip < np; ip++)
1829 if (((int) atm->q[ctl->qnt_subdomain][ip] != -1)
1830 && ((int) atm->q[ctl->qnt_destination][ip] != *rank))
1831 nparticlest++;
1832
1833 /* Reset sizes... */
1834 *nparticles = nparticlest;
1835
1836 /* Count particles with -1 subdomain (these will be effectively lost) */
1837 int nlost = 0;
1838 for (int ip = 0; ip < np; ip++)
1839 if ((int) atm->q[ctl->qnt_subdomain][ip] == -1)
1840 nlost++;
1841
1842 if (nlost > 0) {
1843 WARN
1844 ("DD: Rank %d: %d particles have subdomain index -1 and will be lost (kept: %d, to_send: %d, total_before: %d)",
1845 *rank, nlost, npt, nparticlest, np);
1846 }
1847
1848 atm->np = npt;
1849#ifdef _OPENACC
1850#pragma acc update device(atm->np)
1851#endif
1852
1853 if (*nparticles > DD_NPART)
1854 ERRMSG
1855 ("Number of particles to send and recieve to small. Increase DD_NPART!");
1856
1857 /* Free... */
1858#ifdef _OPENACC
1859#pragma acc exit data delete(amax, rank)
1860#endif
1861}
1862#endif
1863
1864/*****************************************************************************/
1865
1866#ifdef DD
1867void dd_sort_help(
1868 double *a,
1869 dd_t *dd,
1870 const int np) {
1871
1872 /* Reordering of array... */
1873#ifdef _OPENACC
1874#pragma acc data present(dd,a)
1875#pragma acc parallel loop independent gang vector
1876#else
1877#pragma omp parallel for default(shared)
1878#endif
1879 for (int ip = 0; ip < np; ip++)
1880 dd->help[ip] = a[dd->p[ip]];
1881#ifdef _OPENACC
1882#pragma acc parallel loop independent gang vector
1883#else
1884#pragma omp parallel for default(shared)
1885#endif
1886 for (int ip = 0; ip < np; ip++)
1887 a[ip] = dd->help[ip];
1888}
1889#endif
1890
1891/*****************************************************************************/
1892
1894 const int year,
1895 const int doy,
1896 int *mon,
1897 int *day) {
1898
1899 const int
1900 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
1901 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
1902
1903 int i;
1904
1905 /* Get month and day... */
1906 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) {
1907 for (i = 11; i > 0; i--)
1908 if (d0l[i] <= doy)
1909 break;
1910 *mon = i + 1;
1911 *day = doy - d0l[i] + 1;
1912 } else {
1913 for (i = 11; i > 0; i--)
1914 if (d0[i] <= doy)
1915 break;
1916 *mon = i + 1;
1917 *day = doy - d0[i] + 1;
1918 }
1919}
1920
1921/*****************************************************************************/
1922
1924 double *fcReal,
1925 double *fcImag,
1926 const int n) {
1927
1928 double data[2 * EX];
1929
1930 /* Check size... */
1931 if (n > EX)
1932 ERRMSG("Too many data points!");
1933
1934 /* Allocate... */
1935 gsl_fft_complex_wavetable *wavetable =
1936 gsl_fft_complex_wavetable_alloc((size_t) n);
1937 gsl_fft_complex_workspace *workspace =
1938 gsl_fft_complex_workspace_alloc((size_t) n);
1939
1940 /* Set data (real, complex)... */
1941 for (int i = 0; i < n; i++) {
1942 data[2 * i] = fcReal[i];
1943 data[2 * i + 1] = fcImag[i];
1944 }
1945
1946 /* Calculate FFT... */
1947 gsl_fft_complex_forward(data, 1, (size_t) n, wavetable, workspace);
1948
1949 /* Copy data... */
1950 for (int i = 0; i < n; i++) {
1951 fcReal[i] = data[2 * i];
1952 fcImag[i] = data[2 * i + 1];
1953 }
1954
1955 /* Free... */
1956 gsl_fft_complex_wavetable_free(wavetable);
1957 gsl_fft_complex_workspace_free(workspace);
1958}
1959
1960/*****************************************************************************/
1961
1963 const double z,
1964 const double lon,
1965 const double lat,
1966 double *x) {
1967
1968 const double radius = z + RE;
1969 const double latrad = DEG2RAD(lat);
1970 const double lonrad = DEG2RAD(lon);
1971 const double coslat = cos(latrad);
1972
1973 x[0] = radius * coslat * cos(lonrad);
1974 x[1] = radius * coslat * sin(lonrad);
1975 x[2] = radius * sin(latrad);
1976}
1977
1978/*****************************************************************************/
1979
1981 const ctl_t *ctl,
1982 const double t,
1983 const int direct,
1984 const char *metbase,
1985 const double dt_met,
1986 char *filename) {
1987
1988 char repl[LEN];
1989
1990 double t6, r;
1991
1992 int year, mon, day, hour, min, sec;
1993
1994 /* Round time to fixed intervals... */
1995 if (direct == -1)
1996 t6 = floor(t / dt_met) * dt_met;
1997 else
1998 t6 = ceil(t / dt_met) * dt_met;
1999
2000 /* Decode time... */
2001 jsec2time(t6, &year, &mon, &day, &hour, &min, &sec, &r);
2002
2003 /* Set filename of MPTRAC meteo files... */
2004 if (ctl->met_clams == 0) {
2005 if (ctl->met_type == 0)
2006 sprintf(filename, "%s_YYYY_MM_DD_HH.nc", metbase);
2007 else if (ctl->met_type == 1)
2008 sprintf(filename, "%s_YYYY_MM_DD_HH.bin", metbase);
2009 else if (ctl->met_type == 2)
2010 sprintf(filename, "%s_YYYY_MM_DD_HH.pck", metbase);
2011 else if (ctl->met_type == 3)
2012 sprintf(filename, "%s_YYYY_MM_DD_HH.zfp", metbase);
2013 else if (ctl->met_type == 4)
2014 sprintf(filename, "%s_YYYY_MM_DD_HH.zstd", metbase);
2015 else if (ctl->met_type == 5)
2016 sprintf(filename, "%s_YYYY_MM_DD_HH.cms", metbase);
2017 else if (ctl->met_type == 7)
2018 sprintf(filename, "%s_YYYY_MM_DD_HH.sz3", metbase);
2019 sprintf(repl, "%d", year);
2020 get_met_replace(filename, "YYYY", repl);
2021 sprintf(repl, "%02d", mon);
2022 get_met_replace(filename, "MM", repl);
2023 sprintf(repl, "%02d", day);
2024 get_met_replace(filename, "DD", repl);
2025 sprintf(repl, "%02d", hour);
2026 get_met_replace(filename, "HH", repl);
2027 }
2028
2029 /* Set filename of CLaMS meteo files... */
2030 else {
2031 sprintf(filename, "%s_YYMMDDHH.nc", metbase);
2032 sprintf(repl, "%d", year);
2033 get_met_replace(filename, "YYYY", repl);
2034 sprintf(repl, "%02d", year % 100);
2035 get_met_replace(filename, "YY", repl);
2036 sprintf(repl, "%02d", mon);
2037 get_met_replace(filename, "MM", repl);
2038 sprintf(repl, "%02d", day);
2039 get_met_replace(filename, "DD", repl);
2040 sprintf(repl, "%02d", hour);
2041 get_met_replace(filename, "HH", repl);
2042 }
2043}
2044
2045/*****************************************************************************/
2046
2048 char *orig,
2049 char *search,
2050 char *repl) {
2051
2052 char buffer[LEN];
2053
2054 /* Iterate... */
2055 for (int i = 0; i < 3; i++) {
2056
2057 /* Replace sub-string... */
2058 char *ch;
2059 if (!(ch = strstr(orig, search)))
2060 return;
2061 strncpy(buffer, orig, (size_t) (ch - orig));
2062 buffer[ch - orig] = 0;
2063 sprintf(buffer + (ch - orig), "%s%s", repl, ch + strlen(search));
2064 orig[0] = 0;
2065 strcpy(orig, buffer);
2066 }
2067}
2068
2069/*****************************************************************************/
2070
2072 const int met_tropo,
2073 ctl_t *ctl,
2074 clim_t *clim,
2075 met_t *met,
2076 const double *lons,
2077 const int nx,
2078 const double *lats,
2079 const int ny,
2080 double *pt,
2081 double *zt,
2082 double *tt,
2083 double *qt,
2084 double *o3t,
2085 double *ps,
2086 double *zs) {
2087
2089
2090 ctl->met_tropo = met_tropo;
2091 read_met_tropo(ctl, clim, met);
2092#pragma omp parallel for default(shared) private(ci,cw)
2093 for (int ix = 0; ix < nx; ix++)
2094 for (int iy = 0; iy < ny; iy++) {
2095 intpol_met_space_2d(met, met->pt, lons[ix], lats[iy],
2096 &pt[iy * nx + ix], ci, cw, 1);
2097 intpol_met_space_2d(met, met->ps, lons[ix], lats[iy],
2098 &ps[iy * nx + ix], ci, cw, 0);
2099 intpol_met_space_2d(met, met->zs, lons[ix], lats[iy],
2100 &zs[iy * nx + ix], ci, cw, 0);
2101 intpol_met_space_3d(met, met->z, pt[iy * nx + ix], lons[ix],
2102 lats[iy], &zt[iy * nx + ix], ci, cw, 1);
2103 intpol_met_space_3d(met, met->t, pt[iy * nx + ix], lons[ix],
2104 lats[iy], &tt[iy * nx + ix], ci, cw, 0);
2105 intpol_met_space_3d(met, met->h2o, pt[iy * nx + ix], lons[ix],
2106 lats[iy], &qt[iy * nx + ix], ci, cw, 0);
2107 intpol_met_space_3d(met, met->o3, pt[iy * nx + ix], lons[ix],
2108 lats[iy], &o3t[iy * nx + ix], ci, cw, 0);
2109 }
2110}
2111
2112/*****************************************************************************/
2113
2115 const double *lons,
2116 const int nlon,
2117 const double *lats,
2118 const int nlat,
2119 const double lon,
2120 const double lat,
2121 double *lon2,
2122 double *lat2) {
2123
2124 /* Check longitude... */
2125 *lon2 = FMOD(lon, 360.);
2126 if (*lon2 < lons[0])
2127 *lon2 += 360;
2128 else if (*lon2 > lons[nlon - 1])
2129 *lon2 -= 360;
2130
2131 /* Check latitude... */
2132 *lat2 = lat;
2133 if (lats[0] < lats[nlat - 1])
2134 *lat2 = MIN(MAX(*lat2, lats[0]), lats[nlat - 1]);
2135 else
2136 *lat2 = MIN(MAX(*lat2, lats[nlat - 1]), lats[0]);
2137}
2138
2139/*****************************************************************************/
2140
2142 const met_t *met0,
2143 float heights0[EX][EY][EP],
2144 float array0[EX][EY][EP],
2145 const met_t *met1,
2146 float heights1[EX][EY][EP],
2147 float array1[EX][EY][EP],
2148 const double ts,
2149 const double height,
2150 const double lon,
2151 const double lat,
2152 double *var,
2153 int *ci,
2154 double *cw,
2155 const int init) {
2156
2157 if (init) {
2158
2159 /* Check longitude and latitude... */
2160 double lon2, lat2;
2161 intpol_check_lon_lat(met0->lon, met0->nx, met0->lat, met0->ny, lon, lat,
2162 &lon2, &lat2);
2163
2164 /* Get horizontal indizes... */
2165 ci[0] = locate_reg(met0->lon, met0->nx, lon2);
2166 ci[1] = locate_irr(met0->lat, met0->ny, lat2);
2167
2168 /* Locate the vertical indizes for each edge of the column... */
2169 int ind[2][4];
2170 locate_vert(heights0, met0->npl, ci[0], ci[1], height, ind[0]);
2171 locate_vert(heights1, met1->npl, ci[0], ci[1], height, ind[1]);
2172
2173 /* Find minimum and maximum indizes... */
2174 ci[2] = ind[0][0];
2175 int k_max = ind[0][0];
2176 for (int i = 0; i < 2; i++)
2177 for (int j = 0; j < 4; j++) {
2178 if (ci[2] > ind[i][j])
2179 ci[2] = ind[i][j];
2180 if (k_max < ind[i][j])
2181 k_max = ind[i][j];
2182 }
2183
2184 /* Get weighting factors for time, longitude and latitude... */
2185 cw[3] = (ts - met0->time) / (met1->time - met0->time);
2186 cw[0] = (lon2 - met0->lon[ci[0]]) /
2187 (met0->lon[ci[0] + 1] - met0->lon[ci[0]]);
2188 cw[1] = (lat2 - met0->lat[ci[1]]) /
2189 (met0->lat[ci[1] + 1] - met0->lat[ci[1]]);
2190
2191 /* Interpolate in time at the lowest level... */
2192 double height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2]]
2193 - heights0[ci[0]][ci[1]][ci[2]])
2194 + heights0[ci[0]][ci[1]][ci[2]];
2195 double height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2]]
2196 - heights0[ci[0]][ci[1] + 1][ci[2]])
2197 + heights0[ci[0]][ci[1] + 1][ci[2]];
2198 double height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2]]
2199 - heights0[ci[0] + 1][ci[1]][ci[2]])
2200 + heights0[ci[0] + 1][ci[1]][ci[2]];
2201 double height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2]]
2202 - heights0[ci[0] + 1][ci[1] + 1][ci[2]])
2203 + heights0[ci[0] + 1][ci[1] + 1][ci[2]];
2204
2205 /* Interpolate in latitude direction... */
2206 double height0 = cw[1] * (height01 - height00) + height00;
2207 double height1 = cw[1] * (height11 - height10) + height10;
2208
2209 /* Interpolate in longitude direction... */
2210 double height_bot = cw[0] * (height1 - height0) + height0;
2211
2212 /* Interpolate in time at the upper level... */
2213 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
2214 - heights0[ci[0]][ci[1]][ci[2] + 1])
2215 + heights0[ci[0]][ci[1]][ci[2] + 1];
2216 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
2217 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
2218 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
2219 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
2220 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
2221 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
2222 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
2223 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
2224 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
2225
2226 /* Interpolate in latitude direction... */
2227 height0 = cw[1] * (height01 - height00) + height00;
2228 height1 = cw[1] * (height11 - height10) + height10;
2229
2230 /* Interpolate in longitude direction... */
2231 double height_top = cw[0] * (height1 - height0) + height0;
2232
2233 /* Search at higher levels if height is not in box... */
2234 while (((heights0[0][0][0] > heights0[0][0][1]) &&
2235 ((height_bot <= height) || (height_top > height))
2236 && (height_bot >= height) && (ci[2] < k_max))
2237 ||
2238 ((heights0[0][0][0] < heights0[0][0][1]) &&
2239 ((height_bot >= height) || (height_top < height))
2240 && (height_bot <= height) && (ci[2] < k_max))
2241 ) {
2242
2243 ci[2]++;
2244 height_bot = height_top;
2245
2246 /* Interpolate in time at the next level... */
2247 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
2248 - heights0[ci[0]][ci[1]][ci[2] + 1])
2249 + heights0[ci[0]][ci[1]][ci[2] + 1];
2250 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
2251 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
2252 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
2253 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
2254 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
2255 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
2256 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
2257 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
2258 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
2259
2260 /* Interpolate in latitude direction... */
2261 height0 = cw[1] * (height01 - height00) + height00;
2262 height1 = cw[1] * (height11 - height10) + height10;
2263
2264 /* Interpolate in longitude direction... */
2265 height_top = cw[0] * (height1 - height0) + height0;
2266 }
2267
2268 /* Get vertical weighting factors... */
2269 cw[2] = (height - height_bot)
2270 / (height_top - height_bot);
2271 }
2272
2273 /* Calculate the needed array values... */
2274 const double array000 = cw[3] * (array1[ci[0]][ci[1]][ci[2]]
2275 - array0[ci[0]][ci[1]][ci[2]])
2276 + array0[ci[0]][ci[1]][ci[2]];
2277 const double array100 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2]]
2278 - array0[ci[0] + 1][ci[1]][ci[2]])
2279 + array0[ci[0] + 1][ci[1]][ci[2]];
2280 const double array010 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2]]
2281 - array0[ci[0]][ci[1] + 1][ci[2]])
2282 + array0[ci[0]][ci[1] + 1][ci[2]];
2283 const double array110 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2]]
2284 - array0[ci[0] + 1][ci[1] + 1][ci[2]])
2285 + array0[ci[0] + 1][ci[1] + 1][ci[2]];
2286 const double array001 = cw[3] * (array1[ci[0]][ci[1]][ci[2] + 1]
2287 - array0[ci[0]][ci[1]][ci[2] + 1])
2288 + array0[ci[0]][ci[1]][ci[2] + 1];
2289 const double array101 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2] + 1]
2290 - array0[ci[0] + 1][ci[1]][ci[2] + 1])
2291 + array0[ci[0] + 1][ci[1]][ci[2] + 1];
2292 const double array011 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2] + 1]
2293 - array0[ci[0]][ci[1] + 1][ci[2] + 1])
2294 + array0[ci[0]][ci[1] + 1][ci[2] + 1];
2295 const double array111 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
2296 - array0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
2297 + array0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
2298
2299 const double array00 = cw[0] * (array100 - array000) + array000;
2300 const double array10 = cw[0] * (array110 - array010) + array010;
2301 const double array01 = cw[0] * (array101 - array001) + array001;
2302 const double array11 = cw[0] * (array111 - array011) + array011;
2303
2304 const double aux0 = cw[1] * (array10 - array00) + array00;
2305 const double aux1 = cw[1] * (array11 - array01) + array01;
2306
2307 /* Interpolate vertically... */
2308 *var = cw[2] * (aux1 - aux0) + aux0;
2309}
2310
2311/*****************************************************************************/
2312
2314 const met_t *met,
2315 float array[EX][EY][EP],
2316 const double p,
2317 const double lon,
2318 const double lat,
2319 double *var,
2320 int *ci,
2321 double *cw,
2322 const int init) {
2323
2324 /* Initialize interpolation... */
2325 if (init) {
2326
2327 /* Check longitude and latitude... */
2328 double lon2, lat2;
2329 intpol_check_lon_lat(met->lon, met->nx, met->lat, met->ny, lon, lat,
2330 &lon2, &lat2);
2331
2332 /* Get interpolation indices... */
2333 ci[0] = locate_irr(met->p, met->np, p);
2334 ci[1] = locate_reg(met->lon, met->nx, lon2);
2335 ci[2] = locate_irr(met->lat, met->ny, lat2);
2336
2337 /* Get interpolation weights... */
2338 cw[0] = (met->p[ci[0] + 1] - p)
2339 / (met->p[ci[0] + 1] - met->p[ci[0]]);
2340 cw[1] = (met->lon[ci[1] + 1] - lon2)
2341 / (met->lon[ci[1] + 1] - met->lon[ci[1]]);
2342 cw[2] = (met->lat[ci[2] + 1] - lat2)
2343 / (met->lat[ci[2] + 1] - met->lat[ci[2]]);
2344 }
2345
2346 /* Interpolate vertically... */
2347 const double aux00 =
2348 cw[0] * (array[ci[1]][ci[2]][ci[0]] - array[ci[1]][ci[2]][ci[0] + 1])
2349 + array[ci[1]][ci[2]][ci[0] + 1];
2350 const double aux01 =
2351 cw[0] * (array[ci[1]][ci[2] + 1][ci[0]] -
2352 array[ci[1]][ci[2] + 1][ci[0] + 1])
2353 + array[ci[1]][ci[2] + 1][ci[0] + 1];
2354 const double aux10 =
2355 cw[0] * (array[ci[1] + 1][ci[2]][ci[0]] -
2356 array[ci[1] + 1][ci[2]][ci[0] + 1])
2357 + array[ci[1] + 1][ci[2]][ci[0] + 1];
2358 const double aux11 =
2359 cw[0] * (array[ci[1] + 1][ci[2] + 1][ci[0]] -
2360 array[ci[1] + 1][ci[2] + 1][ci[0] + 1])
2361 + array[ci[1] + 1][ci[2] + 1][ci[0] + 1];
2362
2363 /* Interpolate horizontally... */
2364 const double aux0 = cw[2] * (aux00 - aux01) + aux01;
2365 const double aux1 = cw[2] * (aux10 - aux11) + aux11;
2366 *var = cw[1] * (aux0 - aux1) + aux1;
2367}
2368
2369/*****************************************************************************/
2370
2372 const met_t *met,
2373 float array[EX][EY],
2374 const double lon,
2375 const double lat,
2376 double *var,
2377 int *ci,
2378 double *cw,
2379 const int init) {
2380
2381 /* Initialize interpolation... */
2382 if (init) {
2383
2384 /* Check longitude and latitude... */
2385 double lon2, lat2;
2386 intpol_check_lon_lat(met->lon, met->nx, met->lat, met->ny, lon, lat,
2387 &lon2, &lat2);
2388
2389 /* Get interpolation indices... */
2390 ci[1] = locate_reg(met->lon, met->nx, lon2);
2391 ci[2] = locate_irr(met->lat, met->ny, lat2);
2392
2393 /* Get interpolation weights... */
2394 cw[1] = (met->lon[ci[1] + 1] - lon2)
2395 / (met->lon[ci[1] + 1] - met->lon[ci[1]]);
2396 cw[2] = (met->lat[ci[2] + 1] - lat2)
2397 / (met->lat[ci[2] + 1] - met->lat[ci[2]]);
2398 }
2399
2400 /* Set variables... */
2401 const double aux00 = array[ci[1]][ci[2]];
2402 const double aux01 = array[ci[1]][ci[2] + 1];
2403 const double aux10 = array[ci[1] + 1][ci[2]];
2404 const double aux11 = array[ci[1] + 1][ci[2] + 1];
2405
2406 /* Interpolate horizontally... */
2407 if (isfinite(aux00) && isfinite(aux01)
2408 && isfinite(aux10) && isfinite(aux11)) {
2409 const double aux0 = cw[2] * (aux00 - aux01) + aux01;
2410 const double aux1 = cw[2] * (aux10 - aux11) + aux11;
2411 *var = cw[1] * (aux0 - aux1) + aux1;
2412 } else {
2413 if (cw[2] < 0.5) {
2414 if (cw[1] < 0.5)
2415 *var = aux11;
2416 else
2417 *var = aux01;
2418 } else {
2419 if (cw[1] < 0.5)
2420 *var = aux10;
2421 else
2422 *var = aux00;
2423 }
2424 }
2425}
2426
2427/*****************************************************************************/
2428
2430 const met_t *met0,
2431 float array0[EX][EY][EP],
2432 const met_t *met1,
2433 float array1[EX][EY][EP],
2434 const double ts,
2435 const double p,
2436 const double lon,
2437 const double lat,
2438 double *var,
2439 int *ci,
2440 double *cw,
2441 const int init) {
2442
2443 double var0, var1;
2444
2445 /* Spatial interpolation... */
2446 intpol_met_space_3d(met0, array0, p, lon, lat, &var0, ci, cw, init);
2447 intpol_met_space_3d(met1, array1, p, lon, lat, &var1, ci, cw, 0);
2448
2449 /* Get weighting factor... */
2450 const double wt = (met1->time - ts) / (met1->time - met0->time);
2451
2452 /* Interpolate... */
2453 *var = wt * (var0 - var1) + var1;
2454}
2455
2456/*****************************************************************************/
2457
2459 const met_t *met0,
2460 float array0[EX][EY],
2461 const met_t *met1,
2462 float array1[EX][EY],
2463 const double ts,
2464 const double lon,
2465 const double lat,
2466 double *var,
2467 int *ci,
2468 double *cw,
2469 const int init) {
2470
2471 double var0, var1;
2472
2473 /* Spatial interpolation... */
2474 intpol_met_space_2d(met0, array0, lon, lat, &var0, ci, cw, init);
2475 intpol_met_space_2d(met1, array1, lon, lat, &var1, ci, cw, 0);
2476
2477 /* Get weighting factor... */
2478 const double wt = (met1->time - ts) / (met1->time - met0->time);
2479
2480 /* Interpolate... */
2481 if (isfinite(var0) && isfinite(var1))
2482 *var = wt * (var0 - var1) + var1;
2483 else if (wt < 0.5)
2484 *var = var1;
2485 else
2486 *var = var0;
2487}
2488
2489/*****************************************************************************/
2490
2492 const double time0,
2493 float array0[EX][EY],
2494 const double time1,
2495 float array1[EX][EY],
2496 const double lons[EX],
2497 const double lats[EY],
2498 const int nlon,
2499 const int nlat,
2500 const double time,
2501 const double lon,
2502 const double lat,
2503 const int method,
2504 double *var,
2505 double *sigma) {
2506
2507 double mean = 0;
2508
2509 int n = 0;
2510
2511 /* Check longitude and latitude... */
2512 double lon2, lat2;
2513 intpol_check_lon_lat(lons, nlon, lats, nlat, lon, lat, &lon2, &lat2);
2514
2515 /* Get indices... */
2516 const int ix = locate_reg(lons, (int) nlon, lon2);
2517 const int iy = locate_irr(lats, (int) nlat, lat2);
2518
2519 /* Calculate standard deviation... */
2520 *sigma = 0;
2521 for (int dx = 0; dx < 2; dx++)
2522 for (int dy = 0; dy < 2; dy++) {
2523 if (isfinite(array0[ix + dx][iy + dy])) {
2524 mean += array0[ix + dx][iy + dy];
2525 *sigma += SQR(array0[ix + dx][iy + dy]);
2526 n++;
2527 }
2528 if (isfinite(array1[ix + dx][iy + dy])) {
2529 mean += array1[ix + dx][iy + dy];
2530 *sigma += SQR(array1[ix + dx][iy + dy]);
2531 n++;
2532 }
2533 }
2534 if (n > 0)
2535 *sigma = sqrt(MAX(*sigma / n - SQR(mean / n), 0.0));
2536
2537 /* Linear interpolation... */
2538 if (method == 1 && isfinite(array0[ix][iy])
2539 && isfinite(array0[ix][iy + 1])
2540 && isfinite(array0[ix + 1][iy])
2541 && isfinite(array0[ix + 1][iy + 1])
2542 && isfinite(array1[ix][iy])
2543 && isfinite(array1[ix][iy + 1])
2544 && isfinite(array1[ix + 1][iy])
2545 && isfinite(array1[ix + 1][iy + 1])) {
2546
2547 const double aux00 = LIN(lons[ix], array0[ix][iy],
2548 lons[ix + 1], array0[ix + 1][iy], lon2);
2549 const double aux01 = LIN(lons[ix], array0[ix][iy + 1],
2550 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
2551 const double aux0 = LIN(lats[iy], aux00, lats[iy + 1], aux01, lat2);
2552
2553 const double aux10 = LIN(lons[ix], array1[ix][iy],
2554 lons[ix + 1], array1[ix + 1][iy], lon2);
2555 const double aux11 = LIN(lons[ix], array1[ix][iy + 1],
2556 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
2557 const double aux1 = LIN(lats[iy], aux10, lats[iy + 1], aux11, lat2);
2558
2559 *var = LIN(time0, aux0, time1, aux1, time);
2560 }
2561
2562 /* Nearest neighbor interpolation... */
2563 else {
2564 const double aux00 = NN(lons[ix], array0[ix][iy],
2565 lons[ix + 1], array0[ix + 1][iy], lon2);
2566 const double aux01 = NN(lons[ix], array0[ix][iy + 1],
2567 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
2568 const double aux0 = NN(lats[iy], aux00, lats[iy + 1], aux01, lat2);
2569
2570 const double aux10 = NN(lons[ix], array1[ix][iy],
2571 lons[ix + 1], array1[ix + 1][iy], lon2);
2572 const double aux11 = NN(lons[ix], array1[ix][iy + 1],
2573 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
2574 const double aux1 = NN(lats[iy], aux10, lats[iy + 1], aux11, lat2);
2575
2576 *var = NN(time0, aux0, time1, aux1, time);
2577 }
2578}
2579
2580/*****************************************************************************/
2581
2583 const double jsec,
2584 int *year,
2585 int *mon,
2586 int *day,
2587 int *hour,
2588 int *min,
2589 int *sec,
2590 double *remain) {
2591
2592 struct tm t0, *t1;
2593
2594 t0.tm_year = 100;
2595 t0.tm_mon = 0;
2596 t0.tm_mday = 1;
2597 t0.tm_hour = 0;
2598 t0.tm_min = 0;
2599 t0.tm_sec = 0;
2600
2601 const time_t jsec0 = (time_t) jsec + timegm(&t0);
2602 t1 = gmtime(&jsec0);
2603
2604 *year = t1->tm_year + 1900;
2605 *mon = t1->tm_mon + 1;
2606 *day = t1->tm_mday;
2607 *hour = t1->tm_hour;
2608 *min = t1->tm_min;
2609 *sec = t1->tm_sec;
2610 *remain = jsec - floor(jsec);
2611}
2612
2613/*****************************************************************************/
2614
2616 const double kz[EP],
2617 const double kw[EP],
2618 const int nk,
2619 const double p) {
2620
2621 /* Check number of data points... */
2622 if (nk < 2)
2623 return 1.0;
2624
2625 /* Get altitude... */
2626 const double z = Z(p);
2627
2628 /* Get weighting factor... */
2629 if (z < kz[0])
2630 return kw[0];
2631 else if (z > kz[nk - 1])
2632 return kw[nk - 1];
2633 else {
2634 const int idx = locate_irr(kz, nk, z);
2635 return LIN(kz[idx], kw[idx], kz[idx + 1], kw[idx + 1], z);
2636 }
2637}
2638
2639/*****************************************************************************/
2640
2642 const double t,
2643 const double h2o) {
2644
2645 /*
2646 Calculate moist adiabatic lapse rate [K/km] from temperature [K]
2647 and water vapor volume mixing ratio [1].
2648
2649 Reference: https://en.wikipedia.org/wiki/Lapse_rate
2650 */
2651
2652 const double a = RA * SQR(t), r = SH(h2o) / (1. - SH(h2o));
2653
2654 return 1e3 * G0 * (a + LV * r * t) / (CPD * a + SQR(LV) * r * EPS);
2655}
2656
2657/*****************************************************************************/
2658
2660 ctl_t *ctl) {
2661
2662 if (0 == ctl->met_press_level_def) {
2663
2664 ctl->met_np = 138;
2665
2666 const double press[138] = {
2667 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
2668 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
2669 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
2670 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
2671 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
2672 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
2673 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
2674 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
2675 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
2676 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
2677 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
2678 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
2679 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
2680 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
2681 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
2682 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
2683 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
2684 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
2685 1010.8487, 1013.2500, 1044.45
2686 };
2687
2688 for (int ip = 0; ip < ctl->met_np; ip++)
2689 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2690
2691 } else if (1 == ctl->met_press_level_def) {
2692
2693 ctl->met_np = 92;
2694
2695 const double press[92] = {
2696 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
2697 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
2698 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
2699 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
2700 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
2701 113.6382,
2702 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
2703 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
2704 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
2705 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
2706 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
2707 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
2708 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
2709 1007.4431, 1010.8487, 1013.2500, 1044.45
2710 };
2711
2712 for (int ip = 0; ip < ctl->met_np; ip++)
2713 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2714
2715 } else if (2 == ctl->met_press_level_def) {
2716
2717 ctl->met_np = 60;
2718
2719 const double press[60] = {
2720 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
2721 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
2722 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
2723 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
2724 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
2725 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
2726 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
2727 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1044.45
2728 };
2729
2730 for (int ip = 0; ip < ctl->met_np; ip++)
2731 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2732
2733 } else if (3 == ctl->met_press_level_def) {
2734
2735 ctl->met_np = 147;
2736
2737 const double press[147] = {
2738 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
2739 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
2740 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
2741 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
2742 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
2743 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
2744 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
2745 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
2746 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
2747 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
2748 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
2749 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
2750 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
2751 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
2752 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
2753 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
2754 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
2755 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
2756 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73, 1028.85,
2757 1031.97,
2758 1035.09, 1038.21, 1041.33, 1044.45
2759 };
2760
2761 for (int ip = 0; ip < ctl->met_np; ip++)
2762 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2763
2764 } else if (4 == ctl->met_press_level_def) {
2765
2766 ctl->met_np = 101;
2767
2768 const double press[101] = {
2769 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
2770 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
2771 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
2772 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
2773 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
2774 113.6382,
2775 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
2776 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
2777 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
2778 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
2779 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
2780 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
2781 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
2782 1007.4431, 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73,
2783 1028.85, 1031.97,
2784 1035.09, 1038.21, 1041.33, 1044.45
2785 };
2786
2787 for (int ip = 0; ip < ctl->met_np; ip++)
2788 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2789
2790 } else if (5 == ctl->met_press_level_def) {
2791
2792 ctl->met_np = 62;
2793
2794 const double press[62] = {
2795 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
2796 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
2797 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
2798 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
2799 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
2800 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
2801 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
2802 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1034.86, 1039.65,
2803 1044.45
2804 };
2805
2806 for (int ip = 0; ip < ctl->met_np; ip++)
2807 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2808
2809 } else if (6 == ctl->met_press_level_def) {
2810
2811 ctl->met_np = 137;
2812
2813 const double press[137] = {
2814 0.01, 0.02, 0.031, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861,
2815 0.2499, 0.3299, 0.4288, 0.5496, 0.6952, 0.869, 1.0742,
2816 1.3143, 1.5928, 1.9134, 2.2797, 2.6954, 3.1642, 3.6898,
2817 4.2759, 4.9262, 5.6441, 6.4334, 7.2974, 8.2397, 9.2634,
2818 10.372, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945, 18.9752,
2819 20.761, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
2820 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.199, 54.5299,
2821 57.9834, 61.5607, 65.2695, 69.1187, 73.1187, 77.281, 81.6182,
2822 86.145, 90.8774, 95.828, 101.005, 106.415, 112.068, 117.971,
2823 124.134, 130.564, 137.27, 144.262, 151.549, 159.14, 167.045,
2824 175.273, 183.834, 192.739, 201.997, 211.619, 221.615, 231.995,
2825 242.772, 253.955, 265.556, 277.585, 290.055, 302.976, 316.361,
2826 330.22, 344.566, 359.411, 374.767, 390.645, 407.058, 424.019,
2827 441.539, 459.632, 478.31, 497.584, 517.42, 537.72, 558.343,
2828 579.193, 600.167, 621.162, 642.076, 662.808, 683.262, 703.347,
2829 722.979, 742.086, 760.6, 778.466, 795.64, 812.085, 827.776,
2830 842.696, 856.838, 870.2, 882.791, 894.622, 905.712, 916.081,
2831 925.757, 934.767, 943.14, 950.908, 958.104, 965.299, 972.495,
2832 979.69, 986.886, 994.081, 1001.28, 1008.47, 1015.67, 1022.86,
2833 1030.06, 1037.25, 1044.45
2834 };
2835
2836 for (int ip = 0; ip < ctl->met_np; ip++)
2837 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2838
2839 } else if (7 == ctl->met_press_level_def) {
2840
2841 ctl->met_np = 59;
2842
2843 const double press[59] = {
2844 0.1, 0.2, 0.3843, 0.6365, 0.9564, 1.3448, 1.8058, 2.3478,
2845 2.985, 3.7397, 4.6462, 5.7565, 7.1322, 8.8366, 10.9483,
2846 13.5647, 16.8064, 20.8227, 25.7989, 31.9642, 39.6029, 49.0671,
2847 60.1802, 73.0663, 87.7274, 104.229, 122.614, 142.902, 165.089,
2848 189.147, 215.025, 242.652, 272.059, 303.217, 336.044, 370.407,
2849 406.133, 443.009, 480.791, 519.209, 557.973, 596.777, 635.306,
2850 673.24, 710.263, 746.063, 780.346, 812.83, 843.263, 871.42,
2851 897.112, 920.189, 940.551, 958.148, 975.744, 993.341, 1010.94,
2852 1028.53, 1046.13
2853 };
2854
2855 for (int ip = 0; ip < ctl->met_np; ip++)
2856 ctl->met_p[ctl->met_np - ip - 1] = press[ip];
2857
2858 } else {
2859 ERRMSG("Use 0 for l137, 1 for l91, 2 for l60 or values between 3 and 7.");
2860 }
2861
2862 if (ctl->met_np > EP) {
2863 ERRMSG("Recompile with larger EP to use this pressure level definition.");
2864 }
2865}
2866
2867/*****************************************************************************/
2868
2870 const double *xx,
2871 const int n,
2872 const double x) {
2873
2874 int ilo = 0;
2875 int ihi = n - 1;
2876 int i = (ihi + ilo) >> 1;
2877
2878 if (xx[i] < xx[i + 1])
2879 while (ihi > ilo + 1) {
2880 i = (ihi + ilo) >> 1;
2881 if (xx[i] > x)
2882 ihi = i;
2883 else
2884 ilo = i;
2885 } else
2886 while (ihi > ilo + 1) {
2887 i = (ihi + ilo) >> 1;
2888 if (xx[i] <= x)
2889 ihi = i;
2890 else
2891 ilo = i;
2892 }
2893
2894 return ilo;
2895}
2896
2897/*****************************************************************************/
2898
2900 const float *xx,
2901 const int n,
2902 const double x,
2903 const int ig) {
2904
2905 int ilo = 0;
2906 int ihi = n - 1;
2907 int i = (ihi + ilo) >> 1;
2908
2909 if ((xx[ig] <= x && x < xx[ig + 1]) || (xx[ig] >= x && x > xx[ig + 1]))
2910 return ig;
2911
2912 if (xx[i] < xx[i + 1])
2913 while (ihi > ilo + 1) {
2914 i = (ihi + ilo) >> 1;
2915 if (xx[i] > x)
2916 ihi = i;
2917 else
2918 ilo = i;
2919 } else
2920 while (ihi > ilo + 1) {
2921 i = (ihi + ilo) >> 1;
2922 if (xx[i] <= x)
2923 ihi = i;
2924 else
2925 ilo = i;
2926 }
2927
2928 return ilo;
2929}
2930
2931/*****************************************************************************/
2932
2934 const double *xx,
2935 const int n,
2936 const double x) {
2937
2938 /* Calculate index... */
2939 const int i = (int) ((x - xx[0]) / (xx[1] - xx[0]));
2940
2941 /* Check range... */
2942 if (i < 0)
2943 return 0;
2944 else if (i > n - 2)
2945 return n - 2;
2946 else
2947 return i;
2948}
2949
2950/*****************************************************************************/
2951
2953 float profiles[EX][EY][EP],
2954 const int np,
2955 const int lon_ap_ind,
2956 const int lat_ap_ind,
2957 const double height_ap,
2958 int *ind) {
2959
2960 ind[0] = locate_irr_float(profiles[lon_ap_ind][lat_ap_ind],
2961 np, height_ap, 0);
2962 ind[1] = locate_irr_float(profiles[lon_ap_ind + 1][lat_ap_ind],
2963 np, height_ap, ind[0]);
2964 ind[2] = locate_irr_float(profiles[lon_ap_ind][lat_ap_ind + 1],
2965 np, height_ap, ind[1]);
2966 ind[3] = locate_irr_float(profiles[lon_ap_ind + 1][lat_ap_ind + 1],
2967 np, height_ap, ind[2]);
2968}
2969
2970/*****************************************************************************/
2971
2973 const ctl_t *ctl,
2974 const cache_t *cache,
2975 met_t *met0,
2976 met_t *met1,
2977 atm_t *atm) {
2978
2979 /* Set timer... */
2980 SELECT_TIMER("MODULE_ADVECT", "PHYSICS", NVTX_GPU);
2981
2982 /* Use omega vertical velocity... */
2983 if (ctl->advect_vert_coord == 0 || ctl->advect_vert_coord == 2) {
2984
2985 /* Loop over particles... */
2986 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
2987
2988 /* Init... */
2990 double dts, u[4], um = 0, v[4], vm = 0, w[4], wm = 0,
2991 x[3] = { 0, 0, 0 };
2992
2993 /* Loop over integration nodes... */
2994 for (int i = 0; i < ctl->advect; i++) {
2995
2996 /* Set position... */
2997 if (i == 0) {
2998 dts = 0.0;
2999 x[0] = atm->lon[ip];
3000 x[1] = atm->lat[ip];
3001 x[2] = atm->p[ip];
3002 } else {
3003 dts = (i == 3 ? 1.0 : 0.5) * cache->dt[ip];
3004 x[0] = atm->lon[ip] + DX2DEG(dts * u[i - 1] / 1000., atm->lat[ip]);
3005 x[1] = atm->lat[ip] + DY2DEG(dts * v[i - 1] / 1000.);
3006 x[2] = atm->p[ip] + dts * w[i - 1];
3007 }
3008 const double tm = atm->time[ip] + dts;
3009
3010 /* Interpolate meteo data on pressure levels... */
3011 if (ctl->advect_vert_coord == 0) {
3012 intpol_met_time_3d(met0, met0->u, met1, met1->u,
3013 tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
3014 intpol_met_time_3d(met0, met0->v, met1, met1->v,
3015 tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
3016 intpol_met_time_3d(met0, met0->w, met1, met1->w,
3017 tm, x[2], x[0], x[1], &w[i], ci, cw, 0);
3018 }
3019
3020 /* Interpolate meteo data on model levels... */
3021 else {
3022 intpol_met_4d_zeta(met0, met0->pl, met0->ul,
3023 met1, met1->pl, met1->ul,
3024 tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
3025 intpol_met_4d_zeta(met0, met0->pl, met0->vl,
3026 met1, met1->pl, met1->vl,
3027 tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
3028 intpol_met_4d_zeta(met0, met0->pl, met0->wl,
3029 met1, met1->pl, met1->wl,
3030 tm, x[2], x[0], x[1], &w[i], ci, cw, 0);
3031 }
3032
3033 /* Get mean wind... */
3034 double k = 1.0;
3035 if (ctl->advect == 2)
3036 k = (i == 0 ? 0.0 : 1.0);
3037 else if (ctl->advect == 4)
3038 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
3039 um += k * u[i];
3040 vm += k * v[i];
3041 wm += k * w[i];
3042 }
3043
3044 /* Set new position... */
3045 atm->time[ip] += cache->dt[ip];
3046 atm->lon[ip] += DX2DEG(cache->dt[ip] * um / 1000.,
3047 (ctl->advect == 2 ? x[1] : atm->lat[ip]));
3048 atm->lat[ip] += DY2DEG(cache->dt[ip] * vm / 1000.);
3049 atm->p[ip] += cache->dt[ip] * wm;
3050 }
3051 }
3052
3053 /* Use zeta or eta vertical velocity... */
3054 else if (ctl->advect_vert_coord == 1 || ctl->advect_vert_coord == 3) {
3055
3056 /* Select quantity index depending on coordinate... */
3057 const int qnt = (ctl->advect_vert_coord == 1
3058 ? ctl->qnt_zeta : ctl->qnt_eta);
3059
3060 /* Loop over particles... */
3061 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3062
3063 /* Convert pressure to vertical coordinate (zeta or eta)... */
3065 intpol_met_4d_zeta(met0, met0->pl, met0->zetal,
3066 met1, met1->pl, met1->zetal,
3067 atm->time[ip], atm->p[ip],
3068 atm->lon[ip], atm->lat[ip],
3069 &atm->q[qnt][ip], ci, cw, 1);
3070
3071 /* Init... */
3072 double dts, u[4], um = 0, v[4], vm = 0, wdot[4],
3073 wdotm = 0, x[3] = { 0, 0, 0 };
3074
3075 /* Loop over integration nodes (Runge–Kutta steps)... */
3076 for (int i = 0; i < ctl->advect; i++) {
3077
3078 /* Set position... */
3079 if (i == 0) {
3080 dts = 0.0;
3081 x[0] = atm->lon[ip];
3082 x[1] = atm->lat[ip];
3083 x[2] = atm->q[qnt][ip];
3084 } else {
3085 dts = (i == 3 ? 1.0 : 0.5) * cache->dt[ip];
3086 x[0] = atm->lon[ip] + DX2DEG(dts * u[i - 1] / 1000., atm->lat[ip]);
3087 x[1] = atm->lat[ip] + DY2DEG(dts * v[i - 1] / 1000.);
3088 x[2] = atm->q[qnt][ip] + dts * wdot[i - 1];
3089 }
3090
3091 const double tm = atm->time[ip] + dts;
3092
3093 /* Interpolate meteo data... */
3094 intpol_met_4d_zeta(met0, met0->zetal, met0->ul,
3095 met1, met1->zetal, met1->ul,
3096 tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
3097 intpol_met_4d_zeta(met0, met0->zetal, met0->vl,
3098 met1, met1->zetal, met1->vl,
3099 tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
3100 intpol_met_4d_zeta(met0, met0->zetal, met0->zeta_dotl,
3101 met1, met1->zetal, met1->zeta_dotl,
3102 tm, x[2], x[0], x[1], &wdot[i], ci, cw, 0);
3103
3104 /* Compute Runge–Kutta weights... */
3105 double k = 1.0;
3106 if (ctl->advect == 2)
3107 k = (i == 0 ? 0.0 : 1.0);
3108 else if (ctl->advect == 4)
3109 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
3110
3111 um += k * u[i];
3112 vm += k * v[i];
3113 wdotm += k * wdot[i];
3114 }
3115
3116 /* Update particle position... */
3117 atm->time[ip] += cache->dt[ip];
3118 atm->lon[ip] += DX2DEG(cache->dt[ip] * um / 1000.,
3119 (ctl->advect == 2 ? x[1] : atm->lat[ip]));
3120 atm->lat[ip] += DY2DEG(cache->dt[ip] * vm / 1000.);
3121 atm->q[qnt][ip] += cache->dt[ip] * wdotm;
3122
3123 /* Convert vertical coordinate (zeta or eta) back to pressure... */
3124 intpol_met_4d_zeta(met0, met0->zetal, met0->pl,
3125 met1, met1->zetal, met1->pl,
3126 atm->time[ip],
3127 atm->q[qnt][ip], atm->lon[ip], atm->lat[ip],
3128 &atm->p[ip], ci, cw, 1);
3129 }
3130 }
3131}
3132
3133/*****************************************************************************/
3134
3136 const ctl_t *ctl,
3137 const cache_t *cache,
3138 met_t *met0,
3139 met_t *met1,
3140 atm_t *atm) {
3141
3142 /* Check parameters... */
3143 if (ctl->advect_vert_coord != 1)
3144 return;
3145
3146 /* Set timer... */
3147 SELECT_TIMER("MODULE_ADVECT_INIT", "PHYSICS", NVTX_GPU);
3148
3149 /* Loop over particles... */
3150 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,met0,met1,atm)") {
3151
3152 /* Initialize pressure consistent with zeta... */
3154 intpol_met_4d_zeta(met0, met0->zetal, met0->pl, met1, met1->zetal,
3155 met1->pl, atm->time[ip], atm->q[ctl->qnt_zeta][ip],
3156 atm->lon[ip], atm->lat[ip], &atm->p[ip], ci, cw, 1);
3157 }
3158}
3159
3160/*****************************************************************************/
3161
3163 const ctl_t *ctl,
3164 const cache_t *cache,
3165 const clim_t *clim,
3166 met_t *met0,
3167 met_t *met1,
3168 atm_t *atm) {
3169
3170 /* Set timer... */
3171 SELECT_TIMER("MODULE_BOUND_COND", "PHYSICS", NVTX_GPU);
3172
3173 /* Check quantity flags... */
3174 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0 && ctl->qnt_Cccl4
3175 && ctl->qnt_Cccl3f < 0 && ctl->qnt_Cccl2f2 < 0
3176 && ctl->qnt_Cn2o < 0 && ctl->qnt_Csf6 < 0 && ctl->qnt_aoa < 0)
3177 return;
3178
3179 /* Loop over particles... */
3180 PARTICLE_LOOP(0, atm->np, 1,
3181 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3182
3183 /* Check latitude and pressure range... */
3184 if (atm->lat[ip] < ctl->bound_lat0 || atm->lat[ip] > ctl->bound_lat1
3185 || atm->p[ip] > ctl->bound_p0 || atm->p[ip] < ctl->bound_p1)
3186 continue;
3187
3188 /* Check surface layer... */
3189 if (ctl->bound_dps > 0 || ctl->bound_dzs > 0
3190 || ctl->bound_zetas > 0 || ctl->bound_pbl) {
3191
3192 /* Get surface pressure... */
3193 double ps;
3195 INTPOL_2D(ps, 1);
3196
3197 /* Check pressure... */
3198 if (ctl->bound_dps > 0 && atm->p[ip] < ps - ctl->bound_dps)
3199 continue;
3200
3201 /* Check height... */
3202 if (ctl->bound_dzs > 0 && Z(atm->p[ip]) > Z(ps) + ctl->bound_dzs)
3203 continue;
3204
3205 /* Check zeta range... */
3206 if (ctl->bound_zetas > 0) {
3207 double t;
3208 INTPOL_3D(t, 1);
3209 if (ZETA(ps, atm->p[ip], t) > ctl->bound_zetas)
3210 continue;
3211 }
3212
3213 /* Check planetary boundary layer... */
3214 if (ctl->bound_pbl) {
3215 double pbl;
3216 INTPOL_2D(pbl, 0);
3217 if (atm->p[ip] < pbl)
3218 continue;
3219 }
3220 }
3221
3222 /* Set mass and volume mixing ratio... */
3223 if (ctl->qnt_m >= 0 && ctl->bound_mass >= 0)
3224 atm->q[ctl->qnt_m][ip] =
3225 ctl->bound_mass + ctl->bound_mass_trend * atm->time[ip];
3226 if (ctl->qnt_vmr >= 0 && ctl->bound_vmr >= 0)
3227 atm->q[ctl->qnt_vmr][ip] =
3228 ctl->bound_vmr + ctl->bound_vmr_trend * atm->time[ip];
3229
3230 /* Set CFC-10 volume mixing ratio... */
3231 if (ctl->qnt_Cccl4 >= 0 && ctl->clim_ccl4_timeseries[0] != '-')
3232 atm->q[ctl->qnt_Cccl4][ip] = clim_ts(&clim->ccl4, atm->time[ip]);
3233
3234 /* Set CFC-11 volume mixing ratio... */
3235 if (ctl->qnt_Cccl3f >= 0 && ctl->clim_ccl3f_timeseries[0] != '-')
3236 atm->q[ctl->qnt_Cccl3f][ip] = clim_ts(&clim->ccl3f, atm->time[ip]);
3237
3238 /* Set CFC-12 volume mixing ratio... */
3239 if (ctl->qnt_Cccl2f2 >= 0 && ctl->clim_ccl2f2_timeseries[0] != '-')
3240 atm->q[ctl->qnt_Cccl2f2][ip] = clim_ts(&clim->ccl2f2, atm->time[ip]);
3241
3242 /* Set N2O volume mixing ratio... */
3243 if (ctl->qnt_Cn2o >= 0 && ctl->clim_n2o_timeseries[0] != '-')
3244 atm->q[ctl->qnt_Cn2o][ip] = clim_ts(&clim->n2o, atm->time[ip]);
3245
3246 /* Set SF6 volume mixing ratio... */
3247 if (ctl->qnt_Csf6 >= 0 && ctl->clim_sf6_timeseries[0] != '-')
3248 atm->q[ctl->qnt_Csf6][ip] = clim_ts(&clim->sf6, atm->time[ip]);
3249
3250 /* Set age of air... */
3251 if (ctl->qnt_aoa >= 0)
3252 atm->q[ctl->qnt_aoa][ip] = atm->time[ip];
3253 }
3254}
3255
3256/*****************************************************************************/
3257
3259 const ctl_t *ctl,
3260 met_t *met0,
3261 met_t *met1,
3262 atm_t *atm,
3263 const double tt) {
3264
3265 /* Check quantities... */
3266 if (ctl->qnt_m < 0 || ctl->qnt_Cx < 0)
3267 return;
3268 if (ctl->molmass <= 0)
3269 ERRMSG("Molar mass is not defined!");
3270
3271 /* Set timer... */
3272 SELECT_TIMER("MODULE_CHEM_GRID", "PHYSICS", NVTX_GPU);
3273
3274 /* Allocate... */
3275 const int ensemble_mode = (ctl->nens > 0);
3276 const int np = atm->np;
3277 const int nz = ctl->chemgrid_nz;
3278 const int nx = ctl->chemgrid_nx;
3279 const int ny = ctl->chemgrid_ny;
3280 const int ngrid = nx * ny * nz;
3281 const int nens = ensemble_mode ? ctl->nens : 1;
3282
3283 double *restrict const z = (double *) malloc((size_t) nz * sizeof(double));
3284 double *restrict const press =
3285 (double *) malloc((size_t) nz * sizeof(double));
3286 double *restrict const mass =
3287 (double *) calloc((size_t) ngrid * (size_t) nens, sizeof(double));
3288 double *restrict const area =
3289 (double *) malloc((size_t) ny * sizeof(double));
3290 double *restrict const lon =
3291 (double *) malloc((size_t) nx * sizeof(double));
3292 double *restrict const lat =
3293 (double *) malloc((size_t) ny * sizeof(double));
3294
3295 int *restrict const ixs = (int *) malloc((size_t) np * sizeof(int));
3296 int *restrict const iys = (int *) malloc((size_t) np * sizeof(int));
3297 int *restrict const izs = (int *) malloc((size_t) np * sizeof(int));
3298
3299 /* Set grid box size... */
3300 const double dz = (ctl->chemgrid_z1 - ctl->chemgrid_z0) / nz;
3301 const double dlon = (ctl->chemgrid_lon1 - ctl->chemgrid_lon0) / nx;
3302 const double dlat = (ctl->chemgrid_lat1 - ctl->chemgrid_lat0) / ny;
3303
3304 /* Set vertical coordinates... */
3305#ifdef _OPENACC
3306#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np],z[0:nz],press[0:nz],mass[0:ngrid*nens],area[0:ny],lon[0:nx],lat[0:ny])
3307#pragma acc data present(ctl,met0,met1,atm,ixs,iys,izs,z,press,mass,area,lon,lat)
3308#pragma acc parallel loop independent gang vector
3309#else
3310#pragma omp parallel for default(shared)
3311#endif
3312 for (int iz = 0; iz < nz; iz++) {
3313 z[iz] = ctl->chemgrid_z0 + dz * (iz + 0.5);
3314 press[iz] = P(z[iz]);
3315 }
3316
3317 /* Set time interval for output... */
3318 const double t0 = tt - 0.5 * ctl->dt_mod;
3319 const double t1 = tt + 0.5 * ctl->dt_mod;
3320
3321 /* Get indices... */
3322#ifdef _OPENACC
3323#pragma acc parallel loop independent gang vector
3324#else
3325#pragma omp parallel for default(shared)
3326#endif
3327 for (int ip = 0; ip < np; ip++) {
3328 ixs[ip] = (int) ((atm->lon[ip] - ctl->chemgrid_lon0) / dlon);
3329 iys[ip] = (int) ((atm->lat[ip] - ctl->chemgrid_lat0) / dlat);
3330 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->chemgrid_z0) / dz);
3331 if (atm->time[ip] < t0 || atm->time[ip] > t1
3332 || ixs[ip] < 0 || ixs[ip] >= nx
3333 || iys[ip] < 0 || iys[ip] >= ny || izs[ip] < 0 || izs[ip] >= nz)
3334 izs[ip] = -1;
3335 }
3336
3337 /* Set horizontal coordinates... */
3338#ifdef _OPENACC
3339#pragma acc parallel loop independent gang vector
3340#else
3341#pragma omp parallel for default(shared)
3342#endif
3343 for (int ix = 0; ix < nx; ix++)
3344 lon[ix] = ctl->chemgrid_lon0 + dlon * (ix + 0.5);
3345
3346#ifdef _OPENACC
3347#pragma acc parallel loop independent gang vector
3348#else
3349#pragma omp parallel for default(shared)
3350#endif
3351 for (int iy = 0; iy < ny; iy++) {
3352 lat[iy] = ctl->chemgrid_lat0 + dlat * (iy + 0.5);
3353 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
3354 }
3355
3356 /* Get mass per grid box... */
3357#ifdef _OPENACC
3358#pragma acc parallel loop independent gang vector
3359#endif
3360 for (int ip = 0; ip < np; ip++) {
3361 if (izs[ip] >= 0) {
3362 int mass_idx = ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz);
3363 if (ensemble_mode) {
3364 const int ens = (int) atm->q[ctl->qnt_ens][ip];
3365 mass_idx += ens * ngrid;
3366 }
3367#ifdef _OPENACC
3368#pragma acc atomic update
3369#endif
3370 mass[mass_idx] += atm->q[ctl->qnt_m][ip];
3371 }
3372 }
3373
3374 /* Assign grid data to air parcels ... */
3375#ifdef _OPENACC
3376#pragma acc parallel loop independent gang vector
3377#else
3378#pragma omp parallel for default(shared)
3379#endif
3380 for (int ip = 0; ip < np; ip++)
3381 if (izs[ip] >= 0) {
3382
3383 /* Interpolate temperature... */
3384 double temp;
3386 intpol_met_time_3d(met0, met0->t, met1, met1->t, tt,
3387 press[izs[ip]],
3388 lon[ixs[ip]], lat[iys[ip]], &temp, ci, cw, 1);
3389
3390 /* Set mass... */
3391 int mass_idx = ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz);
3392 if (ensemble_mode) {
3393 const int ens = (int) atm->q[ctl->qnt_ens][ip];
3394 mass_idx += ens * ngrid;
3395 }
3396
3397 /* Calculate volume mixing ratio... */
3398 const double m = mass[mass_idx];
3399 atm->q[ctl->qnt_Cx][ip] = MA / ctl->molmass * m
3400 / (RHO(press[izs[ip]], temp) * area[iys[ip]] * dz * 1e9);
3401 }
3402
3403 /* Free... */
3404#ifdef _OPENACC
3405#pragma acc exit data delete(ixs,iys,izs,z,press,mass,area,lon,lat)
3406#endif
3407 free(mass);
3408 free(lon);
3409 free(lat);
3410 free(area);
3411 free(z);
3412 free(press);
3413 free(ixs);
3414 free(iys);
3415 free(izs);
3416}
3417
3418/*****************************************************************************/
3419
3421 const ctl_t *ctl,
3422 const cache_t *cache,
3423 const clim_t *clim,
3424 met_t *met0,
3425 met_t *met1,
3426 atm_t *atm) {
3427
3428 /* Set timer... */
3429 SELECT_TIMER("MODULE_CHEM_INIT", "PHYSICS", NVTX_GPU);
3430
3431 /* Loop over particles... */
3432 PARTICLE_LOOP(0, atm->np, 0,
3433 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3434
3435 /* Set H2O and O3 using meteo data... */
3437 if (ctl->qnt_Ch2o >= 0) {
3438 double h2o;
3439 INTPOL_3D(h2o, 1);
3440 SET_ATM(qnt_Ch2o, h2o);
3441 }
3442 if (ctl->qnt_Co3 >= 0) {
3443 double o3;
3444 INTPOL_3D(o3, 1);
3445 SET_ATM(qnt_Co3, o3);
3446 }
3447
3448 /* Set radical species... */
3449 SET_ATM(qnt_Coh, clim_oh(ctl, clim, atm->time[ip],
3450 atm->lon[ip], atm->lat[ip], atm->p[ip]));
3451 SET_ATM(qnt_Cho2, clim_zm(&clim->ho2, atm->time[ip],
3452 atm->lat[ip], atm->p[ip]));
3453 SET_ATM(qnt_Ch2o2, clim_zm(&clim->h2o2, atm->time[ip],
3454 atm->lat[ip], atm->p[ip]));
3455 SET_ATM(qnt_Co1d, clim_zm(&clim->o1d, atm->time[ip],
3456 atm->lat[ip], atm->p[ip]));
3457 }
3458}
3459
3460/*****************************************************************************/
3461
3463 const ctl_t *ctl,
3464 cache_t *cache,
3465 met_t *met0,
3466 met_t *met1,
3467 atm_t *atm) {
3468
3469 /* Set timer... */
3470 SELECT_TIMER("MODULE_CONVECTION", "PHYSICS", NVTX_GPU);
3471
3472 /* Create random numbers... */
3473 module_rng(ctl, cache->rs, (size_t) atm->np, 0);
3474
3475 /* Loop over particles... */
3476 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3477
3478 /* Interpolate surface pressure... */
3479 double ps;
3481 INTPOL_2D(ps, 1);
3482
3483 /* Initialize pressure range for vertical mixing... */
3484 double pbot = ps, ptop = ps;
3485
3486 /* Mixing in the PBL... */
3487 if (ctl->conv_mix_pbl) {
3488
3489 /* Interpolate PBL... */
3490 double pbl;
3491 INTPOL_2D(pbl, 0);
3492
3493 /* Set pressure range... */
3494 ptop = pbl - ctl->conv_pbl_trans * (ps - pbl);
3495 }
3496
3497 /* Convective mixing... */
3498 if (ctl->conv_cape >= 0) {
3499
3500 /* Interpolate CAPE, CIN, and equilibrium level... */
3501 double cape, cin, pel;
3502 INTPOL_2D(cape, 0);
3503 INTPOL_2D(cin, 0);
3504 INTPOL_2D(pel, 0);
3505
3506 /* Set pressure range... */
3507 if (isfinite(cape) && cape >= ctl->conv_cape
3508 && (ctl->conv_cin <= 0 || (isfinite(cin) && cin >= ctl->conv_cin)))
3509 ptop = GSL_MIN(ptop, pel);
3510 }
3511
3512 /* Apply vertical mixing... */
3513 if (ptop != pbot && atm->p[ip] >= ptop) {
3514
3515 /* Get density range... */
3516 double tbot, ttop;
3517 intpol_met_time_3d(met0, met0->t, met1, met1->t, atm->time[ip],
3518 pbot, atm->lon[ip], atm->lat[ip], &tbot, ci, cw, 1);
3519 intpol_met_time_3d(met0, met0->t, met1, met1->t, atm->time[ip], ptop,
3520 atm->lon[ip], atm->lat[ip], &ttop, ci, cw, 1);
3521 const double rhobot = pbot / tbot;
3522 const double rhotop = ptop / ttop;
3523
3524 /* Get new density... */
3525 const double rho = rhobot + (rhotop - rhobot) * cache->rs[ip];
3526
3527 /* Get pressure... */
3528 atm->p[ip] = LIN(rhobot, pbot, rhotop, ptop, rho);
3529 }
3530 }
3531}
3532
3533/*****************************************************************************/
3534
3535#ifdef DD
3536void module_dd(
3537 ctl_t *ctl,
3538 atm_t *atm,
3539 cache_t *cache,
3540 dd_t *dd,
3541 met_t **met) {
3542
3543 /* Initialize particles locally... */
3544 int nparticles = 0;
3545 particle_t *particles;
3546 ALLOC(particles, particle_t, DD_NPART);
3547
3548 /* Assign particles to new subdomains... */
3549 dd_assign_rect_subdomains_atm(atm, ctl, dd, 0);
3550
3551 /* Sorting particles according to location and target rank... */
3552 dd_sort(ctl, *met, atm, dd, &nparticles, &dd->rank);
3553
3554 /* Transform from struct of array to array of struct... */
3555 dd_atm2particles(atm, particles, ctl, &nparticles, cache, dd->rank);
3556
3557 /********************* CPU region start ***********************************/
3558
3559 /* Perform the communication... */
3560 dd_communicate_particles(particles, &nparticles, dd->MPI_Particle,
3561 dd->neighbours, ctl->dd_nbr_neighbours, *ctl);
3562
3563 /********************* CPU region end *************************************/
3564
3565 /* Transform from array of struct to struct of array... */
3566 dd_particles2atm(atm, particles, ctl, &nparticles, cache);
3567
3568 /* Free local particle array... */
3569 free(particles);
3570}
3571#endif
3572
3573/*****************************************************************************/
3574
3576 const ctl_t *ctl,
3577 const cache_t *cache,
3578 const clim_t *clim,
3579 atm_t *atm) {
3580
3581 /* Set timer... */
3582 SELECT_TIMER("MODULE_DECAY", "PHYSICS", NVTX_GPU);
3583
3584 /* Check quantity flags... */
3585 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
3586 ERRMSG("Module needs quantity mass or volume mixing ratio!");
3587
3588 /* Loop over particles... */
3589 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,clim,atm)") {
3590
3591 /* Get weighting factor... */
3592 const double w = tropo_weight(clim, atm, ip);
3593
3594 /* Set lifetime... */
3595 const double tdec = w * ctl->tdec_trop + (1 - w) * ctl->tdec_strat;
3596
3597 /* Calculate exponential decay... */
3598 const double aux = exp(-cache->dt[ip] / tdec);
3599 if (ctl->qnt_m >= 0) {
3600 if (ctl->qnt_mloss_decay >= 0)
3601 atm->q[ctl->qnt_mloss_decay][ip]
3602 += atm->q[ctl->qnt_m][ip] * (1 - aux);
3603 atm->q[ctl->qnt_m][ip] *= aux;
3604 if (ctl->qnt_loss_rate >= 0)
3605 atm->q[ctl->qnt_loss_rate][ip] += 1. / tdec;
3606 }
3607 if (ctl->qnt_vmr >= 0)
3608 atm->q[ctl->qnt_vmr][ip] *= aux;
3609 }
3610}
3611
3612/*****************************************************************************/
3613
3615 const ctl_t *ctl,
3616 cache_t *cache,
3617 met_t *met0,
3618 met_t *met1,
3619 atm_t *atm) {
3620
3621 /* Set timer... */
3622 SELECT_TIMER("MODULE_DIFF_MESO", "PHYSICS", NVTX_GPU);
3623
3624 /* Create random numbers... */
3625 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
3626
3627 /* Loop over particles... */
3628 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3629
3630 /* Get indices... */
3631 const int ix = locate_reg(met0->lon, met0->nx, atm->lon[ip]);
3632 const int iy = locate_irr(met0->lat, met0->ny, atm->lat[ip]);
3633 const int iz = locate_irr(met0->p, met0->np, atm->p[ip]);
3634
3635 /* Get standard deviations of local wind data... */
3636 float umean = 0, usig = 0, vmean = 0, vsig = 0, wmean = 0, wsig = 0;
3637 for (int i = 0; i < 2; i++)
3638 for (int j = 0; j < 2; j++)
3639 for (int k = 0; k < 2; k++) {
3640 umean += met0->u[ix + i][iy + j][iz + k];
3641 usig += SQR(met0->u[ix + i][iy + j][iz + k]);
3642 vmean += met0->v[ix + i][iy + j][iz + k];
3643 vsig += SQR(met0->v[ix + i][iy + j][iz + k]);
3644 wmean += met0->w[ix + i][iy + j][iz + k];
3645 wsig += SQR(met0->w[ix + i][iy + j][iz + k]);
3646
3647 umean += met1->u[ix + i][iy + j][iz + k];
3648 usig += SQR(met1->u[ix + i][iy + j][iz + k]);
3649 vmean += met1->v[ix + i][iy + j][iz + k];
3650 vsig += SQR(met1->v[ix + i][iy + j][iz + k]);
3651 wmean += met1->w[ix + i][iy + j][iz + k];
3652 wsig += SQR(met1->w[ix + i][iy + j][iz + k]);
3653 }
3654 usig = usig / 16.f - SQR(umean / 16.f);
3655 usig = (usig > 0 ? sqrtf(usig) : 0);
3656 vsig = vsig / 16.f - SQR(vmean / 16.f);
3657 vsig = (vsig > 0 ? sqrtf(vsig) : 0);
3658 wsig = wsig / 16.f - SQR(wmean / 16.f);
3659 wsig = (wsig > 0 ? sqrtf(wsig) : 0);
3660
3661 /* Set temporal correlations for mesoscale fluctuations... */
3662 const double r = 1 - 2 * fabs(cache->dt[ip]) / ctl->dt_met;
3663 const double r2 = sqrt(1 - r * r);
3664
3665 /* Calculate horizontal mesoscale wind fluctuations... */
3666 if (ctl->turb_mesox > 0) {
3667 cache->uvwp[ip][0] =
3668 (float) (r * cache->uvwp[ip][0] +
3669 r2 * cache->rs[3 * ip] * ctl->turb_mesox * usig);
3670 atm->lon[ip] +=
3671 DX2DEG(cache->uvwp[ip][0] * cache->dt[ip] / 1000., atm->lat[ip]);
3672
3673 cache->uvwp[ip][1] =
3674 (float) (r * cache->uvwp[ip][1] +
3675 r2 * cache->rs[3 * ip + 1] * ctl->turb_mesox * vsig);
3676 atm->lat[ip] += DY2DEG(cache->uvwp[ip][1] * cache->dt[ip] / 1000.);
3677 }
3678
3679 /* Calculate vertical mesoscale wind fluctuations... */
3680 if (ctl->turb_mesoz > 0) {
3681 cache->uvwp[ip][2] =
3682 (float) (r * cache->uvwp[ip][2] +
3683 r2 * cache->rs[3 * ip + 2] * ctl->turb_mesoz * wsig);
3684 atm->p[ip] += cache->uvwp[ip][2] * cache->dt[ip];
3685 }
3686 }
3687}
3688
3689/*****************************************************************************/
3690
3692 const ctl_t *ctl,
3693 cache_t *cache,
3694 met_t *met0,
3695 met_t *met1,
3696 atm_t *atm) {
3697
3698 /* Set timer... */
3699 SELECT_TIMER("MODULE_DIFF_PBL", "PHYSICS", NVTX_GPU);
3700
3701 /* Create random numbers... */
3702 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
3703
3704 /* Loop over particles... */
3705 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3706
3707 double dsigw_dz = 0.0, sig_u = 0.25, sig_w = 0.1,
3708 tau_u = 300., tau_w = 100.;
3709
3710 /* Get surface and PBL pressure... */
3711 double pbl, ps;
3713 INTPOL_2D(ps, 1);
3714 INTPOL_2D(pbl, 0);
3715
3716 /* Boundary layer... */
3717 if (atm->p[ip] >= pbl) {
3718
3719 /* Calculate heights... */
3720 const double p = MIN(atm->p[ip], ps);
3721 const double zs = Z(ps);
3722 const double z = 1e3 * (Z(p) - zs);
3723 const double zi = 1e3 * (Z(pbl) - zs);
3724 const double zratio = z / zi;
3725
3726 /* Calculate friction velocity... */
3727 double ess, nss, h2o, t;
3728 INTPOL_2D(ess, 0);
3729 INTPOL_2D(nss, 0);
3730 INTPOL_3D(t, 1);
3731 INTPOL_3D(h2o, 0);
3732 const double rho = RHO(p, TVIRT(t, h2o));
3733 const double tau = sqrt(SQR(ess) + SQR(nss));
3734 const double ustar = sqrt(tau / rho);
3735
3736 /* Get surface sensible heat flux... */
3737 double shf;
3738 INTPOL_2D(shf, 1);
3739
3740 /* Stable or neutral conditions... */
3741 if (shf <= 0) {
3742
3743 /* Calcalute turbulent velocity variances... */
3744 sig_u = 1e-2 + 2.0 * ustar * (1.0 - zratio);
3745 sig_w = 1e-2 + 1.3 * ustar * (1.0 - zratio);
3746
3747 /* Calculate derivative dsig_w/dz... */
3748 dsigw_dz = -1.3 * ustar / zi;
3749
3750 /* Calcalute Lagrangian timescales... */
3751 tau_u = 0.07 * zi / sig_u * sqrt(zratio);
3752 tau_w = 0.1 * zi / sig_w * pow(zratio, 0.8);
3753 }
3754
3755 /* Unstable conditions... */
3756 else {
3757
3758 /* Convective velocity... */
3759 const double wstar =
3760 pow(G0 / THETAVIRT(p, t, h2o) * shf / (rho * CPD) * zi, 1. / 3.);
3761
3762 /* Calcalute turbulent velocity variances... */
3763 sig_u = 1e-2
3764 + sqrt(0.4 * SQR(wstar) + (5.0 - 4.0 * zratio) * SQR(ustar));
3765 sig_w = 1e-2 + sqrt(1.2 * SQR(wstar) * (1.0 - 0.9 * zratio)
3766 * pow(zratio, 2.0 / 3.0)
3767 + (1.8 - 1.4 * zratio) * SQR(ustar));
3768
3769 /* Calculate derivative dsig_w/dz... */
3770 dsigw_dz = 0.5 / sig_w / zi * (-1.4 * SQR(ustar) + SQR(wstar)
3771 * (0.8 *
3772 pow(MAX(zratio, 1e-3), -1.0 / 3.0)
3773 - 1.8 * pow(zratio, 2.0 / 3.0)));
3774
3775 /* Calculate Lagrangian timescales... */
3776 const double C0 = 3.0; // TODO: typically 3...6, NAME model uses 3?
3777 const double eps =
3778 (1.5 - 1.2 * pow(zratio, 1.0 / 3.0)) * SQR(wstar) * wstar / zi
3779 + SQR(ustar) * ustar * (1.0 - 0.8 * zratio) / (KARMAN * z);
3780 tau_u = 2 * SQR(sig_u) / (C0 * eps);
3781 tau_w = 2 * SQR(sig_w) / (C0 * eps);
3782 }
3783 }
3784
3785 /* Set minimum values... */
3786 sig_u = MAX(sig_u, 0.25);
3787 sig_w = MAX(sig_w, 0.1);
3788 tau_u = MAX(tau_u, 300.);
3789 tau_w = MAX(tau_w, 100.);
3790
3791 /* Update perturbations... */
3792 const double ru = exp(-fabs(cache->dt[ip]) / tau_u);
3793 const double ru2 = sqrt(1.0 - SQR(ru));
3794 cache->uvwp[ip][0]
3795 = (float) (cache->uvwp[ip][0] * ru + ru2 * cache->rs[3 * ip]);
3796 cache->uvwp[ip][1]
3797 = (float) (cache->uvwp[ip][1] * ru + ru2 * cache->rs[3 * ip + 1]);
3798
3799 const double rw = exp(-fabs(cache->dt[ip]) / tau_w);
3800 const double rw2 = sqrt(1.0 - SQR(rw));
3801 cache->uvwp[ip][2]
3802 = (float) (cache->uvwp[ip][2] * rw + rw2 * cache->rs[3 * ip + 2]
3803 + sig_w * dsigw_dz * cache->dt[ip]); // TODO: check approx for density correction?
3804
3805 /* Calculate new air parcel position... */
3806 atm->lon[ip] +=
3807 DX2DEG(cache->uvwp[ip][0] * cache->dt[ip] / 1000., atm->lat[ip]);
3808 atm->lat[ip] += DY2DEG(cache->uvwp[ip][1] * cache->dt[ip] / 1000.);
3809 atm->p[ip] +=
3810 DZ2DP(cache->uvwp[ip][2] * cache->dt[ip] / 1000., atm->p[ip]);
3811 }
3812}
3813
3814/*****************************************************************************/
3815
3817 const ctl_t *ctl,
3818 cache_t *cache,
3819 const clim_t *clim,
3820 met_t *met0,
3821 met_t *met1,
3822 atm_t *atm) {
3823
3824 /* Set timer... */
3825 SELECT_TIMER("MODULE_DIFF_TURB", "PHYSICS", NVTX_GPU);
3826
3827 /* Create random numbers... */
3828 module_rng(ctl, cache->rs, 3 * (size_t) atm->np, 1);
3829
3830 /* Loop over particles... */
3831 PARTICLE_LOOP(0, atm->np, 1,
3832 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3833
3834 /* Get PBL and surface pressure... */
3835 double pbl, ps;
3837 INTPOL_2D(pbl, 1);
3838 INTPOL_2D(ps, 0);
3839
3840 /* Get weighting factors... */
3841 const double wpbl = pbl_weight(ctl, atm, ip, pbl, ps);
3842 const double wtrop = tropo_weight(clim, atm, ip) * (1.0 - wpbl);
3843 const double wstrat = 1.0 - wpbl - wtrop;
3844
3845 /* Set diffusivity... */
3846 const double dx = wpbl * ctl->turb_dx_pbl + wtrop * ctl->turb_dx_trop
3847 + wstrat * ctl->turb_dx_strat;
3848 const double dz = wpbl * ctl->turb_dz_pbl + wtrop * ctl->turb_dz_trop
3849 + wstrat * ctl->turb_dz_strat;
3850
3851 /* Horizontal turbulent diffusion... */
3852 if (dx > 0) {
3853 const double sigma = sqrt(2.0 * dx * fabs(cache->dt[ip])) / 1000.;
3854 atm->lon[ip] += DX2DEG(cache->rs[3 * ip] * sigma, atm->lat[ip]);
3855 atm->lat[ip] += DY2DEG(cache->rs[3 * ip + 1] * sigma);
3856 }
3857
3858 /* Vertical turbulent diffusion... */
3859 if (dz > 0) {
3860 const double sigma = sqrt(2.0 * dz * fabs(cache->dt[ip])) / 1000.;
3861 atm->p[ip] += DZ2DP(cache->rs[3 * ip + 2] * sigma, atm->p[ip]);
3862 }
3863 }
3864}
3865
3866/*****************************************************************************/
3867
3869 const ctl_t *ctl,
3870 const cache_t *cache,
3871 met_t *met0,
3872 met_t *met1,
3873 atm_t *atm) {
3874
3875 /* Set timer... */
3876 SELECT_TIMER("MODULE_DRY_DEPO", "PHYSICS", NVTX_GPU);
3877
3878 /* Check quantity flags... */
3879 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
3880 ERRMSG("Module needs quantity mass or volume mixing ratio!");
3881
3882 /* Loop over particles... */
3883 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3884
3885 /* Get surface pressure... */
3886 double ps;
3888 INTPOL_2D(ps, 1);
3889
3890 /* Check whether particle is above the surface layer... */
3891 if (atm->p[ip] < ps - ctl->dry_depo_dp)
3892 continue;
3893
3894 /* Set depth of surface layer... */
3895 const double dz = 1000. * (Z(ps - ctl->dry_depo_dp) - Z(ps));
3896
3897 /* Calculate sedimentation velocity for particles... */
3898 double v_dep;
3899 if (ctl->qnt_rp > 0 && ctl->qnt_rhop > 0) {
3900
3901 /* Get temperature... */
3902 double t;
3903 INTPOL_3D(t, 1);
3904
3905 /* Set deposition velocity... */
3906 v_dep = sedi(atm->p[ip], t, atm->q[ctl->qnt_rp][ip],
3907 atm->q[ctl->qnt_rhop][ip]);
3908 }
3909
3910 /* Use explicit sedimentation velocity for gases... */
3911 else
3912 v_dep = ctl->dry_depo_vdep;
3913
3914 /* Calculate loss of mass based on deposition velocity... */
3915 const double aux = exp(-cache->dt[ip] * v_dep / dz);
3916 if (ctl->qnt_m >= 0) {
3917 if (ctl->qnt_mloss_dry >= 0)
3918 atm->q[ctl->qnt_mloss_dry][ip]
3919 += atm->q[ctl->qnt_m][ip] * (1 - aux);
3920 atm->q[ctl->qnt_m][ip] *= aux;
3921 if (ctl->qnt_loss_rate >= 0)
3922 atm->q[ctl->qnt_loss_rate][ip] += v_dep / dz;
3923 }
3924 if (ctl->qnt_vmr >= 0)
3925 atm->q[ctl->qnt_vmr][ip] *= aux;
3926 }
3927}
3928
3929/*****************************************************************************/
3930
3932 const ctl_t *ctl,
3933 const cache_t *cache,
3934 const clim_t *clim,
3935 met_t *met0,
3936 met_t *met1,
3937 atm_t *atm) {
3938
3939 /* Set timer... */
3940 SELECT_TIMER("MODULE_H2O2_CHEM", "PHYSICS", NVTX_GPU);
3941
3942 /* Check quantity flags... */
3943 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
3944 ERRMSG("Module needs quantity mass or volume mixing ratio!");
3945
3946 /* Parameter of SO2 correction... */
3947 const double a = 3.12541941e-06;
3948 const double b = -5.72532259e-01;
3949 const double low = pow(1. / a, 1. / b);
3950
3951 /* Loop over particles... */
3952 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
3953
3954 /* Check whether particle is inside cloud... */
3955 double lwc, rwc;
3957 INTPOL_3D(lwc, 1);
3958 INTPOL_3D(rwc, 0);
3959 if (!(lwc > 0 || rwc > 0))
3960 continue;
3961
3962 /* Get temperature... */
3963 double t;
3964 INTPOL_3D(t, 0);
3965
3966 /* Get molecular density... */
3967 const double M = MOLEC_DENS(atm->p[ip], t);
3968
3969 /* Reaction rate (Berglen et al., 2004)... */
3970 const double k = 9.1e7 * exp(-29700. / RI * (1. / t - 1. / 298.15)); /* (Maass, 1999), unit: M^(-2) */
3971
3972 /* Henry constant of SO2... */
3973 const double H_SO2 =
3974 1.3e-2 * exp(2900. * (1. / t - 1. / 298.15)) * RI * t;
3975 const double K_1S = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15)); /* unit: mol/L */
3976
3977 /* Henry constant of H2O2... */
3978 const double H_h2o2 =
3979 8.3e2 * exp(7600. * (1. / t - 1. / 298.15)) * RI * t;
3980
3981 /* Correction factor for high SO2 concentration
3982 (if qnt_Cx is defined, the correction is switched on)... */
3983 double cor = 1.0;
3984 if (ctl->qnt_Cx >= 0)
3985 cor = atm->q[ctl->qnt_Cx][ip] >
3986 low ? a * pow(atm->q[ctl->qnt_Cx][ip], b) : 1;
3987
3988 const double h2o2 = H_h2o2
3989 * clim_zm(&clim->h2o2, atm->time[ip], atm->lat[ip], atm->p[ip])
3990 * M * cor * 1000. / AVO; /* unit: mol/L */
3991
3992 /* Volume water content in cloud [m^3 m^(-3)]... */
3993 const double rho_air = atm->p[ip] / (RI * t) * MA / 10.;
3994 const double CWC = (lwc + rwc) * rho_air / 1e3;
3995
3996 /* Calculate exponential decay (Rolph et al., 1992)... */
3997 const double rate_coef = k * K_1S * h2o2 * H_SO2 * CWC;
3998 const double aux = exp(-cache->dt[ip] * rate_coef);
3999 if (ctl->qnt_m >= 0) {
4000 if (ctl->qnt_mloss_h2o2 >= 0)
4001 atm->q[ctl->qnt_mloss_h2o2][ip] += atm->q[ctl->qnt_m][ip] * (1 - aux);
4002 atm->q[ctl->qnt_m][ip] *= aux;
4003 if (ctl->qnt_loss_rate >= 0)
4004 atm->q[ctl->qnt_loss_rate][ip] += rate_coef;
4005 }
4006 if (ctl->qnt_vmr >= 0)
4007 atm->q[ctl->qnt_vmr][ip] *= aux;
4008 }
4009}
4010
4011/*****************************************************************************/
4012
4014 const ctl_t *ctl,
4015 cache_t *cache,
4016 met_t *met0,
4017 met_t *met1,
4018 atm_t *atm) {
4019
4020 double t;
4021
4022 /* Set timer... */
4023 SELECT_TIMER("MODULE_ISOSURF_INIT", "PHYSICS", NVTX_GPU);
4024
4025 /* Save pressure... */
4026 if (ctl->isosurf == 1) {
4027 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,atm)") {
4028 cache->iso_var[ip] = atm->p[ip];
4029 }
4030 }
4031
4032 /* Save density... */
4033 else if (ctl->isosurf == 2) {
4034 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,met0,met1,atm)") {
4036 INTPOL_3D(t, 1);
4037 cache->iso_var[ip] = atm->p[ip] / t;
4038 }
4039 }
4040
4041 /* Save potential temperature... */
4042 else if (ctl->isosurf == 3) {
4043 PARTICLE_LOOP(0, atm->np, 0, "acc data present(cache,met0,met1,atm)") {
4045 INTPOL_3D(t, 1);
4046 cache->iso_var[ip] = THETA(atm->p[ip], t);
4047 }
4048 }
4049
4050 /* Read balloon pressure data... */
4051 else if (ctl->isosurf == 4) {
4052
4053 /* Write info... */
4054 LOG(1, "Read balloon pressure data: %s", ctl->balloon);
4055
4056 /* Open file... */
4057 FILE *in;
4058 if (!(in = fopen(ctl->balloon, "r")))
4059 ERRMSG("Cannot open file!");
4060
4061 /* Read pressure time series... */
4062 char line[LEN];
4063 while (fgets(line, LEN, in))
4064 if (sscanf(line, "%lg %lg", &(cache->iso_ts[cache->iso_n]),
4065 &(cache->iso_ps[cache->iso_n])) == 2)
4066 if ((++cache->iso_n) > NP)
4067 ERRMSG("Too many data points!");
4068
4069 /* Check number of points... */
4070 if (cache->iso_n < 1)
4071 ERRMSG("Could not read any data!");
4072
4073 /* Close file... */
4074 fclose(in);
4075
4076 /* Update of cache data on device... */
4077 mptrac_update_device(NULL, cache, NULL, NULL, NULL, NULL);
4078 }
4079}
4080
4081/*****************************************************************************/
4082
4084 const ctl_t *ctl,
4085 const cache_t *cache,
4086 met_t *met0,
4087 met_t *met1,
4088 atm_t *atm) {
4089
4090 /* Set timer... */
4091 SELECT_TIMER("MODULE_ISOSURF", "PHYSICS", NVTX_GPU);
4092
4093 /* Loop over particles... */
4094 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,cache,met0,met1,atm)") {
4095
4096 /* Init... */
4097 double t;
4099
4100 /* Restore pressure... */
4101 if (ctl->isosurf == 1)
4102 atm->p[ip] = cache->iso_var[ip];
4103
4104 /* Restore density... */
4105 else if (ctl->isosurf == 2) {
4106 INTPOL_3D(t, 1);
4107 atm->p[ip] = cache->iso_var[ip] * t;
4108 }
4109
4110 /* Restore potential temperature... */
4111 else if (ctl->isosurf == 3) {
4112 INTPOL_3D(t, 1);
4113 atm->p[ip] = 1000. * pow(cache->iso_var[ip] / t, -1. / 0.286);
4114 }
4115
4116 /* Interpolate pressure... */
4117 else if (ctl->isosurf == 4) {
4118 if (atm->time[ip] <= cache->iso_ts[0])
4119 atm->p[ip] = cache->iso_ps[0];
4120 else if (atm->time[ip] >= cache->iso_ts[cache->iso_n - 1])
4121 atm->p[ip] = cache->iso_ps[cache->iso_n - 1];
4122 else {
4123 const int idx =
4124 locate_irr(cache->iso_ts, cache->iso_n, atm->time[ip]);
4125 atm->p[ip] =
4126 LIN(cache->iso_ts[idx], cache->iso_ps[idx], cache->iso_ts[idx + 1],
4127 cache->iso_ps[idx + 1], atm->time[ip]);
4128 }
4129 }
4130 }
4131}
4132
4133/*****************************************************************************/
4134
4135#ifdef KPP
4136void module_kpp_chem(
4137 ctl_t *ctl,
4138 cache_t *cache,
4139 clim_t *clim,
4140 met_t *met0,
4141 met_t *met1,
4142 atm_t *atm) {
4143
4144 /* Set timer... */
4145 SELECT_TIMER("MODULE_KPP_CHEM", "PHYSICS", NVTX_GPU);
4146
4147 const int nvar = NVAR, nfix = NFIX, nreact = NREACT;
4148 double rtol[1] = { 1.0e-3 };
4149 double atol[1] = { 1.0 };
4150
4151 /* Loop over particles... */
4152#ifdef _OPENACC
4153#pragma acc data copy(rtol,atol,nvar,nfix,nreact)
4154#endif
4155 PARTICLE_LOOP(0, atm->np, 1,
4156 "acc data present(ctl,cache,clim,met0,met1,atm) ") {
4157
4158 /* Initialize... */
4159 double var[nvar], fix[nfix], rconst[nreact];
4160 for (int i = 0; i < nvar; i++)
4161 var[i] = 0.0;
4162 for (int i = 0; i < nfix; i++)
4163 fix[i] = 0.0;
4164 for (int i = 0; i < nreact; i++)
4165 rconst[i] = 0.0;
4166 kpp_chem_initialize(ctl, clim, met0, met1, atm, var, fix, rconst, ip);
4167
4168 /* Integrate... */
4169 double rpar[20];
4170 int ipar[20];
4171 for (int i = 0; i < 20; i++) {
4172 ipar[i] = 0;
4173 rpar[i] = 0.0;
4174 }
4175 ipar[0] = 0; /* 0: F=F(y), i.e. independent of t (autonomous); 0:F=F(t,y), i.e. depends on t (non-autonomous) */
4176 ipar[1] = 1; /* 0: NVAR-dimentional vector of tolerances; 1:scalar tolerances */
4177 ipar[3] = 4; /* choice of the method:Rodas3 */
4178 Rosenbrock(var, fix, rconst, 0, ctl->dt_kpp,
4179 atol, rtol, &FunTemplate, &JacTemplate, rpar, ipar);
4180
4181 /* Save results.. */
4182 kpp_chem_output2atm(atm, ctl, met0, met1, var, ip);
4183 }
4184}
4185#endif
4186
4187/*****************************************************************************/
4188
4190 const ctl_t *ctl,
4191 const cache_t *cache,
4192 const clim_t *clim,
4193 met_t *met0,
4194 met_t *met1,
4195 atm_t *atm) {
4196
4197 /* Set timer... */
4198 SELECT_TIMER("MODULE_METEO", "PHYSICS", NVTX_GPU);
4199
4200 /* Check quantity flags... */
4201 if (ctl->qnt_tsts >= 0)
4202 if (ctl->qnt_tice < 0 || ctl->qnt_tnat < 0)
4203 ERRMSG("Need T_ice and T_NAT to calculate T_STS!");
4204
4205 /* Loop over particles... */
4206 PARTICLE_LOOP(0, atm->np, 0,
4207 "acc data present(ctl,cache,clim,met0,met1,atm)") {
4208
4209 double ps, ts, zs, us, vs, ess, nss, shf, lsm, sst, pbl, pt, pct, pcb,
4210 cl, plcl, plfc, pel, cape, cin, o3c, pv, t, tt, u, v, w, h2o, h2ot,
4211 o3, lwc, rwc, iwc, swc, cc, z, zt;
4212
4213 /* Interpolate meteo data... */
4215 INTPOL_TIME_ALL(atm->time[ip], atm->p[ip], atm->lon[ip], atm->lat[ip]);
4216
4217 /* Set quantities... */
4218 SET_ATM(qnt_ps, ps);
4219 SET_ATM(qnt_ts, ts);
4220 SET_ATM(qnt_zs, zs);
4221 SET_ATM(qnt_us, us);
4222 SET_ATM(qnt_vs, vs);
4223 SET_ATM(qnt_ess, ess);
4224 SET_ATM(qnt_nss, nss);
4225 SET_ATM(qnt_shf, shf);
4226 SET_ATM(qnt_lsm, lsm);
4227 SET_ATM(qnt_sst, sst);
4228 SET_ATM(qnt_pbl, pbl);
4229 SET_ATM(qnt_pt, pt);
4230 SET_ATM(qnt_tt, tt);
4231 SET_ATM(qnt_zt, zt);
4232 SET_ATM(qnt_h2ot, h2ot);
4233 SET_ATM(qnt_zg, z);
4234 SET_ATM(qnt_p, atm->p[ip]);
4235 SET_ATM(qnt_t, t);
4236 SET_ATM(qnt_rho, RHO(atm->p[ip], t));
4237 SET_ATM(qnt_u, u);
4238 SET_ATM(qnt_v, v);
4239 SET_ATM(qnt_w, w);
4240 SET_ATM(qnt_h2o, h2o);
4241 SET_ATM(qnt_o3, o3);
4242 SET_ATM(qnt_lwc, lwc);
4243 SET_ATM(qnt_rwc, rwc);
4244 SET_ATM(qnt_iwc, iwc);
4245 SET_ATM(qnt_swc, swc);
4246 SET_ATM(qnt_cc, cc);
4247 SET_ATM(qnt_pct, pct);
4248 SET_ATM(qnt_pcb, pcb);
4249 SET_ATM(qnt_cl, cl);
4250 SET_ATM(qnt_plcl, plcl);
4251 SET_ATM(qnt_plfc, plfc);
4252 SET_ATM(qnt_pel, pel);
4253 SET_ATM(qnt_cape, cape);
4254 SET_ATM(qnt_cin, cin);
4255 SET_ATM(qnt_o3c, o3c);
4256 SET_ATM(qnt_hno3,
4257 clim_zm(&clim->hno3, atm->time[ip], atm->lat[ip], atm->p[ip]));
4258 SET_ATM(qnt_oh, clim_oh(ctl, clim, atm->time[ip],
4259 atm->lon[ip], atm->lat[ip], atm->p[ip]));
4260 SET_ATM(qnt_h2o2, clim_zm(&clim->h2o2, atm->time[ip],
4261 atm->lat[ip], atm->p[ip]));
4262 SET_ATM(qnt_ho2, clim_zm(&clim->ho2, atm->time[ip],
4263 atm->lat[ip], atm->p[ip]));
4264 SET_ATM(qnt_o1d, clim_zm(&clim->o1d, atm->time[ip],
4265 atm->lat[ip], atm->p[ip]));
4266 SET_ATM(qnt_vh, sqrt(u * u + v * v));
4267 SET_ATM(qnt_vz, -1e3 * H0 / atm->p[ip] * w);
4268 SET_ATM(qnt_psat, PSAT(t));
4269 SET_ATM(qnt_psice, PSICE(t));
4270 SET_ATM(qnt_pw, PW(atm->p[ip], h2o));
4271 SET_ATM(qnt_sh, SH(h2o));
4272 SET_ATM(qnt_rh, RH(atm->p[ip], t, h2o));
4273 SET_ATM(qnt_rhice, RHICE(atm->p[ip], t, h2o));
4274 SET_ATM(qnt_theta, THETA(atm->p[ip], t));
4275 SET_ATM(qnt_zeta, atm->q[ctl->qnt_zeta][ip]);
4276 SET_ATM(qnt_zeta_d, ZETA(ps, atm->p[ip], t));
4277 SET_ATM(qnt_zeta_dot, atm->q[ctl->qnt_zeta_dot][ip]);
4278 SET_ATM(qnt_eta, atm->q[ctl->qnt_eta][ip]);
4279 SET_ATM(qnt_eta_dot, atm->q[ctl->qnt_eta_dot][ip]);
4280 SET_ATM(qnt_tvirt, TVIRT(t, h2o));
4281 SET_ATM(qnt_lapse, lapse_rate(t, h2o));
4282 SET_ATM(qnt_pv, pv);
4283 SET_ATM(qnt_tdew, TDEW(atm->p[ip], h2o));
4284 SET_ATM(qnt_tice, TICE(atm->p[ip], h2o));
4285 SET_ATM(qnt_tnat,
4286 nat_temperature(atm->p[ip], h2o,
4287 clim_zm(&clim->hno3, atm->time[ip],
4288 atm->lat[ip], atm->p[ip])));
4289 SET_ATM(qnt_tsts,
4290 0.5 * (atm->q[ctl->qnt_tice][ip] + atm->q[ctl->qnt_tnat][ip]));
4291 }
4292}
4293
4294/*****************************************************************************/
4295
4297 const ctl_t *ctl,
4298 const clim_t *clim,
4299 atm_t *atm,
4300 const double t) {
4301
4302 /* Set timer... */
4303 SELECT_TIMER("MODULE_MIXING", "PHYSICS", NVTX_GPU);
4304
4305 /* Allocate... */
4306 const int np = atm->np;
4307 int *restrict const ixs = (int *) malloc((size_t) np * sizeof(int));
4308 int *restrict const iys = (int *) malloc((size_t) np * sizeof(int));
4309 int *restrict const izs = (int *) malloc((size_t) np * sizeof(int));
4310
4311 /* Set grid box size... */
4312 const double dz = (ctl->mixing_z1 - ctl->mixing_z0) / ctl->mixing_nz;
4313 const double dlon = (ctl->mixing_lon1 - ctl->mixing_lon0) / ctl->mixing_nx;
4314 const double dlat = (ctl->mixing_lat1 - ctl->mixing_lat0) / ctl->mixing_ny;
4315
4316 /* Set time interval... */
4317 const double t0 = t - 0.5 * ctl->dt_mod;
4318 const double t1 = t + 0.5 * ctl->dt_mod;
4319
4320 /* Get indices... */
4321#ifdef _OPENACC
4322#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np])
4323#pragma acc data present(ctl,clim,atm,ixs,iys,izs)
4324#pragma acc parallel loop independent gang vector
4325#else
4326#pragma omp parallel for default(shared)
4327#endif
4328 for (int ip = 0; ip < np; ip++) {
4329 ixs[ip] = (int) ((atm->lon[ip] - ctl->mixing_lon0) / dlon);
4330 iys[ip] = (int) ((atm->lat[ip] - ctl->mixing_lat0) / dlat);
4331 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->mixing_z0) / dz);
4332 if (atm->time[ip] < t0 || atm->time[ip] > t1
4333 || ixs[ip] < 0 || ixs[ip] >= ctl->mixing_nx
4334 || iys[ip] < 0 || iys[ip] >= ctl->mixing_ny
4335 || izs[ip] < 0 || izs[ip] >= ctl->mixing_nz)
4336 izs[ip] = -1;
4337 }
4338
4339 /* Calculate interparcel mixing... */
4340 const int use_ensemble = (ctl->nens > 0);
4341
4342 const int quantities[] = {
4343 ctl->qnt_m, ctl->qnt_vmr, ctl->qnt_Ch2o, ctl->qnt_Co3,
4344 ctl->qnt_Cco, ctl->qnt_Coh, ctl->qnt_Ch, ctl->qnt_Cho2,
4345 ctl->qnt_Ch2o2, ctl->qnt_Co1d, ctl->qnt_Co3p, ctl->qnt_Cccl4,
4346 ctl->qnt_Cccl3f, ctl->qnt_Cccl2f2, ctl->qnt_Cn2o,
4347 ctl->qnt_Csf6, ctl->qnt_aoa
4348 };
4349 const int n_qnt = sizeof(quantities) / sizeof(quantities[0]);
4350
4351 for (int i = 0; i < n_qnt; i++)
4352 if (quantities[i] >= 0)
4353 module_mixing_help(ctl, clim, atm, ixs, iys, izs, quantities[i],
4354 use_ensemble);
4355
4356 /* Free... */
4357#ifdef _OPENACC
4358#pragma acc exit data delete(ixs,iys,izs)
4359#endif
4360 free(ixs);
4361 free(iys);
4362 free(izs);
4363}
4364
4365/*****************************************************************************/
4366
4368 const ctl_t *ctl,
4369 const clim_t *clim,
4370 atm_t *atm,
4371 const int *ixs,
4372 const int *iys,
4373 const int *izs,
4374 const int qnt_idx,
4375 const int use_ensemble) {
4376
4377 const int np = atm->np;
4378 const int ngrid = ctl->mixing_nx * ctl->mixing_ny * ctl->mixing_nz;
4379 const int nens = use_ensemble ? ctl->nens : 1;
4380 const int total_grid = ngrid * nens;
4381
4382 double *restrict const cmean =
4383 (double *) malloc((size_t) total_grid * sizeof(double));
4384 int *restrict const count =
4385 (int *) malloc((size_t) total_grid * sizeof(int));
4386
4387 /* Init... */
4388#ifdef _OPENACC
4389#pragma acc enter data create(cmean[0:total_grid],count[0:total_grid])
4390#pragma acc data present(ctl,clim,atm,ixs,iys,izs,cmean,count)
4391#pragma acc parallel loop independent gang vector
4392#else
4393#ifdef __NVCOMPILER
4394#pragma novector
4395#endif
4396#pragma omp parallel for
4397#endif
4398 for (int i = 0; i < total_grid; i++) {
4399 count[i] = 0;
4400 cmean[i] = 0.0;
4401 }
4402
4403 /* Loop over particles... */
4404#ifdef _OPENACC
4405#pragma acc parallel loop independent gang vector
4406#endif
4407 for (int ip = 0; ip < np; ip++)
4408 if (izs[ip] >= 0) {
4409 const int ens = use_ensemble ? (int) atm->q[ctl->qnt_ens][ip] : 0;
4410 const int idx =
4411 ens * ngrid + ARRAY_3D(ixs[ip], iys[ip], ctl->mixing_ny, izs[ip],
4412 ctl->mixing_nz);
4413#ifdef _OPENACC
4414#pragma acc atomic update
4415#endif
4416 cmean[idx] += atm->q[qnt_idx][ip];
4417#ifdef _OPENACC
4418#pragma acc atomic update
4419#endif
4420 count[idx]++;
4421 }
4422
4423 /* Compute means... */
4424#ifdef _OPENACC
4425#pragma acc parallel loop independent gang vector
4426#else
4427#ifdef __NVCOMPILER
4428#pragma novector
4429#endif
4430#pragma omp parallel for
4431#endif
4432 for (int i = 0; i < total_grid; i++)
4433 if (count[i] > 0)
4434 cmean[i] /= count[i];
4435
4436 /* Interparcel mixing... */
4437#ifdef _OPENACC
4438#pragma acc parallel loop independent gang vector
4439#else
4440#pragma omp parallel for
4441#endif
4442 for (int ip = 0; ip < np; ip++) {
4443 if (izs[ip] >= 0) {
4444 const int ens = use_ensemble ? (int) atm->q[ctl->qnt_ens][ip] : 0;
4445
4446 double mixparam = 1.0;
4447 if (ctl->mixing_trop < 1 || ctl->mixing_strat < 1) {
4448 const double w = tropo_weight(clim, atm, ip);
4449 mixparam = w * ctl->mixing_trop + (1.0 - w) * ctl->mixing_strat;
4450 }
4451
4452 const int idx =
4453 ens * ngrid + ARRAY_3D(ixs[ip], iys[ip], ctl->mixing_ny, izs[ip],
4454 ctl->mixing_nz);
4455 atm->q[qnt_idx][ip] += (cmean[idx] - atm->q[qnt_idx][ip]) * mixparam;
4456 }
4457 }
4458
4459 /* Free... */
4460#ifdef _OPENACC
4461#pragma acc exit data delete(cmean,count)
4462#endif
4463 free(cmean);
4464 free(count);
4465}
4466
4467/*****************************************************************************/
4468
4470 const ctl_t *ctl,
4471 const cache_t *cache,
4472 const clim_t *clim,
4473 met_t *met0,
4474 met_t *met1,
4475 atm_t *atm) {
4476
4477 /* Set timer... */
4478 SELECT_TIMER("MODULE_OH_CHEM", "PHYSICS", NVTX_GPU);
4479
4480 /* Check quantity flags... */
4481 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
4482 ERRMSG("Module needs quantity mass or volume mixing ratio!");
4483
4484 /* Parameter of SO2 correction... */
4485 const double a = 4.71572206e-08;
4486 const double b = -8.28782867e-01;
4487 const double low = pow(1. / a, 1. / b);
4488
4489 /* Loop over particles... */
4490 PARTICLE_LOOP(0, atm->np, 1,
4491 "acc data present(ctl,cache,clim,met0,met1,atm)") {
4492
4493 /* Get temperature... */
4494 double t;
4496 INTPOL_3D(t, 1);
4497
4498 /* Calculate molecular density... */
4499 const double M = MOLEC_DENS(atm->p[ip], t);
4500
4501 /* Use constant reaction rate... */
4502 double k = NAN;
4503 if (ctl->oh_chem_reaction == 1)
4504 k = ctl->oh_chem[0];
4505
4506 /* Calculate bimolecular reaction rate... */
4507 else if (ctl->oh_chem_reaction == 2)
4508 k = ctl->oh_chem[0] * exp(-ctl->oh_chem[1] / t);
4509
4510 /* Calculate termolecular reaction rate... */
4511 if (ctl->oh_chem_reaction == 3) {
4512
4513 /* Calculate rate coefficient for X + OH + M -> XOH + M
4514 (JPL Publication 19-05) ... */
4515 const double k0 =
4516 ctl->oh_chem[0] * (ctl->oh_chem[1] !=
4517 0 ? pow(298. / t, ctl->oh_chem[1]) : 1.);
4518 const double ki =
4519 ctl->oh_chem[2] * (ctl->oh_chem[3] !=
4520 0 ? pow(298. / t, ctl->oh_chem[3]) : 1.);
4521 const double c = log10(k0 * M / ki);
4522 k = k0 * M / (1. + k0 * M / ki) * pow(0.6, 1. / (1. + c * c));
4523 }
4524
4525 /* Correction factor for high SO2 concentration
4526 (if qnt_Cx is defined, the correction is switched on)... */
4527 double cor = 1;
4528 if (ctl->qnt_Cx >= 0)
4529 cor =
4530 atm->q[ctl->qnt_Cx][ip] >
4531 low ? a * pow(atm->q[ctl->qnt_Cx][ip], b) : 1;
4532
4533 /* Calculate exponential decay... */
4534 const double rate_coef =
4535 k * clim_oh(ctl, clim, atm->time[ip], atm->lon[ip],
4536 atm->lat[ip], atm->p[ip]) * M * cor;
4537 const double aux = exp(-cache->dt[ip] * rate_coef);
4538 if (ctl->qnt_m >= 0) {
4539 if (ctl->qnt_mloss_oh >= 0)
4540 atm->q[ctl->qnt_mloss_oh][ip]
4541 += atm->q[ctl->qnt_m][ip] * (1 - aux);
4542 atm->q[ctl->qnt_m][ip] *= aux;
4543 if (ctl->qnt_loss_rate >= 0)
4544 atm->q[ctl->qnt_loss_rate][ip] += rate_coef;
4545 }
4546 if (ctl->qnt_vmr >= 0)
4547 atm->q[ctl->qnt_vmr][ip] *= aux;
4548 }
4549}
4550
4551/*****************************************************************************/
4552
4554 const cache_t *cache,
4555 met_t *met0,
4556 met_t *met1,
4557 atm_t *atm) {
4558
4559 /* Set timer... */
4560 SELECT_TIMER("MODULE_POSITION", "PHYSICS", NVTX_GPU);
4561
4562 /* Loop over particles... */
4563 PARTICLE_LOOP(0, atm->np, 1, "acc data present(cache,met0,met1,atm)") {
4564
4565 /* Init... */
4566 double ps;
4568
4569 /* Calculate modulo... */
4570 atm->lon[ip] = FMOD(atm->lon[ip], 360.);
4571 atm->lat[ip] = FMOD(atm->lat[ip], 360.);
4572
4573 /* Check latitude... */
4574 while (atm->lat[ip] < -90 || atm->lat[ip] > 90) {
4575 if (atm->lat[ip] > 90) {
4576 atm->lat[ip] = 180 - atm->lat[ip];
4577 atm->lon[ip] += 180;
4578 }
4579 if (atm->lat[ip] < -90) {
4580 atm->lat[ip] = -180 - atm->lat[ip];
4581 atm->lon[ip] += 180;
4582 }
4583 }
4584
4585 /* Check longitude... */
4586 while (atm->lon[ip] < -180)
4587 atm->lon[ip] += 360;
4588 while (atm->lon[ip] >= 180)
4589 atm->lon[ip] -= 360;
4590
4591 /* Check pressure... */
4592 if (atm->p[ip] < met0->p[met0->np - 1]) {
4593 atm->p[ip] = met0->p[met0->np - 1];
4594 } else if (atm->p[ip] > 300.) {
4595 INTPOL_2D(ps, 1);
4596 if (atm->p[ip] > ps)
4597 atm->p[ip] = ps;
4598 }
4599 }
4600}
4601
4602/*****************************************************************************/
4603
4605 const int ntask) {
4606
4607 /* Initialize GSL random number generators... */
4608 gsl_rng_env_setup();
4609 if (omp_get_max_threads() > NTHREADS)
4610 ERRMSG("Too many threads!");
4611 for (int i = 0; i < NTHREADS; i++) {
4612 rng[i] = gsl_rng_alloc(gsl_rng_default);
4613 gsl_rng_set(rng[i], gsl_rng_default_seed
4614 + (long unsigned) (ntask * NTHREADS + i));
4615 }
4616
4617 /* Initialize cuRAND random number generators... */
4618#ifdef CURAND
4619 if (curandCreateGenerator(&rng_curand, CURAND_RNG_PSEUDO_DEFAULT) !=
4620 CURAND_STATUS_SUCCESS)
4621 ERRMSG("Cannot create random number generator!");
4622 if (curandSetPseudoRandomGeneratorSeed(rng_curand, ntask) !=
4623 CURAND_STATUS_SUCCESS)
4624 ERRMSG("Cannot set seed for random number generator!");
4625 if (curandSetStream
4626 (rng_curand,
4627 (cudaStream_t) acc_get_cuda_stream(acc_async_sync)) !=
4628 CURAND_STATUS_SUCCESS)
4629 ERRMSG("Cannot set stream for random number generator!");
4630#endif
4631}
4632
4633/*****************************************************************************/
4634
4636 const ctl_t *ctl,
4637 double *rs,
4638 const size_t n,
4639 const int method) {
4640
4641 /* Use GSL random number generators... */
4642 if (ctl->rng_type == 0) {
4643
4644 /* Uniform distribution... */
4645 if (method == 0) {
4646#pragma omp parallel for default(shared)
4647 for (size_t i = 0; i < n; ++i)
4648 rs[i] = gsl_rng_uniform(rng[omp_get_thread_num()]);
4649 }
4650
4651 /* Normal distribution... */
4652 else if (method == 1) {
4653#pragma omp parallel for default(shared)
4654 for (size_t i = 0; i < n; ++i)
4655 rs[i] = gsl_ran_gaussian_ziggurat(rng[omp_get_thread_num()], 1.0);
4656 }
4657
4658 /* Update of random numbers on device... */
4659#ifdef _OPENACC
4660 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
4661#pragma acc update device(rs[:n])
4662#endif
4663 }
4664
4665 /* Use Squares random number generator (Widynski, 2022)... */
4666 else if (ctl->rng_type == 1) {
4667
4668 /* Set key (don't change this!)... */
4669 const uint64_t key = 0xc8e4fd154ce32f6d;
4670
4671 /* Uniform distribution... */
4672#ifdef _OPENACC
4673#pragma acc data present(rs)
4674#pragma acc parallel loop independent gang vector
4675#else
4676#pragma omp parallel for default(shared)
4677#endif
4678 for (size_t i = 0; i < n + 1; ++i) {
4679 uint64_t r, t, x, y, z;
4680 y = x = (rng_ctr + i) * key;
4681 z = y + key;
4682 x = x * x + y;
4683 x = (x >> 32) | (x << 32);
4684 x = x * x + z;
4685 x = (x >> 32) | (x << 32);
4686 x = x * x + y;
4687 x = (x >> 32) | (x << 32);
4688 t = x = x * x + z;
4689 x = (x >> 32) | (x << 32);
4690 r = t ^ ((x * x + y) >> 32);
4691 rs[i] = (double) r / (double) UINT64_MAX;
4692 }
4693 rng_ctr += n + 1;
4694
4695 /* Normal distribution... */
4696 if (method == 1) {
4697#ifdef _OPENACC
4698#pragma acc parallel loop independent gang vector
4699#else
4700#pragma omp parallel for default(shared)
4701#endif
4702 for (size_t i = 0; i < n; i += 2) {
4703 const double r = sqrt(-2.0 * log(rs[i]));
4704 const double phi = 2.0 * M_PI * rs[i + 1];
4705 rs[i] = r * cosf((float) phi);
4706 rs[i + 1] = r * sinf((float) phi);
4707 }
4708 }
4709 }
4710
4711 /* Use cuRAND random number generators... */
4712 else if (ctl->rng_type == 2) {
4713#ifdef CURAND
4714#pragma acc host_data use_device(rs)
4715 {
4716
4717 /* Uniform distribution... */
4718 if (method == 0) {
4719 if (curandGenerateUniformDouble(rng_curand, rs, (n < 4 ? 4 : n)) !=
4720 CURAND_STATUS_SUCCESS)
4721 ERRMSG("Cannot create random numbers!");
4722 }
4723
4724 /* Normal distribution... */
4725 else if (method == 1) {
4726 if (curandGenerateNormalDouble
4727 (rng_curand, rs, (n < 4 ? 4 : n), 0.0,
4728 1.0) != CURAND_STATUS_SUCCESS)
4729 ERRMSG("Cannot create random numbers!");
4730 }
4731 }
4732#else
4733 ERRMSG("MPTRAC was compiled without cuRAND!");
4734#endif
4735 }
4736}
4737
4738/*****************************************************************************/
4739
4741 const ctl_t *ctl,
4742 const cache_t *cache,
4743 met_t *met0,
4744 met_t *met1,
4745 atm_t *atm) {
4746
4747 /* Set timer... */
4748 SELECT_TIMER("MODULE_SEDI", "PHYSICS", NVTX_GPU);
4749
4750 /* Loop over particles... */
4751 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
4752
4753 /* Get temperature... */
4754 double t;
4756 INTPOL_3D(t, 1);
4757
4758 /* Sedimentation velocity... */
4759 const double v_s = sedi(atm->p[ip], t, atm->q[ctl->qnt_rp][ip],
4760 atm->q[ctl->qnt_rhop][ip]);
4761
4762 /* Calculate pressure change... */
4763 atm->p[ip] += DZ2DP(v_s * cache->dt[ip] / 1000., atm->p[ip]);
4764 }
4765}
4766
4767/*****************************************************************************/
4768
4770 const ctl_t *ctl,
4771 met_t *met0,
4772 atm_t *atm) {
4773
4774 /* Set timer... */
4775 SELECT_TIMER("MODULE_SORT", "PHYSICS", NVTX_GPU);
4776
4777 /* Allocate... */
4778 const int np = atm->np;
4779 double *restrict const a = (double *) malloc((size_t) np * sizeof(double));
4780 int *restrict const p = (int *) malloc((size_t) np * sizeof(int));
4781 if (a == NULL || p == NULL)
4782 ERRMSG("Out of memory!");
4783
4784#ifdef _OPENACC
4785#pragma acc enter data create(a[0:np],p[0:np])
4786#pragma acc data present(ctl,met0,atm,a,p)
4787#endif
4788
4789 /* Get box index... */
4790#ifdef _OPENACC
4791#pragma acc parallel loop independent gang vector
4792#else
4793#pragma omp parallel for default(shared)
4794#endif
4795 for (int ip = 0; ip < np; ip++) {
4796 a[ip] =
4797 (double) ((locate_reg(met0->lon, met0->nx, atm->lon[ip]) * met0->ny +
4798 locate_irr(met0->lat, met0->ny, atm->lat[ip]))
4799 * met0->np + locate_irr(met0->p, met0->np, atm->p[ip]));
4800 p[ip] = ip;
4801 }
4802
4803 /* Sorting... */
4804#ifdef THRUST
4805#ifdef _OPENACC
4806#pragma acc host_data use_device(a,p)
4807#endif
4808 thrustSortWrapper(a, np, p);
4809#else
4810#ifdef _OPENACC
4811 ERRMSG("GSL sort fallback not available on GPU, use THRUST!");
4812#endif
4813 gsl_sort_index((size_t *) p, a, 1, (size_t) np);
4814#endif
4815
4816 /* Sort data... */
4817 module_sort_help(atm->time, p, np);
4818 module_sort_help(atm->p, p, np);
4819 module_sort_help(atm->lon, p, np);
4820 module_sort_help(atm->lat, p, np);
4821 for (int iq = 0; iq < ctl->nq; iq++)
4822 module_sort_help(atm->q[iq], p, np);
4823
4824 /* Free... */
4825#ifdef _OPENACC
4826#pragma acc exit data delete(a,p)
4827#endif
4828 free(a);
4829 free(p);
4830}
4831
4832/*****************************************************************************/
4833
4835 double *a,
4836 const int *p,
4837 const int np) {
4838
4839 /* Allocate... */
4840 double *restrict const help =
4841 (double *) malloc((size_t) np * sizeof(double));
4842 if (help == NULL)
4843 ERRMSG("Out of memory!");
4844
4845 /* Reordering of array... */
4846#ifdef _OPENACC
4847#pragma acc enter data create(help[0:np])
4848#pragma acc data present(a,p,help)
4849#pragma acc parallel loop independent gang vector
4850#else
4851#pragma omp parallel for default(shared)
4852#endif
4853 for (int ip = 0; ip < np; ip++)
4854 help[ip] = a[p[ip]];
4855#ifdef _OPENACC
4856#pragma acc parallel loop independent gang vector
4857#else
4858#pragma omp parallel for default(shared)
4859#endif
4860 for (int ip = 0; ip < np; ip++)
4861 a[ip] = help[ip];
4862
4863 /* Free... */
4864#ifdef _OPENACC
4865#pragma acc exit data delete(help)
4866#endif
4867 free(help);
4868}
4869
4870/*****************************************************************************/
4871
4873 const ctl_t *ctl,
4874 cache_t *cache,
4875 met_t *met0,
4876 atm_t *atm,
4877 const double t) {
4878
4879 /* Set timer... */
4880 SELECT_TIMER("MODULE_TIMESTEPS", "PHYSICS", NVTX_GPU);
4881
4882 const double latmin = gsl_stats_min(met0->lat, 1, (size_t) met0->ny),
4883 latmax = gsl_stats_max(met0->lat, 1, (size_t) met0->ny);
4884
4885 const int local =
4886 (fabs(met0->lon[met0->nx - 1] - met0->lon[0] - 360.0) >= 0.01);
4887
4888 /* Loop over particles... */
4889 PARTICLE_LOOP(0, atm->np, 0, "acc data present(ctl,cache,met0,atm)") {
4890
4891 /* Set time step for each air parcel... */
4892 if ((ctl->direction * (atm->time[ip] - ctl->t_start) >= 0
4893 && ctl->direction * (atm->time[ip] - ctl->t_stop) <= 0
4894 && ctl->direction * (atm->time[ip] - t) < 0))
4895 cache->dt[ip] = t - atm->time[ip];
4896 else
4897 cache->dt[ip] = 0.0;
4898
4899 /* Check horizontal boundaries of local meteo data... */
4900#ifndef DD
4901 int dd = 1;
4902#else
4903 int dd = 0;
4904#endif
4905 if (dd) {
4906 if (local && (atm->lon[ip] <= met0->lon[0]
4907 || atm->lon[ip] >= met0->lon[met0->nx - 1]
4908 || atm->lat[ip] <= latmin || atm->lat[ip] >= latmax))
4909 cache->dt[ip] = 0.0;
4910 } else {
4911 if ((int) atm->q[ctl->qnt_subdomain][ip] == -1)
4912 cache->dt[ip] = 0;
4913 }
4914 }
4915}
4916
4917/*****************************************************************************/
4918
4920 ctl_t *ctl,
4921 const atm_t *atm) {
4922
4923 /* Set timer... */
4924 SELECT_TIMER("MODULE_TIMESTEPS_INIT", "PHYSICS", NVTX_GPU);
4925
4926 /* Set start time... */
4927 if (ctl->direction == 1) {
4928 ctl->t_start = gsl_stats_min(atm->time, 1, (size_t) atm->np);
4929 if (ctl->t_stop > 1e99)
4930 ctl->t_stop = gsl_stats_max(atm->time, 1, (size_t) atm->np);
4931 } else {
4932 ctl->t_start = gsl_stats_max(atm->time, 1, (size_t) atm->np);
4933 if (ctl->t_stop > 1e99)
4934 ctl->t_stop = gsl_stats_min(atm->time, 1, (size_t) atm->np);
4935 }
4936
4937 /* Check time interval... */
4938 if (ctl->direction * (ctl->t_stop - ctl->t_start) <= 0)
4939 ERRMSG("Nothing to do! Check T_STOP and DIRECTION!");
4940
4941 /* Round start time... */
4942 if (ctl->direction == 1)
4943 ctl->t_start = floor(ctl->t_start / ctl->dt_mod) * ctl->dt_mod;
4944 else
4945 ctl->t_start = ceil(ctl->t_start / ctl->dt_mod) * ctl->dt_mod;
4946}
4947
4948/*****************************************************************************/
4949
4951 const ctl_t *ctl,
4952 const cache_t *cache,
4953 const clim_t *clim,
4954 met_t *met0,
4955 met_t *met1,
4956 atm_t *atm) {
4957
4958 /* Set timer... */
4959 SELECT_TIMER("MODULE_TRACER_CHEM", "PHYSICS", NVTX_GPU);
4960
4961 /* Loop over particles... */
4962 PARTICLE_LOOP(0, atm->np, 1,
4963 "acc data present(ctl,cache,clim,met0,met1,atm)") {
4964
4965 /* Get temperature... */
4966 double t;
4968 INTPOL_3D(t, 1);
4969
4970 /* Get molecular density... */
4971 const double M = MOLEC_DENS(atm->p[ip], t);
4972
4973 /* Get total column ozone... */
4974 double o3c;
4975 INTPOL_2D(o3c, 1);
4976
4977 /* Get solar zenith angle... */
4978 const double sza =
4979 acos(cos_sza(atm->time[ip], atm->lon[ip], atm->lat[ip]));
4980
4981 /* Get O(1D) volume mixing ratio... */
4982 const double o1d =
4983 clim_zm(&clim->o1d, atm->time[ip], atm->lat[ip], atm->p[ip]);
4984
4985 /* Reactions for CFC-10... */
4986 if (ctl->qnt_Cccl4 >= 0) {
4987 const double K_o1d = ARRHENIUS(3.30e-10, 0, t) * o1d * M;
4988 const double K_hv = clim_photo(clim->photo.ccl4, &(clim->photo),
4989 atm->p[ip], sza, o3c);
4990 atm->q[ctl->qnt_Cccl4][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4991 }
4992
4993 /* Reactions for CFC-11... */
4994 if (ctl->qnt_Cccl3f >= 0) {
4995 const double K_o1d = ARRHENIUS(2.30e-10, 0, t) * o1d * M;
4996 const double K_hv = clim_photo(clim->photo.ccl3f, &(clim->photo),
4997 atm->p[ip], sza, o3c);
4998 atm->q[ctl->qnt_Cccl3f][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
4999 }
5000
5001 /* Reactions for CFC-12... */
5002 if (ctl->qnt_Cccl2f2 >= 0) {
5003 const double K_o1d = ARRHENIUS(1.40e-10, -25, t) * o1d * M;
5004 const double K_hv = clim_photo(clim->photo.ccl2f2, &(clim->photo),
5005 atm->p[ip], sza, o3c);
5006 atm->q[ctl->qnt_Cccl2f2][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
5007 }
5008
5009 /* Reactions for N2O... */
5010 if (ctl->qnt_Cn2o >= 0) {
5011 const double K_o1d = ARRHENIUS(1.19e-10, -20, t) * o1d * M;
5012 const double K_hv = clim_photo(clim->photo.n2o, &(clim->photo),
5013 atm->p[ip], sza, o3c);
5014 atm->q[ctl->qnt_Cn2o][ip] *= exp(-cache->dt[ip] * (K_hv + K_o1d));
5015 }
5016 }
5017}
5018
5019/*****************************************************************************/
5020
5022 const ctl_t *ctl,
5023 const cache_t *cache,
5024 met_t *met0,
5025 met_t *met1,
5026 atm_t *atm) {
5027
5028 /* Set timer... */
5029 SELECT_TIMER("MODULE_WET_DEPO", "PHYSICS", NVTX_GPU);
5030
5031 /* Check quantity flags... */
5032 if (ctl->qnt_m < 0 && ctl->qnt_vmr < 0)
5033 ERRMSG("Module needs quantity mass or volume mixing ratio!");
5034
5035 /* Loop over particles... */
5036 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,cache,met0,met1,atm)") {
5037
5038 /* Check whether particle is below cloud top... */
5039 double pct;
5041 INTPOL_2D(pct, 1);
5042 if (!isfinite(pct) || atm->p[ip] <= pct)
5043 continue;
5044
5045 /* Get cloud bottom pressure... */
5046 double pcb;
5047 INTPOL_2D(pcb, 0);
5048
5049 /* Estimate precipitation rate (Pisso et al., 2019)... */
5050 double cl;
5051 INTPOL_2D(cl, 0);
5052 const double Is =
5053 pow(1. / ctl->wet_depo_pre[0] * cl, 1. / ctl->wet_depo_pre[1]);
5054 if (Is < 0.01)
5055 continue;
5056
5057 /* Check whether particle is inside or below cloud... */
5058 double lwc, rwc, iwc, swc;
5059 INTPOL_3D(lwc, 1);
5060 INTPOL_3D(rwc, 0);
5061 INTPOL_3D(iwc, 0);
5062 INTPOL_3D(swc, 0);
5063 const int inside = (lwc > 0 || rwc > 0 || iwc > 0 || swc > 0);
5064
5065 /* Get temperature... */
5066 double t;
5067 INTPOL_3D(t, 0);
5068
5069 /* Calculate in-cloud scavenging coefficient... */
5070 double lambda = 0;
5071 if (inside) {
5072
5073 /* Calculate retention factor... */
5074 double eta;
5075 if (t > 273.15)
5076 eta = 1;
5077 else if (t <= 238.15)
5078 eta = ctl->wet_depo_ic_ret_ratio;
5079 else
5080 eta = LIN(273.15, 1, 238.15, ctl->wet_depo_ic_ret_ratio, t);
5081
5082 /* Use exponential dependency for particles (Bakels et al., 2024)... */
5083 if (ctl->wet_depo_ic_a > 0)
5084 lambda = ctl->wet_depo_ic_a * pow(Is, ctl->wet_depo_ic_b) * eta;
5085
5086 /* Use Henry's law for gases... */
5087 else if (ctl->wet_depo_ic_h[0] > 0) {
5088
5089 /* Get Henry's constant (Burkholder et al., 2019; Sander, 2023)... */
5090 double h = ctl->wet_depo_ic_h[0]
5091 * exp(ctl->wet_depo_ic_h[1] * (1. / t - 1. / 298.15));
5092
5093 /* Use effective Henry's constant for SO2
5094 (Berglen, 2004; Simpson, 2012)... */
5095 if (ctl->wet_depo_so2_ph > 0) {
5096 const double H_ion = pow(10., -ctl->wet_depo_so2_ph);
5097 const double K_1 = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15));
5098 const double K_2 = 6e-8 * exp(1.12e3 * (1. / t - 1. / 298.15));
5099 h *= (1. + K_1 / H_ion + K_1 * K_2 / SQR(H_ion));
5100 }
5101
5102 /* Estimate depth of cloud layer... */
5103 const double dz = 1e3 * (Z(pct) - Z(pcb));
5104
5105 /* Calculate scavenging coefficient... */
5106 lambda = h * RI * t * Is / 3.6e6 / dz * eta;
5107 }
5108 }
5109
5110 /* Calculate below-cloud scavenging coefficient... */
5111 else {
5112
5113 /* Calculate retention factor... */
5114 double eta;
5115 if (t > 270)
5116 eta = 1;
5117 else
5118 eta = ctl->wet_depo_bc_ret_ratio;
5119
5120 /* Use exponential dependency for particles (Bakels et al., 2024)... */
5121 if (ctl->wet_depo_bc_a > 0)
5122 lambda = ctl->wet_depo_bc_a * pow(Is, ctl->wet_depo_bc_b) * eta;
5123
5124 /* Use Henry's law for gases... */
5125 else if (ctl->wet_depo_bc_h[0] > 0) {
5126
5127 /* Get Henry's constant (Burkholder et al., 2019; Sander, 2023)... */
5128 const double h = ctl->wet_depo_bc_h[0]
5129 * exp(ctl->wet_depo_bc_h[1] * (1. / t - 1. / 298.15));
5130
5131 /* Estimate depth of cloud layer... */
5132 const double dz = 1e3 * (Z(pct) - Z(pcb));
5133
5134 /* Calculate scavenging coefficient... */
5135 lambda = h * RI * t * Is / 3.6e6 / dz * eta;
5136 }
5137 }
5138
5139 /* Calculate exponential decay of mass... */
5140 const double aux = exp(-cache->dt[ip] * lambda);
5141 if (ctl->qnt_m >= 0) {
5142 if (ctl->qnt_mloss_wet >= 0)
5143 atm->q[ctl->qnt_mloss_wet][ip]
5144 += atm->q[ctl->qnt_m][ip] * (1 - aux);
5145 atm->q[ctl->qnt_m][ip] *= aux;
5146 if (ctl->qnt_loss_rate >= 0)
5147 atm->q[ctl->qnt_loss_rate][ip] += lambda;
5148 }
5149 if (ctl->qnt_vmr >= 0)
5150 atm->q[ctl->qnt_vmr][ip] *= aux;
5151 }
5152}
5153
5154/*****************************************************************************/
5155
5157 ctl_t **ctl,
5158 cache_t **cache,
5159 clim_t **clim,
5160 met_t **met0,
5161 met_t **met1,
5162 atm_t **atm,
5163 dd_t **dd) {
5164
5165 /* Initialize GPU... */
5166#ifdef _OPENACC
5167 SELECT_TIMER("ACC_INIT", "INIT", NVTX_GPU);
5168 int rank = 0;
5169#ifdef MPI
5170 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
5171#endif
5172 if (acc_get_num_devices(acc_device_nvidia) <= 0)
5173 ERRMSG("Not running on a GPU device!");
5174 acc_set_device_num(rank % acc_get_num_devices(acc_device_nvidia),
5175 acc_device_nvidia);
5176 acc_device_t device_type = acc_get_device_type();
5177 acc_init(device_type);
5178#endif
5179
5180 /* Allocate... */
5181 SELECT_TIMER("ALLOC", "MEMORY", NVTX_CPU);
5182 ALLOC(*ctl, ctl_t, 1);
5183 ALLOC(*cache, cache_t, 1);
5184 ALLOC(*clim, clim_t, 1);
5185 ALLOC(*met0, met_t, 1);
5186 ALLOC(*met1, met_t, 1);
5187 ALLOC(*atm, atm_t, 1);
5188 ALLOC(*dd, dd_t, 1);
5189
5190 /* Create data region on GPU... */
5191#ifdef _OPENACC
5192 SELECT_TIMER("CREATE_DATA_REGION", "MEMORY", NVTX_GPU);
5193 ctl_t *ctlup = *ctl;
5194 cache_t *cacheup = *cache;
5195 clim_t *climup = *clim;
5196 met_t *met0up = *met0;
5197 met_t *met1up = *met1;
5198 atm_t *atmup = *atm;
5199#pragma acc enter data create(ctlup[:1],cacheup[:1],climup[:1],met0up[:1],met1up[:1],atmup[:1])
5200#ifdef DD
5201 dd_t *ddup = *dd;
5202#pragma acc enter data create(ddup[:1])
5203#endif
5204#endif
5205}
5206
5207/*****************************************************************************/
5208
5210 ctl_t *ctl,
5211 cache_t *cache,
5212 clim_t *clim,
5213 met_t *met0,
5214 met_t *met1,
5215 atm_t *atm,
5216 dd_t *dd) {
5217
5218 /* Delete data region on GPU... */
5219#ifdef _OPENACC
5220 SELECT_TIMER("DELETE_DATA_REGION", "MEMORY", NVTX_GPU);
5221#pragma acc exit data delete (ctl,cache,clim,met0,met1,atm)
5222#endif
5223
5224 /* Free... */
5225 SELECT_TIMER("FREE", "MEMORY", NVTX_CPU);
5226 free(atm);
5227 free(ctl);
5228 free(cache);
5229 free(clim);
5230 free(met0);
5231 free(met1);
5232
5233 /* Free MPI datatype... */
5234#ifdef DD
5235 MPI_Type_free(&dd->MPI_Particle);
5236#endif
5237 free(dd);
5238}
5239
5240/*****************************************************************************/
5241
5243 ctl_t *ctl,
5244 clim_t *clim,
5245 const double t,
5246 met_t **met0,
5247 met_t **met1,
5248 dd_t *dd) {
5249
5250 static int init;
5251
5252 met_t *mets;
5253
5254 char cachefile[LEN], cmd[2 * LEN], filename[LEN];
5255
5256 /* Set timer... */
5257 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
5258
5259 /* Init... */
5260 if (t == ctl->t_start || !init) {
5261 init = 1;
5262
5263 /* Read meteo data... */
5264 get_met_help(ctl, t + (ctl->direction == -1 ? -1 : 0), -1,
5265 ctl->metbase, ctl->dt_met, filename);
5266 if (!mptrac_read_met(filename, ctl, clim, *met0, dd))
5267 ERRMSG("Cannot open file!");
5268
5269 get_met_help(ctl, t + (ctl->direction == 1 ? 1 : 0), 1,
5270 ctl->metbase, ctl->dt_met, filename);
5271 if (!mptrac_read_met(filename, ctl, clim, *met1, dd))
5272 ERRMSG("Cannot open file!");
5273
5274 /* Update GPU... */
5275 mptrac_update_device(NULL, NULL, NULL, met0, met1, NULL);
5276 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
5277
5278 /* Caching... */
5279 if (ctl->met_cache && t != ctl->t_stop) {
5280 get_met_help(ctl, t + 1.1 * ctl->dt_met * ctl->direction,
5281 ctl->direction, ctl->metbase, ctl->dt_met, cachefile);
5282 sprintf(cmd, "cat %s > /dev/null &", cachefile);
5283 LOG(1, "Caching: %s", cachefile);
5284 if (system(cmd) != 0)
5285 WARN("Caching command failed!");
5286 }
5287 }
5288
5289 /* Read new data for forward trajectories... */
5290 if (t > (*met1)->time) {
5291
5292 /* Pointer swap... */
5293 mets = *met1;
5294 *met1 = *met0;
5295 *met0 = mets;
5296
5297 /* Read new meteo data... */
5298 get_met_help(ctl, t, 1, ctl->metbase, ctl->dt_met, filename);
5299 if (!mptrac_read_met(filename, ctl, clim, *met1, dd))
5300 ERRMSG("Cannot open file!");
5301
5302 /* Update GPU... */
5303 mptrac_update_device(NULL, NULL, NULL, NULL, met1, NULL);
5304 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
5305
5306 /* Caching... */
5307 if (ctl->met_cache && t != ctl->t_stop) {
5308 get_met_help(ctl, t + ctl->dt_met, 1, ctl->metbase, ctl->dt_met,
5309 cachefile);
5310 sprintf(cmd, "cat %s > /dev/null &", cachefile);
5311 LOG(1, "Caching: %s", cachefile);
5312 if (system(cmd) != 0)
5313 WARN("Caching command failed!");
5314 }
5315 }
5316
5317 /* Read new data for backward trajectories... */
5318 if (t < (*met0)->time) {
5319
5320 /* Pointer swap... */
5321 mets = *met1;
5322 *met1 = *met0;
5323 *met0 = mets;
5324
5325 /* Read new meteo data... */
5326 get_met_help(ctl, t, -1, ctl->metbase, ctl->dt_met, filename);
5327 if (!mptrac_read_met(filename, ctl, clim, *met0, dd))
5328 ERRMSG("Cannot open file!");
5329
5330 /* Update GPU... */
5331 mptrac_update_device(NULL, NULL, NULL, met0, NULL, NULL);
5332 SELECT_TIMER("GET_MET", "INPUT", NVTX_READ);
5333
5334 /* Caching... */
5335 if (ctl->met_cache && t != ctl->t_stop) {
5336 get_met_help(ctl, t - ctl->dt_met, -1, ctl->metbase, ctl->dt_met,
5337 cachefile);
5338 sprintf(cmd, "cat %s > /dev/null &", cachefile);
5339 LOG(1, "Caching: %s", cachefile);
5340 if (system(cmd) != 0)
5341 WARN("Caching command failed!");
5342 }
5343 }
5344
5345 /* Check that grids are consistent... */
5346 if ((*met0)->nx != 0 && (*met1)->nx != 0) {
5347 if ((*met0)->nx != (*met1)->nx
5348 || (*met0)->ny != (*met1)->ny || (*met0)->np != (*met1)->np)
5349 ERRMSG("Meteo grid dimensions do not match!");
5350 for (int ix = 0; ix < (*met0)->nx; ix++)
5351 if (fabs((*met0)->lon[ix] - (*met1)->lon[ix]) > 0.001)
5352 ERRMSG("Meteo grid longitudes do not match!");
5353 for (int iy = 0; iy < (*met0)->ny; iy++)
5354 if (fabs((*met0)->lat[iy] - (*met1)->lat[iy]) > 0.001)
5355 ERRMSG("Meteo grid latitudes do not match!");
5356 for (int ip = 0; ip < (*met0)->np; ip++)
5357 if (fabs((*met0)->p[ip] - (*met1)->p[ip]) > 0.001)
5358 ERRMSG("Meteo grid pressure levels do not match!");
5359 }
5360}
5361
5362/*****************************************************************************/
5363
5365 ctl_t *ctl,
5366 cache_t *cache,
5367 clim_t *clim,
5368 atm_t *atm,
5369 const int ntask) {
5370
5371 /* Initialize timesteps... */
5372 module_timesteps_init(ctl, atm);
5373
5374 /* Initialize random number generator... */
5375 module_rng_init(ntask);
5376
5377 /* Update GPU memory... */
5378 mptrac_update_device(ctl, cache, clim, NULL, NULL, atm);
5379}
5380
5381/*****************************************************************************/
5382
5384 const char *filename,
5385 const ctl_t *ctl,
5386 atm_t *atm) {
5387
5388 int result;
5389
5390 /* Set timer... */
5391 SELECT_TIMER("READ_ATM", "INPUT", NVTX_READ);
5392
5393 /* Init... */
5394 atm->np = 0;
5395
5396 /* Write info... */
5397 LOG(1, "Read atmospheric data: %s", filename);
5398
5399 /* Read ASCII data... */
5400 if (ctl->atm_type == 0)
5401 result = read_atm_asc(filename, ctl, atm);
5402
5403 /* Read binary data... */
5404 else if (ctl->atm_type == 1)
5405 result = read_atm_bin(filename, ctl, atm);
5406
5407 /* Read netCDF data... */
5408 else if (ctl->atm_type == 2)
5409 result = read_atm_nc(filename, ctl, atm);
5410
5411 /* Read CLaMS data... */
5412 else if (ctl->atm_type == 3 || ctl->atm_type == 4)
5413 result = read_atm_clams(filename, ctl, atm);
5414
5415 /* Error... */
5416 else
5417 ERRMSG("Atmospheric data type not supported!");
5418
5419 /* Check result... */
5420 if (result != 1)
5421 return 0;
5422
5423 /* Check number of air parcels... */
5424 if (atm->np < 1)
5425 ERRMSG("Can not read any data!");
5426
5427 /* Write info... */
5428 double mini, maxi;
5429 LOG(2, "Number of particles: %d", atm->np);
5430 gsl_stats_minmax(&mini, &maxi, atm->time, 1, (size_t) atm->np);
5431 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
5432 gsl_stats_minmax(&mini, &maxi, atm->p, 1, (size_t) atm->np);
5433 LOG(2, "Altitude range: %g ... %g km", Z(maxi), Z(mini));
5434 LOG(2, "Pressure range: %g ... %g hPa", maxi, mini);
5435 gsl_stats_minmax(&mini, &maxi, atm->lon, 1, (size_t) atm->np);
5436 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
5437 gsl_stats_minmax(&mini, &maxi, atm->lat, 1, (size_t) atm->np);
5438 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
5439 for (int iq = 0; iq < ctl->nq; iq++) {
5440 char msg[5 * LEN];
5441 sprintf(msg, "Quantity %s range: %s ... %s %s",
5442 ctl->qnt_name[iq], ctl->qnt_format[iq],
5443 ctl->qnt_format[iq], ctl->qnt_unit[iq]);
5444 gsl_stats_minmax(&mini, &maxi, atm->q[iq], 1, (size_t) atm->np);
5445 LOG(2, msg, mini, maxi);
5446 }
5447
5448 /* Return success... */
5449 return 1;
5450}
5451
5452/*****************************************************************************/
5453
5455 const ctl_t *ctl,
5456 clim_t *clim) {
5457
5458 /* Set timer... */
5459 SELECT_TIMER("READ_CLIM", "INPUT", NVTX_READ);
5460
5461 /* Init tropopause climatology... */
5462 clim_tropo_init(clim);
5463
5464 /* Read photolysis rates... */
5465 if (ctl->clim_photo[0] != '-')
5466 read_clim_photo(ctl->clim_photo, &clim->photo);
5467
5468 /* Read HNO3 climatology... */
5469 if (ctl->clim_hno3_filename[0] != '-')
5470 read_clim_zm(ctl->clim_hno3_filename, "HNO3", &clim->hno3);
5471
5472 /* Read OH climatology... */
5473 if (ctl->clim_oh_filename[0] != '-') {
5474 read_clim_zm(ctl->clim_oh_filename, "OH", &clim->oh);
5475 if (ctl->oh_chem_beta > 0)
5476 clim_oh_diurnal_correction(ctl, clim);
5477 }
5478
5479 /* Read H2O2 climatology... */
5480 if (ctl->clim_h2o2_filename[0] != '-')
5481 read_clim_zm(ctl->clim_h2o2_filename, "H2O2", &clim->h2o2);
5482
5483 /* Read HO2 climatology... */
5484 if (ctl->clim_ho2_filename[0] != '-')
5485 read_clim_zm(ctl->clim_ho2_filename, "HO2", &clim->ho2);
5486
5487 /* Read O(1D) climatology... */
5488 if (ctl->clim_o1d_filename[0] != '-')
5489 read_clim_zm(ctl->clim_o1d_filename, "O1D", &clim->o1d);
5490
5491 /* Read CFC-10 time series... */
5492 if (ctl->clim_ccl4_timeseries[0] != '-')
5494
5495 /* Read CFC-11 time series... */
5496 if (ctl->clim_ccl3f_timeseries[0] != '-')
5498
5499 /* Read CFC-12 time series... */
5500 if (ctl->clim_ccl2f2_timeseries[0] != '-')
5502
5503 /* Read N2O time series... */
5504 if (ctl->clim_n2o_timeseries[0] != '-')
5505 read_clim_ts(ctl->clim_n2o_timeseries, &clim->n2o);
5506
5507 /* Read SF6 time series... */
5508 if (ctl->clim_sf6_timeseries[0] != '-')
5509 read_clim_ts(ctl->clim_sf6_timeseries, &clim->sf6);
5510}
5511
5512/*****************************************************************************/
5513
5515 const char *filename,
5516 int argc,
5517 char *argv[],
5518 ctl_t *ctl) {
5519
5520 /* Set timer... */
5521 SELECT_TIMER("READ_CTL", "INPUT", NVTX_READ);
5522
5523 /* Write info... */
5524 LOG(1, "\nMassive-Parallel Trajectory Calculations (MPTRAC)\n"
5525 "(executable: %s | version: %s | compiled: %s, %s)\n",
5526 argv[0], VERSION, __DATE__, __TIME__);
5527
5528 /* Initialize quantity indices... */
5529 ctl->qnt_idx = -1;
5530 ctl->qnt_ens = -1;
5531 ctl->qnt_stat = -1;
5532 ctl->qnt_m = -1;
5533 ctl->qnt_vmr = -1;
5534 ctl->qnt_rp = -1;
5535 ctl->qnt_rhop = -1;
5536 ctl->qnt_ps = -1;
5537 ctl->qnt_ts = -1;
5538 ctl->qnt_zs = -1;
5539 ctl->qnt_us = -1;
5540 ctl->qnt_vs = -1;
5541 ctl->qnt_ess = -1;
5542 ctl->qnt_nss = -1;
5543 ctl->qnt_shf = -1;
5544 ctl->qnt_lsm = -1;
5545 ctl->qnt_sst = -1;
5546 ctl->qnt_pbl = -1;
5547 ctl->qnt_pt = -1;
5548 ctl->qnt_tt = -1;
5549 ctl->qnt_zt = -1;
5550 ctl->qnt_h2ot = -1;
5551 ctl->qnt_zg = -1;
5552 ctl->qnt_p = -1;
5553 ctl->qnt_t = -1;
5554 ctl->qnt_rho = -1;
5555 ctl->qnt_u = -1;
5556 ctl->qnt_v = -1;
5557 ctl->qnt_w = -1;
5558 ctl->qnt_h2o = -1;
5559 ctl->qnt_o3 = -1;
5560 ctl->qnt_lwc = -1;
5561 ctl->qnt_rwc = -1;
5562 ctl->qnt_iwc = -1;
5563 ctl->qnt_swc = -1;
5564 ctl->qnt_cc = -1;
5565 ctl->qnt_pct = -1;
5566 ctl->qnt_pcb = -1;
5567 ctl->qnt_cl = -1;
5568 ctl->qnt_plcl = -1;
5569 ctl->qnt_plfc = -1;
5570 ctl->qnt_pel = -1;
5571 ctl->qnt_cape = -1;
5572 ctl->qnt_cin = -1;
5573 ctl->qnt_o3c = -1;
5574 ctl->qnt_hno3 = -1;
5575 ctl->qnt_oh = -1;
5576 ctl->qnt_h2o2 = -1;
5577 ctl->qnt_ho2 = -1;
5578 ctl->qnt_o1d = -1;
5579 ctl->qnt_mloss_oh = -1;
5580 ctl->qnt_mloss_h2o2 = -1;
5581 ctl->qnt_mloss_kpp = -1;
5582 ctl->qnt_mloss_wet = -1;
5583 ctl->qnt_mloss_dry = -1;
5584 ctl->qnt_mloss_decay = -1;
5585 ctl->qnt_loss_rate = -1;
5586 ctl->qnt_psat = -1;
5587 ctl->qnt_psice = -1;
5588 ctl->qnt_pw = -1;
5589 ctl->qnt_sh = -1;
5590 ctl->qnt_rh = -1;
5591 ctl->qnt_rhice = -1;
5592 ctl->qnt_theta = -1;
5593 ctl->qnt_zeta = -1;
5594 ctl->qnt_zeta_d = -1;
5595 ctl->qnt_zeta_dot = -1;
5596 ctl->qnt_eta = -1;
5597 ctl->qnt_eta_dot = -1;
5598 ctl->qnt_tvirt = -1;
5599 ctl->qnt_lapse = -1;
5600 ctl->qnt_vh = -1;
5601 ctl->qnt_vz = -1;
5602 ctl->qnt_pv = -1;
5603 ctl->qnt_tdew = -1;
5604 ctl->qnt_tice = -1;
5605 ctl->qnt_tsts = -1;
5606 ctl->qnt_tnat = -1;
5607 ctl->qnt_Cx = -1;
5608 ctl->qnt_Ch2o = -1;
5609 ctl->qnt_Co3 = -1;
5610 ctl->qnt_Cco = -1;
5611 ctl->qnt_Coh = -1;
5612 ctl->qnt_Ch = -1;
5613 ctl->qnt_Cho2 = -1;
5614 ctl->qnt_Ch2o2 = -1;
5615 ctl->qnt_Co1d = -1;
5616 ctl->qnt_Co3p = -1;
5617 ctl->qnt_Cccl4 = -1;
5618 ctl->qnt_Cccl3f = -1;
5619 ctl->qnt_Cccl2f2 = -1;
5620 ctl->qnt_Cn2o = -1;
5621 ctl->qnt_Csf6 = -1;
5622 ctl->qnt_aoa = -1;
5623
5624#ifdef DD
5625 ctl->qnt_destination = -1;
5626 ctl->qnt_subdomain = -1;
5627#endif
5628
5629 /* Read quantities... */
5630 ctl->nq = (int) scan_ctl(filename, argc, argv, "NQ", -1, "0", NULL);
5631 if (ctl->nq > NQ)
5632 ERRMSG("Too many quantities!");
5633 for (int iq = 0; iq < ctl->nq; iq++) {
5634
5635 /* Read quantity name and format... */
5636 scan_ctl(filename, argc, argv, "QNT_NAME", iq, "", ctl->qnt_name[iq]);
5637 scan_ctl(filename, argc, argv, "QNT_LONGNAME", iq, ctl->qnt_name[iq],
5638 ctl->qnt_longname[iq]);
5639 scan_ctl(filename, argc, argv, "QNT_FORMAT", iq, "%g",
5640 ctl->qnt_format[iq]);
5641 if (strcasecmp(ctl->qnt_name[iq], "aoa") == 0)
5642 sprintf(ctl->qnt_format[iq], "%%.2f");
5643
5644 /* Try to identify quantity... */
5645 SET_QNT(qnt_idx, "idx", "particle index", "-")
5646 SET_QNT(qnt_ens, "ens", "ensemble index", "-")
5647 SET_QNT(qnt_stat, "stat", "station flag", "-")
5648 SET_QNT(qnt_m, "m", "mass", "kg")
5649 SET_QNT(qnt_vmr, "vmr", "volume mixing ratio", "ppv")
5650 SET_QNT(qnt_rp, "rp", "particle radius", "microns")
5651 SET_QNT(qnt_rhop, "rhop", "particle density", "kg/m^3")
5652 SET_QNT(qnt_ps, "ps", "surface pressure", "hPa")
5653 SET_QNT(qnt_ts, "ts", "surface temperature", "K")
5654 SET_QNT(qnt_zs, "zs", "surface height", "km")
5655 SET_QNT(qnt_us, "us", "surface zonal wind", "m/s")
5656 SET_QNT(qnt_vs, "vs", "surface meridional wind", "m/s")
5657 SET_QNT(qnt_ess, "ess", "eastward turbulent surface stress", "N/m^2")
5658 SET_QNT(qnt_nss, "nss", "northward turbulent surface stress", "N/m^2")
5659 SET_QNT(qnt_shf, "shf", "surface sensible heat flux", "W/m^2")
5660 SET_QNT(qnt_lsm, "lsm", "land-sea mask", "1")
5661 SET_QNT(qnt_sst, "sst", "sea surface temperature", "K")
5662 SET_QNT(qnt_pbl, "pbl", "planetary boundary layer", "hPa")
5663 SET_QNT(qnt_pt, "pt", "tropopause pressure", "hPa")
5664 SET_QNT(qnt_tt, "tt", "tropopause temperature", "K")
5665 SET_QNT(qnt_zt, "zt", "tropopause geopotential height", "km")
5666 SET_QNT(qnt_h2ot, "h2ot", "tropopause water vapor", "ppv")
5667 SET_QNT(qnt_zg, "zg", "geopotential height", "km")
5668 SET_QNT(qnt_p, "p", "pressure", "hPa")
5669 SET_QNT(qnt_t, "t", "temperature", "K")
5670 SET_QNT(qnt_rho, "rho", "air density", "kg/m^3")
5671 SET_QNT(qnt_u, "u", "zonal wind", "m/s")
5672 SET_QNT(qnt_v, "v", "meridional wind", "m/s")
5673 SET_QNT(qnt_w, "w", "vertical velocity", "hPa/s")
5674 SET_QNT(qnt_h2o, "h2o", "water vapor", "ppv")
5675 SET_QNT(qnt_o3, "o3", "ozone", "ppv")
5676 SET_QNT(qnt_lwc, "lwc", "cloud liquid water content", "kg/kg")
5677 SET_QNT(qnt_rwc, "rwc", "cloud rain water content", "kg/kg")
5678 SET_QNT(qnt_iwc, "iwc", "cloud ice water content", "kg/kg")
5679 SET_QNT(qnt_swc, "swc", "cloud snow water content", "kg/kg")
5680 SET_QNT(qnt_cc, "cc", "cloud cover", "1")
5681 SET_QNT(qnt_pct, "pct", "cloud top pressure", "hPa")
5682 SET_QNT(qnt_pcb, "pcb", "cloud bottom pressure", "hPa")
5683 SET_QNT(qnt_cl, "cl", "total column cloud water", "kg/m^2")
5684 SET_QNT(qnt_plcl, "plcl", "lifted condensation level", "hPa")
5685 SET_QNT(qnt_plfc, "plfc", "level of free convection", "hPa")
5686 SET_QNT(qnt_pel, "pel", "equilibrium level", "hPa")
5687 SET_QNT(qnt_cape, "cape", "convective available potential energy",
5688 "J/kg")
5689 SET_QNT(qnt_cin, "cin", "convective inhibition", "J/kg")
5690 SET_QNT(qnt_o3c, "o3c", "total column ozone", "DU")
5691 SET_QNT(qnt_hno3, "hno3", "nitric acid", "ppv")
5692 SET_QNT(qnt_oh, "oh", "hydroxyl radical", "ppv")
5693 SET_QNT(qnt_h2o2, "h2o2", "hydrogen peroxide", "ppv")
5694 SET_QNT(qnt_ho2, "ho2", "hydroperoxyl radical", "ppv")
5695 SET_QNT(qnt_o1d, "o1d", "atomic oxygen", "ppv")
5696 SET_QNT(qnt_mloss_oh, "mloss_oh", "mass loss due to OH chemistry", "kg")
5697 SET_QNT(qnt_mloss_h2o2, "mloss_h2o2",
5698 "mass loss due to H2O2 chemistry", "kg")
5699 SET_QNT(qnt_mloss_kpp, "mloss_kpp", "mass loss due to kpp chemistry",
5700 "kg")
5701 SET_QNT(qnt_mloss_wet, "mloss_wet", "mass loss due to wet deposition",
5702 "kg")
5703 SET_QNT(qnt_mloss_dry, "mloss_dry", "mass loss due to dry deposition",
5704 "kg")
5705 SET_QNT(qnt_mloss_decay, "mloss_decay",
5706 "mass loss due to exponential decay", "kg")
5707 SET_QNT(qnt_loss_rate, "loss_rate", "total loss rate", "s^-1")
5708 SET_QNT(qnt_psat, "psat", "saturation pressure over water", "hPa")
5709 SET_QNT(qnt_psice, "psice", "saturation pressure over ice", "hPa")
5710 SET_QNT(qnt_pw, "pw", "partial water vapor pressure", "hPa")
5711 SET_QNT(qnt_sh, "sh", "specific humidity", "kg/kg")
5712 SET_QNT(qnt_rh, "rh", "relative humidity", "%%")
5713 SET_QNT(qnt_rhice, "rhice", "relative humidity over ice", "%%")
5714 SET_QNT(qnt_theta, "theta", "potential temperature", "K")
5715 SET_QNT(qnt_zeta, "zeta", "zeta coordinate", "K")
5716 SET_QNT(qnt_zeta_d, "zeta_d", "diagnosed zeta coordinate", "K")
5717 SET_QNT(qnt_zeta_dot, "zeta_dot", "velocity of zeta coordinate",
5718 "K/day")
5719 SET_QNT(qnt_eta, "eta", "eta coordinate", "1")
5720 SET_QNT(qnt_eta_dot, "eta_dot", "velocity of eta coordinate", "1/s")
5721 SET_QNT(qnt_tvirt, "tvirt", "virtual temperature", "K")
5722 SET_QNT(qnt_lapse, "lapse", "temperature lapse rate", "K/km")
5723 SET_QNT(qnt_vh, "vh", "horizontal velocity", "m/s")
5724 SET_QNT(qnt_vz, "vz", "vertical velocity", "m/s")
5725 SET_QNT(qnt_pv, "pv", "potential vorticity", "PVU")
5726 SET_QNT(qnt_tdew, "tdew", "dew point temperature", "K")
5727 SET_QNT(qnt_tice, "tice", "frost point temperature", "K")
5728 SET_QNT(qnt_tsts, "tsts", "STS existence temperature", "K")
5729 SET_QNT(qnt_tnat, "tnat", "NAT existence temperature", "K")
5730 SET_QNT(qnt_Cx, "Cx", "Trace species x volume mixing ratio", "ppv")
5731 SET_QNT(qnt_Ch2o, "Ch2o", "H2O volume mixing ratio", "ppv")
5732 SET_QNT(qnt_Co3, "Co3", "O3 volume mixing ratio", "ppv")
5733 SET_QNT(qnt_Cco, "Cco", "CO volume mixing ratio", "ppv")
5734 SET_QNT(qnt_Coh, "Coh", "HO volume mixing ratio", "ppv")
5735 SET_QNT(qnt_Ch, "Ch", "H radical volume mixing ratio", "ppv")
5736 SET_QNT(qnt_Cho2, "Cho2", "HO2 volume mixing ratio", "ppv")
5737 SET_QNT(qnt_Ch2o2, "Ch2o2", "H2O2 volume mixing ratio", "ppv")
5738 SET_QNT(qnt_Co1d, "Co1d", "O(1D) volume mixing ratio", "ppv")
5739 SET_QNT(qnt_Co3p, "Co3p", "O(3P) radical volume mixing ratio", "ppv")
5740 SET_QNT(qnt_Cccl4, "Cccl4", "CCl4 (CFC-10) volume mixing ratio", "ppv")
5741 SET_QNT(qnt_Cccl3f, "Cccl3f", "CCl3F (CFC-11) volume mixing ratio",
5742 "ppv")
5743 SET_QNT(qnt_Cccl2f2, "Cccl2f2", "CCl2F2 (CFC-12) volume mixing ratio",
5744 "ppv")
5745 SET_QNT(qnt_Cn2o, "Cn2o", "N2O volume mixing ratio", "ppv")
5746 SET_QNT(qnt_Csf6, "Csf6", "SF6 volume mixing ratio", "ppv")
5747 SET_QNT(qnt_aoa, "aoa", "age of air", "s")
5748#ifdef DD
5749 SET_QNT(qnt_destination, "destination",
5750 "subdomain index of destination", "-")
5751 SET_QNT(qnt_subdomain, "subdomain", "current subdomain index", "-")
5752#endif
5753 scan_ctl(filename, argc, argv, "QNT_UNIT", iq, "", ctl->qnt_unit[iq]);
5754 }
5755
5756 /* Vertical coordinate and velocity... */
5757 ctl->advect_vert_coord =
5758 (int) scan_ctl(filename, argc, argv, "ADVECT_VERT_COORD", -1, "0", NULL);
5759 if (ctl->advect_vert_coord < 0 || ctl->advect_vert_coord > 3)
5760 ERRMSG("ADVECT_VERT_COORD must be 0, 1, 2, or 3!");
5761
5762 if (ctl->advect_vert_coord == 1 && ctl->qnt_zeta < 0)
5763 ERRMSG("Add quantity zeta for diabatic advection!");
5764 if (ctl->advect_vert_coord == 3 && ctl->qnt_eta < 0)
5765 ERRMSG("Add quantity eta for etadot avection!");
5766
5767 ctl->met_vert_coord =
5768 (int) scan_ctl(filename, argc, argv, "MET_VERT_COORD", -1, "0", NULL);
5769 if (ctl->met_vert_coord < 0 || ctl->met_vert_coord > 4)
5770 ERRMSG("MET_VERT_COORD must be 0, 1, 2, 3, or 4!");
5771
5772 if (ctl->advect_vert_coord == 2 && ctl->met_vert_coord == 0)
5773 ERRMSG
5774 ("Using ADVECT_VERT_COORD = 2 requires meteo data on model levels!");
5775 if (ctl->advect_vert_coord == 3 && ctl->met_vert_coord != 3)
5776 ERRMSG
5777 ("Using ADVECT_VERT_COORD = 3 requires A and B model level coefficients!");
5778
5779 /* Time steps of simulation... */
5780 ctl->direction =
5781 (int) scan_ctl(filename, argc, argv, "DIRECTION", -1, "1", NULL);
5782 if (ctl->direction != -1 && ctl->direction != 1)
5783 ERRMSG("Set DIRECTION to -1 or 1!");
5784 ctl->t_stop = scan_ctl(filename, argc, argv, "T_STOP", -1, "1e100", NULL);
5785 ctl->dt_mod = scan_ctl(filename, argc, argv, "DT_MOD", -1, "180", NULL);
5786
5787 /* Meteo data... */
5788 scan_ctl(filename, argc, argv, "METBASE", -1, "-", ctl->metbase);
5789 ctl->dt_met = scan_ctl(filename, argc, argv, "DT_MET", -1, "3600", NULL);
5790 ctl->met_convention =
5791 (int) scan_ctl(filename, argc, argv, "MET_CONVENTION", -1, "0", NULL);
5792 ctl->met_type =
5793 (int) scan_ctl(filename, argc, argv, "MET_TYPE", -1, "0", NULL);
5794 if (ctl->advect_vert_coord == 1 && ctl->met_type != 0)
5795 ERRMSG
5796 ("Please use meteo files in netcdf format for diabatic calculations.");
5797 if (ctl->advect_vert_coord == 3 && ctl->met_type != 0)
5798 ERRMSG
5799 ("Please use meteo files in netcdf format for etadot calculations.");
5800 ctl->met_clams =
5801 (int) scan_ctl(filename, argc, argv, "MET_CLAMS", -1, "0", NULL);
5802 ctl->met_nc_scale =
5803 (int) scan_ctl(filename, argc, argv, "MET_NC_SCALE", -1, "1", NULL);
5804 ctl->met_nc_level =
5805 (int) scan_ctl(filename, argc, argv, "MET_NC_LEVEL", -1, "0", NULL);
5806 ctl->met_nc_quant =
5807 (int) scan_ctl(filename, argc, argv, "MET_NC_QUANT", -1, "0", NULL);
5808 ctl->met_zstd_level =
5809 (int) scan_ctl(filename, argc, argv, "MET_ZSTD_LEVEL", -1, "0", NULL);
5810 for (int i = 0; i < METVAR; i++) {
5811 char defprec[LEN] = "0", deftol[LEN] = "0.0";
5812 if (i == 0) /* geopotential height */
5813 sprintf(deftol, "0.5");
5814 else if (i == 1) /* temperature */
5815 sprintf(deftol, "5.0");
5816 else /* other variables */
5817 sprintf(defprec, "8");
5818 ctl->met_comp_prec[i] =
5819 (int) scan_ctl(filename, argc, argv, "MET_COMP_PREC", i, defprec, NULL);
5820 ctl->met_comp_tol[i] =
5821 scan_ctl(filename, argc, argv, "MET_COMP_TOL", i, deftol, NULL);
5822 }
5823 ctl->met_cms_batch =
5824 (int) scan_ctl(filename, argc, argv, "MET_CMS_BATCH", -1, "-1", NULL);
5825 ctl->met_cms_zstd =
5826 (int) scan_ctl(filename, argc, argv, "MET_CMS_ZSTD", -1, "1", NULL);
5827 ctl->met_cms_nd0x =
5828 (int) scan_ctl(filename, argc, argv, "MET_CMS_ND0X", -1, "48", NULL);
5829 ctl->met_cms_nd0y =
5830 (int) scan_ctl(filename, argc, argv, "MET_CMS_ND0Y", -1, "24", NULL);
5831 ctl->met_cms_maxlev =
5832 (int) scan_ctl(filename, argc, argv, "MET_CMS_MAXLEV", -1, "6", NULL);
5833 ctl->met_cms_eps_z =
5834 scan_ctl(filename, argc, argv, "MET_CMS_EPS_Z", -1, "1.0", NULL);
5835 ctl->met_cms_eps_t =
5836 scan_ctl(filename, argc, argv, "MET_CMS_EPS_T", -1, "0.05", NULL);
5837 ctl->met_cms_eps_u =
5838 scan_ctl(filename, argc, argv, "MET_CMS_EPS_U", -1, "0.05", NULL);
5839 ctl->met_cms_eps_v =
5840 scan_ctl(filename, argc, argv, "MET_CMS_EPS_V", -1, "0.05", NULL);
5841 ctl->met_cms_eps_w =
5842 scan_ctl(filename, argc, argv, "MET_CMS_EPS_W", -1, "1.0", NULL);
5843 ctl->met_cms_eps_pv =
5844 scan_ctl(filename, argc, argv, "MET_CMS_EPS_PV", -1, "1.0", NULL);
5845 ctl->met_cms_eps_h2o =
5846 scan_ctl(filename, argc, argv, "MET_CMS_EPS_H2O", -1, "1.0", NULL);
5847 ctl->met_cms_eps_o3 =
5848 scan_ctl(filename, argc, argv, "MET_CMS_EPS_O3", -1, "1.0", NULL);
5849 ctl->met_cms_eps_lwc =
5850 scan_ctl(filename, argc, argv, "MET_CMS_EPS_LWC", -1, "1.0", NULL);
5851 ctl->met_cms_eps_rwc =
5852 scan_ctl(filename, argc, argv, "MET_CMS_EPS_RWC", -1, "1.0", NULL);
5853 ctl->met_cms_eps_iwc =
5854 scan_ctl(filename, argc, argv, "MET_CMS_EPS_IWC", -1, "1.0", NULL);
5855 ctl->met_cms_eps_swc =
5856 scan_ctl(filename, argc, argv, "MET_CMS_EPS_SWC", -1, "1.0", NULL);
5857 ctl->met_cms_eps_cc =
5858 scan_ctl(filename, argc, argv, "MET_CMS_EPS_CC", -1, "1.0", NULL);
5859 ctl->met_dx = (int) scan_ctl(filename, argc, argv, "MET_DX", -1, "1", NULL);
5860 ctl->met_dy = (int) scan_ctl(filename, argc, argv, "MET_DY", -1, "1", NULL);
5861 ctl->met_dp = (int) scan_ctl(filename, argc, argv, "MET_DP", -1, "1", NULL);
5862 if (ctl->met_dx < 1 || ctl->met_dy < 1 || ctl->met_dp < 1)
5863 ERRMSG("MET_DX, MET_DY, and MET_DP need to be greater than zero!");
5864 ctl->met_sx = (int) scan_ctl(filename, argc, argv, "MET_SX", -1, "1", NULL);
5865 ctl->met_sy = (int) scan_ctl(filename, argc, argv, "MET_SY", -1, "1", NULL);
5866 ctl->met_sp = (int) scan_ctl(filename, argc, argv, "MET_SP", -1, "1", NULL);
5867 if (ctl->met_sx < 1 || ctl->met_sy < 1 || ctl->met_sp < 1)
5868 ERRMSG("MET_SX, MET_SY, and MET_SP need to be greater than zero!");
5869 ctl->met_detrend =
5870 scan_ctl(filename, argc, argv, "MET_DETREND", -1, "-999", NULL);
5871 ctl->met_np = (int) scan_ctl(filename, argc, argv, "MET_NP", -1, "0", NULL);
5872 if (ctl->met_np > EP)
5873 ERRMSG("Too many pressure levels!");
5874 ctl->met_press_level_def =
5875 (int) scan_ctl(filename, argc, argv, "MET_PRESS_LEVEL_DEF", -1, "-1",
5876 NULL);
5877 if (ctl->met_press_level_def >= 0) {
5878 level_definitions(ctl);
5879 } else {
5880 if (ctl->met_np > 0) {
5881 for (int ip = 0; ip < ctl->met_np; ip++)
5882 ctl->met_p[ip] =
5883 scan_ctl(filename, argc, argv, "MET_P", ip, "", NULL);
5884 }
5885 }
5886 ctl->met_nlev =
5887 (int) scan_ctl(filename, argc, argv, "MET_NLEV", -1, "0", NULL);
5888 if (ctl->met_nlev > EP)
5889 ERRMSG("Too many model levels!");
5890 for (int ip = 0; ip < ctl->met_nlev; ip++)
5891 ctl->met_lev_hyam[ip] =
5892 scan_ctl(filename, argc, argv, "MET_LEV_HYAM", ip, "", NULL);
5893 for (int ip = 0; ip < ctl->met_nlev; ip++)
5894 ctl->met_lev_hybm[ip] =
5895 scan_ctl(filename, argc, argv, "MET_LEV_HYBM", ip, "", NULL);
5896 ctl->met_geopot_sx =
5897 (int) scan_ctl(filename, argc, argv, "MET_GEOPOT_SX", -1, "-1", NULL);
5898 ctl->met_geopot_sy =
5899 (int) scan_ctl(filename, argc, argv, "MET_GEOPOT_SY", -1, "-1", NULL);
5900 ctl->met_relhum =
5901 (int) scan_ctl(filename, argc, argv, "MET_RELHUM", -1, "0", NULL);
5902 ctl->met_cape =
5903 (int) scan_ctl(filename, argc, argv, "MET_CAPE", -1, "1", NULL);
5904 if (ctl->met_cape < 0 || ctl->met_cape > 1)
5905 ERRMSG("Set MET_CAPE to 0 or 1!");
5906 ctl->met_pbl =
5907 (int) scan_ctl(filename, argc, argv, "MET_PBL", -1, "3", NULL);
5908 if (ctl->met_pbl < 0 || ctl->met_pbl > 3)
5909 ERRMSG("Set MET_PBL to 0 ... 3!");
5910 ctl->met_pbl_min =
5911 scan_ctl(filename, argc, argv, "MET_PBL_MIN", -1, "0.1", NULL);
5912 ctl->met_pbl_max =
5913 scan_ctl(filename, argc, argv, "MET_PBL_MAX", -1, "5.0", NULL);
5914 ctl->met_tropo =
5915 (int) scan_ctl(filename, argc, argv, "MET_TROPO", -1, "3", NULL);
5916 if (ctl->met_tropo < 0 || ctl->met_tropo > 5)
5917 ERRMSG("Set MET_TROPO to 0 ... 5!");
5918 ctl->met_tropo_pv =
5919 scan_ctl(filename, argc, argv, "MET_TROPO_PV", -1, "3.5", NULL);
5920 ctl->met_tropo_theta =
5921 scan_ctl(filename, argc, argv, "MET_TROPO_THETA", -1, "380", NULL);
5922 ctl->met_tropo_spline =
5923 (int) scan_ctl(filename, argc, argv, "MET_TROPO_SPLINE", -1, "1", NULL);
5924 ctl->met_dt_out =
5925 scan_ctl(filename, argc, argv, "MET_DT_OUT", -1, "0.1", NULL);
5926 ctl->met_cache =
5927 (int) scan_ctl(filename, argc, argv, "MET_CACHE", -1, "0", NULL);
5928 ctl->met_mpi_share =
5929 (int) scan_ctl(filename, argc, argv, "MET_MPI_SHARE", -1, "0", NULL);
5930
5931 /* Sorting... */
5932 ctl->sort_dt = scan_ctl(filename, argc, argv, "SORT_DT", -1, "-999", NULL);
5933
5934 /* Isosurface parameters... */
5935 ctl->isosurf =
5936 (int) scan_ctl(filename, argc, argv, "ISOSURF", -1, "0", NULL);
5937 scan_ctl(filename, argc, argv, "BALLOON", -1, "-", ctl->balloon);
5938
5939 /* Random number generator... */
5940 ctl->rng_type =
5941 (int) scan_ctl(filename, argc, argv, "RNG_TYPE", -1, "1", NULL);
5942 if (ctl->rng_type < 0 || ctl->rng_type > 2)
5943 ERRMSG("Set RNG_TYPE to 0, 1, or 2!");
5944
5945 /* Advection parameters... */
5946 ctl->advect = (int) scan_ctl(filename, argc, argv, "ADVECT", -1, "2", NULL);
5947 if (!
5948 (ctl->advect == 0 || ctl->advect == 1 || ctl->advect == 2
5949 || ctl->advect == 4))
5950 ERRMSG("Set ADVECT to 0, 1, 2, or 4!");
5951
5952 /* Diffusion parameters... */
5953 ctl->diffusion
5954 = (int) scan_ctl(filename, argc, argv, "DIFFUSION", -1, "0", NULL);
5955 if (ctl->diffusion < 0 || ctl->diffusion > 2)
5956 ERRMSG("Set DIFFUSION to 0, 1 or 2!");
5957 ctl->turb_dx_pbl =
5958 scan_ctl(filename, argc, argv, "TURB_DX_PBL", -1, "50", NULL);
5959 ctl->turb_dx_trop =
5960 scan_ctl(filename, argc, argv, "TURB_DX_TROP", -1, "50", NULL);
5961 ctl->turb_dx_strat =
5962 scan_ctl(filename, argc, argv, "TURB_DX_STRAT", -1, "0", NULL);
5963 ctl->turb_dz_pbl =
5964 scan_ctl(filename, argc, argv, "TURB_DZ_PBL", -1, "0", NULL);
5965 ctl->turb_dz_trop =
5966 scan_ctl(filename, argc, argv, "TURB_DZ_TROP", -1, "0", NULL);
5967 ctl->turb_dz_strat =
5968 scan_ctl(filename, argc, argv, "TURB_DZ_STRAT", -1, "0.1", NULL);
5969 ctl->turb_mesox =
5970 scan_ctl(filename, argc, argv, "TURB_MESOX", -1, "0.16", NULL);
5971 ctl->turb_mesoz =
5972 scan_ctl(filename, argc, argv, "TURB_MESOZ", -1, "0.16", NULL);
5973
5974 /* Convection... */
5975 ctl->conv_mix_pbl
5976 = (int) scan_ctl(filename, argc, argv, "CONV_MIX_PBL", -1, "0", NULL);
5977 ctl->conv_pbl_trans
5978 = scan_ctl(filename, argc, argv, "CONV_PBL_TRANS", -1, "0", NULL);
5979 ctl->conv_cape
5980 = scan_ctl(filename, argc, argv, "CONV_CAPE", -1, "-999", NULL);
5981 ctl->conv_cin
5982 = scan_ctl(filename, argc, argv, "CONV_CIN", -1, "-999", NULL);
5983 ctl->conv_dt = scan_ctl(filename, argc, argv, "CONV_DT", -1, "-999", NULL);
5984
5985 /* Boundary conditions... */
5986 ctl->bound_mass =
5987 scan_ctl(filename, argc, argv, "BOUND_MASS", -1, "-999", NULL);
5988 ctl->bound_mass_trend =
5989 scan_ctl(filename, argc, argv, "BOUND_MASS_TREND", -1, "0", NULL);
5990 ctl->bound_vmr =
5991 scan_ctl(filename, argc, argv, "BOUND_VMR", -1, "-999", NULL);
5992 ctl->bound_vmr_trend =
5993 scan_ctl(filename, argc, argv, "BOUND_VMR_TREND", -1, "0", NULL);
5994 ctl->bound_lat0 =
5995 scan_ctl(filename, argc, argv, "BOUND_LAT0", -1, "-999", NULL);
5996 ctl->bound_lat1 =
5997 scan_ctl(filename, argc, argv, "BOUND_LAT1", -1, "-999", NULL);
5998 ctl->bound_p0 =
5999 scan_ctl(filename, argc, argv, "BOUND_P0", -1, "-999", NULL);
6000 ctl->bound_p1 =
6001 scan_ctl(filename, argc, argv, "BOUND_P1", -1, "-999", NULL);
6002 ctl->bound_dps =
6003 scan_ctl(filename, argc, argv, "BOUND_DPS", -1, "-999", NULL);
6004 ctl->bound_dzs =
6005 scan_ctl(filename, argc, argv, "BOUND_DZS", -1, "-999", NULL);
6006 ctl->bound_zetas =
6007 scan_ctl(filename, argc, argv, "BOUND_ZETAS", -1, "-999", NULL);
6008 ctl->bound_pbl =
6009 (int) scan_ctl(filename, argc, argv, "BOUND_PBL", -1, "0", NULL);
6010
6011 /* Species parameters... */
6012 scan_ctl(filename, argc, argv, "SPECIES", -1, "-", ctl->species);
6013 if (strcasecmp(ctl->species, "CF2Cl2") == 0) {
6014 ctl->molmass = 120.907;
6015 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 3e-5;
6016 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3500.0;
6017 } else if (strcasecmp(ctl->species, "CFCl3") == 0) {
6018 ctl->molmass = 137.359;
6019 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.1e-4;
6020 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3300.0;
6021 } else if (strcasecmp(ctl->species, "CH4") == 0) {
6022 ctl->molmass = 16.043;
6023 ctl->oh_chem_reaction = 2;
6024 ctl->oh_chem[0] = 2.45e-12;
6025 ctl->oh_chem[1] = 1775;
6026 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.4e-5;
6027 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1600.0;
6028 } else if (strcasecmp(ctl->species, "CO") == 0) {
6029 ctl->molmass = 28.01;
6030 ctl->oh_chem_reaction = 3;
6031 ctl->oh_chem[0] = 6.9e-33;
6032 ctl->oh_chem[1] = 2.1;
6033 ctl->oh_chem[2] = 1.1e-12;
6034 ctl->oh_chem[3] = -1.3;
6035 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 9.7e-6;
6036 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1300.0;
6037 } else if (strcasecmp(ctl->species, "CO2") == 0) {
6038 ctl->molmass = 44.009;
6039 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 3.3e-4;
6040 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2400.0;
6041 } else if (strcasecmp(ctl->species, "H2O") == 0) {
6042 ctl->molmass = 18.01528;
6043 } else if (strcasecmp(ctl->species, "N2O") == 0) {
6044 ctl->molmass = 44.013;
6045 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.4e-4;
6046 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2600.;
6047 } else if (strcasecmp(ctl->species, "NH3") == 0) {
6048 ctl->molmass = 17.031;
6049 ctl->oh_chem_reaction = 2;
6050 ctl->oh_chem[0] = 1.7e-12;
6051 ctl->oh_chem[1] = 710;
6052 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 5.9e-1;
6053 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 4200.0;
6054 } else if (strcasecmp(ctl->species, "HNO3") == 0) {
6055 ctl->molmass = 63.012;
6056 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.1e3;
6057 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 8700.0;
6058 } else if (strcasecmp(ctl->species, "NO") == 0) {
6059 ctl->molmass = 30.006;
6060 ctl->oh_chem_reaction = 3;
6061 ctl->oh_chem[0] = 7.1e-31;
6062 ctl->oh_chem[1] = 2.6;
6063 ctl->oh_chem[2] = 3.6e-11;
6064 ctl->oh_chem[3] = 0.1;
6065 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.9e-5;
6066 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 1600.0;
6067 } else if (strcasecmp(ctl->species, "NO2") == 0) {
6068 ctl->molmass = 46.005;
6069 ctl->oh_chem_reaction = 3;
6070 ctl->oh_chem[0] = 1.8e-30;
6071 ctl->oh_chem[1] = 3.0;
6072 ctl->oh_chem[2] = 2.8e-11;
6073 ctl->oh_chem[3] = 0.0;
6074 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.2e-4;
6075 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2400.0;
6076 } else if (strcasecmp(ctl->species, "O3") == 0) {
6077 ctl->molmass = 47.997;
6078 ctl->oh_chem_reaction = 2;
6079 ctl->oh_chem[0] = 1.7e-12;
6080 ctl->oh_chem[1] = 940;
6081 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1e-4;
6082 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2800.0;
6083 } else if (strcasecmp(ctl->species, "SF6") == 0) {
6084 ctl->molmass = 146.048;
6085 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 2.4e-6;
6086 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 3100.0;
6087 } else if (strcasecmp(ctl->species, "SO2") == 0) {
6088 ctl->molmass = 64.066;
6089 ctl->oh_chem_reaction = 3;
6090 ctl->oh_chem[0] = 2.9e-31;
6091 ctl->oh_chem[1] = 4.1;
6092 ctl->oh_chem[2] = 1.7e-12;
6093 ctl->oh_chem[3] = -0.2;
6094 ctl->wet_depo_ic_h[0] = ctl->wet_depo_bc_h[0] = 1.3e-2;
6095 ctl->wet_depo_ic_h[1] = ctl->wet_depo_bc_h[1] = 2900.0;
6096 }
6097
6098 /* Molar mass... */
6099 char defstr[LEN];
6100 sprintf(defstr, "%g", ctl->molmass);
6101 ctl->molmass = scan_ctl(filename, argc, argv, "MOLMASS", -1, defstr, NULL);
6102
6103 /* OH chemistry... */
6104 sprintf(defstr, "%d", ctl->oh_chem_reaction);
6105 ctl->oh_chem_reaction =
6106 (int) scan_ctl(filename, argc, argv, "OH_CHEM_REACTION", -1, defstr,
6107 NULL);
6108 for (int ip = 0; ip < 4; ip++) {
6109 sprintf(defstr, "%g", ctl->oh_chem[ip]);
6110 ctl->oh_chem[ip] =
6111 scan_ctl(filename, argc, argv, "OH_CHEM", ip, defstr, NULL);
6112 }
6113 ctl->oh_chem_beta =
6114 scan_ctl(filename, argc, argv, "OH_CHEM_BETA", -1, "0", NULL);
6115
6116 /* H2O2 chemistry... */
6117 ctl->h2o2_chem_reaction =
6118 (int) scan_ctl(filename, argc, argv, "H2O2_CHEM_REACTION", -1, "0", NULL);
6119
6120 /* KPP chemistry... */
6121 ctl->kpp_chem =
6122 (int) scan_ctl(filename, argc, argv, "KPP_CHEM", -1, "0", NULL);
6123 ctl->dt_kpp = scan_ctl(filename, argc, argv, "DT_KPP", -1, "1800", NULL);
6124
6125 /* First order tracer chemistry... */
6126 ctl->tracer_chem =
6127 (int) scan_ctl(filename, argc, argv, "TRACER_CHEM", -1, "0", NULL);
6128
6129 /* Wet deposition... */
6130 for (int ip = 0; ip < 2; ip++) {
6131 sprintf(defstr, "%g", ctl->wet_depo_ic_h[ip]);
6132 ctl->wet_depo_ic_h[ip] =
6133 scan_ctl(filename, argc, argv, "WET_DEPO_IC_H", ip, defstr, NULL);
6134 }
6135 for (int ip = 0; ip < 1; ip++) {
6136 sprintf(defstr, "%g", ctl->wet_depo_bc_h[ip]);
6137 ctl->wet_depo_bc_h[ip] =
6138 scan_ctl(filename, argc, argv, "WET_DEPO_BC_H", ip, defstr, NULL);
6139 }
6140 ctl->wet_depo_so2_ph =
6141 scan_ctl(filename, argc, argv, "WET_DEPO_SO2_PH", -1, "0", NULL);
6142 ctl->wet_depo_ic_a =
6143 scan_ctl(filename, argc, argv, "WET_DEPO_IC_A", -1, "0", NULL);
6144 ctl->wet_depo_ic_b =
6145 scan_ctl(filename, argc, argv, "WET_DEPO_IC_B", -1, "0", NULL);
6146 ctl->wet_depo_bc_a =
6147 scan_ctl(filename, argc, argv, "WET_DEPO_BC_A", -1, "0", NULL);
6148 ctl->wet_depo_bc_b =
6149 scan_ctl(filename, argc, argv, "WET_DEPO_BC_B", -1, "0", NULL);
6150 ctl->wet_depo_pre[0] =
6151 scan_ctl(filename, argc, argv, "WET_DEPO_PRE", 0, "0.5", NULL);
6152 ctl->wet_depo_pre[1] =
6153 scan_ctl(filename, argc, argv, "WET_DEPO_PRE", 1, "0.36", NULL);
6155 scan_ctl(filename, argc, argv, "WET_DEPO_IC_RET_RATIO", -1, "1", NULL);
6157 scan_ctl(filename, argc, argv, "WET_DEPO_BC_RET_RATIO", -1, "1", NULL);
6158
6159 /* Dry deposition... */
6160 ctl->dry_depo_vdep =
6161 scan_ctl(filename, argc, argv, "DRY_DEPO_VDEP", -1, "0", NULL);
6162 ctl->dry_depo_dp =
6163 scan_ctl(filename, argc, argv, "DRY_DEPO_DP", -1, "30", NULL);
6164
6165 /* Climatological data... */
6166 scan_ctl(filename, argc, argv, "CLIM_PHOTO", -1,
6167 "../../data/clams_photolysis_rates.nc", ctl->clim_photo);
6168 scan_ctl(filename, argc, argv, "CLIM_HNO3_FILENAME", -1,
6169 "../../data/gozcards_HNO3.nc", ctl->clim_hno3_filename);
6170 scan_ctl(filename, argc, argv, "CLIM_OH_FILENAME", -1,
6171 "../../data/clams_radical_species_vmr.nc", ctl->clim_oh_filename);
6172 scan_ctl(filename, argc, argv, "CLIM_H2O2_FILENAME", -1,
6173 "../../data/cams_H2O2.nc", ctl->clim_h2o2_filename);
6174 scan_ctl(filename, argc, argv, "CLIM_HO2_FILENAME", -1,
6175 "../../data/clams_radical_species_vmr.nc", ctl->clim_ho2_filename);
6176 scan_ctl(filename, argc, argv, "CLIM_O1D_FILENAME", -1,
6177 "../../data/clams_radical_species_vmr.nc", ctl->clim_o1d_filename);
6178 scan_ctl(filename, argc, argv, "CLIM_CCL4_TIMESERIES", -1,
6179 "../../data/noaa_gml_ccl4.tab", ctl->clim_ccl4_timeseries);
6180 scan_ctl(filename, argc, argv, "CLIM_CCL3F_TIMESERIES", -1,
6181 "../../data/noaa_gml_cfc11.tab", ctl->clim_ccl3f_timeseries);
6182 scan_ctl(filename, argc, argv, "CLIM_CCL2F2_TIMESERIES", -1,
6183 "../../data/noaa_gml_cfc12.tab", ctl->clim_ccl2f2_timeseries);
6184 scan_ctl(filename, argc, argv, "CLIM_N2O_TIMESERIES", -1,
6185 "../../data/noaa_gml_n2o.tab", ctl->clim_n2o_timeseries);
6186 scan_ctl(filename, argc, argv, "CLIM_SF6_TIMESERIES", -1,
6187 "../../data/noaa_gml_sf6.tab", ctl->clim_sf6_timeseries);
6188
6189 /* Mixing... */
6190 ctl->mixing_dt =
6191 scan_ctl(filename, argc, argv, "MIXING_DT", -1, "3600.", NULL);
6192 ctl->mixing_trop =
6193 scan_ctl(filename, argc, argv, "MIXING_TROP", -1, "-999", NULL);
6194 ctl->mixing_strat =
6195 scan_ctl(filename, argc, argv, "MIXING_STRAT", -1, "-999", NULL);
6196 ctl->mixing_z0 =
6197 scan_ctl(filename, argc, argv, "MIXING_Z0", -1, "-5", NULL);
6198 ctl->mixing_z1 =
6199 scan_ctl(filename, argc, argv, "MIXING_Z1", -1, "85", NULL);
6200 ctl->mixing_nz =
6201 (int) scan_ctl(filename, argc, argv, "MIXING_NZ", -1, "90", NULL);
6202 ctl->mixing_lon0 =
6203 scan_ctl(filename, argc, argv, "MIXING_LON0", -1, "-180", NULL);
6204 ctl->mixing_lon1 =
6205 scan_ctl(filename, argc, argv, "MIXING_LON1", -1, "180", NULL);
6206 ctl->mixing_nx =
6207 (int) scan_ctl(filename, argc, argv, "MIXING_NX", -1, "360", NULL);
6208 ctl->mixing_lat0 =
6209 scan_ctl(filename, argc, argv, "MIXING_LAT0", -1, "-90", NULL);
6210 ctl->mixing_lat1 =
6211 scan_ctl(filename, argc, argv, "MIXING_LAT1", -1, "90", NULL);
6212 ctl->mixing_ny =
6213 (int) scan_ctl(filename, argc, argv, "MIXING_NY", -1, "180", NULL);
6214
6215 /* Chemistry grid... */
6216 ctl->chemgrid_z0 =
6217 scan_ctl(filename, argc, argv, "CHEMGRID_Z0", -1, "-5", NULL);
6218 ctl->chemgrid_z1 =
6219 scan_ctl(filename, argc, argv, "CHEMGRID_Z1", -1, "85", NULL);
6220 ctl->chemgrid_nz =
6221 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NZ", -1, "90", NULL);
6222 ctl->chemgrid_lon0 =
6223 scan_ctl(filename, argc, argv, "CHEMGRID_LON0", -1, "-180", NULL);
6224 ctl->chemgrid_lon1 =
6225 scan_ctl(filename, argc, argv, "CHEMGRID_LON1", -1, "180", NULL);
6226 ctl->chemgrid_nx =
6227 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NX", -1, "360", NULL);
6228 ctl->chemgrid_lat0 =
6229 scan_ctl(filename, argc, argv, "CHEMGRID_LAT0", -1, "-90", NULL);
6230 ctl->chemgrid_lat1 =
6231 scan_ctl(filename, argc, argv, "CHEMGRID_LAT1", -1, "90", NULL);
6232 ctl->chemgrid_ny =
6233 (int) scan_ctl(filename, argc, argv, "CHEMGRID_NY", -1, "180", NULL);
6234
6235 /* Exponential decay... */
6236 ctl->tdec_trop = scan_ctl(filename, argc, argv, "TDEC_TROP", -1, "0", NULL);
6237 ctl->tdec_strat =
6238 scan_ctl(filename, argc, argv, "TDEC_STRAT", -1, "0", NULL);
6239
6240 /* PSC analysis... */
6241 ctl->psc_h2o = scan_ctl(filename, argc, argv, "PSC_H2O", -1, "4e-6", NULL);
6242 ctl->psc_hno3 =
6243 scan_ctl(filename, argc, argv, "PSC_HNO3", -1, "9e-9", NULL);
6244
6245 /* Output of atmospheric data... */
6246 scan_ctl(filename, argc, argv, "ATM_BASENAME", -1, "-", ctl->atm_basename);
6247 scan_ctl(filename, argc, argv, "ATM_GPFILE", -1, "-", ctl->atm_gpfile);
6248 ctl->atm_dt_out =
6249 scan_ctl(filename, argc, argv, "ATM_DT_OUT", -1, "86400", NULL);
6250 ctl->atm_filter =
6251 (int) scan_ctl(filename, argc, argv, "ATM_FILTER", -1, "0", NULL);
6252 ctl->atm_stride =
6253 (int) scan_ctl(filename, argc, argv, "ATM_STRIDE", -1, "1", NULL);
6254 ctl->atm_type =
6255 (int) scan_ctl(filename, argc, argv, "ATM_TYPE", -1, "0", NULL);
6256 ctl->atm_type_out =
6257 (int) scan_ctl(filename, argc, argv, "ATM_TYPE_OUT", -1, "-1", NULL);
6258 if (ctl->atm_type_out == -1)
6259 ctl->atm_type_out = ctl->atm_type;
6260 ctl->atm_nc_level =
6261 (int) scan_ctl(filename, argc, argv, "ATM_NC_LEVEL", -1, "0", NULL);
6262 for (int iq = 0; iq < ctl->nq; iq++)
6263 ctl->atm_nc_quant[iq] =
6264 (int) scan_ctl(filename, argc, argv, "ATM_NC_QUANT", iq, "0", NULL);
6265 ctl->obs_type =
6266 (int) scan_ctl(filename, argc, argv, "OBS_TYPE", -1, "0", NULL);
6267
6268 /* Output of CSI data... */
6269 scan_ctl(filename, argc, argv, "CSI_BASENAME", -1, "-", ctl->csi_basename);
6270 scan_ctl(filename, argc, argv, "CSI_KERNEL", -1, "-", ctl->csi_kernel);
6271 ctl->csi_dt_out =
6272 scan_ctl(filename, argc, argv, "CSI_DT_OUT", -1, "86400", NULL);
6273 scan_ctl(filename, argc, argv, "CSI_OBSFILE", -1, "-", ctl->csi_obsfile);
6274 ctl->csi_obsmin =
6275 scan_ctl(filename, argc, argv, "CSI_OBSMIN", -1, "0", NULL);
6276 ctl->csi_modmin =
6277 scan_ctl(filename, argc, argv, "CSI_MODMIN", -1, "0", NULL);
6278 ctl->csi_z0 = scan_ctl(filename, argc, argv, "CSI_Z0", -1, "-5", NULL);
6279 ctl->csi_z1 = scan_ctl(filename, argc, argv, "CSI_Z1", -1, "85", NULL);
6280 ctl->csi_nz = (int) scan_ctl(filename, argc, argv, "CSI_NZ", -1, "1", NULL);
6281 ctl->csi_lon0 =
6282 scan_ctl(filename, argc, argv, "CSI_LON0", -1, "-180", NULL);
6283 ctl->csi_lon1 = scan_ctl(filename, argc, argv, "CSI_LON1", -1, "180", NULL);
6284 ctl->csi_nx =
6285 (int) scan_ctl(filename, argc, argv, "CSI_NX", -1, "360", NULL);
6286 ctl->csi_lat0 = scan_ctl(filename, argc, argv, "CSI_LAT0", -1, "-90", NULL);
6287 ctl->csi_lat1 = scan_ctl(filename, argc, argv, "CSI_LAT1", -1, "90", NULL);
6288 ctl->csi_ny =
6289 (int) scan_ctl(filename, argc, argv, "CSI_NY", -1, "180", NULL);
6290
6291 /* Output of ensemble data... */
6292 ctl->nens = (int) scan_ctl(filename, argc, argv, "NENS", -1, "0", NULL);
6293 scan_ctl(filename, argc, argv, "ENS_BASENAME", -1, "-", ctl->ens_basename);
6294 ctl->ens_dt_out =
6295 scan_ctl(filename, argc, argv, "ENS_DT_OUT", -1, "86400", NULL);
6296
6297 /* Output of grid data... */
6298 scan_ctl(filename, argc, argv, "GRID_BASENAME", -1, "-",
6299 ctl->grid_basename);
6300 scan_ctl(filename, argc, argv, "GRID_KERNEL", -1, "-", ctl->grid_kernel);
6301 scan_ctl(filename, argc, argv, "GRID_GPFILE", -1, "-", ctl->grid_gpfile);
6302 ctl->grid_dt_out =
6303 scan_ctl(filename, argc, argv, "GRID_DT_OUT", -1, "86400", NULL);
6304 ctl->grid_sparse =
6305 (int) scan_ctl(filename, argc, argv, "GRID_SPARSE", -1, "0", NULL);
6306 ctl->grid_nc_level =
6307 (int) scan_ctl(filename, argc, argv, "GRID_NC_LEVEL", -1, "0", NULL);
6308 for (int iq = 0; iq < ctl->nq; iq++)
6309 ctl->grid_nc_quant[iq] =
6310 (int) scan_ctl(filename, argc, argv, "GRID_NC_QUANT", iq, "0", NULL);
6311 ctl->grid_stddev =
6312 (int) scan_ctl(filename, argc, argv, "GRID_STDDEV", -1, "0", NULL);
6313 ctl->grid_z0 = scan_ctl(filename, argc, argv, "GRID_Z0", -1, "-5", NULL);
6314 ctl->grid_z1 = scan_ctl(filename, argc, argv, "GRID_Z1", -1, "85", NULL);
6315 ctl->grid_nz =
6316 (int) scan_ctl(filename, argc, argv, "GRID_NZ", -1, "1", NULL);
6317 ctl->grid_lon0 =
6318 scan_ctl(filename, argc, argv, "GRID_LON0", -1, "-180", NULL);
6319 ctl->grid_lon1 =
6320 scan_ctl(filename, argc, argv, "GRID_LON1", -1, "180", NULL);
6321 ctl->grid_nx =
6322 (int) scan_ctl(filename, argc, argv, "GRID_NX", -1, "360", NULL);
6323 ctl->grid_lat0 =
6324 scan_ctl(filename, argc, argv, "GRID_LAT0", -1, "-90", NULL);
6325 ctl->grid_lat1 =
6326 scan_ctl(filename, argc, argv, "GRID_LAT1", -1, "90", NULL);
6327 ctl->grid_ny =
6328 (int) scan_ctl(filename, argc, argv, "GRID_NY", -1, "180", NULL);
6329 ctl->grid_type =
6330 (int) scan_ctl(filename, argc, argv, "GRID_TYPE", -1, "0", NULL);
6331
6332 /* Output of profile data... */
6333 scan_ctl(filename, argc, argv, "PROF_BASENAME", -1, "-",
6334 ctl->prof_basename);
6335 scan_ctl(filename, argc, argv, "PROF_OBSFILE", -1, "-", ctl->prof_obsfile);
6336 ctl->prof_z0 = scan_ctl(filename, argc, argv, "PROF_Z0", -1, "0", NULL);
6337 ctl->prof_z1 = scan_ctl(filename, argc, argv, "PROF_Z1", -1, "60", NULL);
6338 ctl->prof_nz =
6339 (int) scan_ctl(filename, argc, argv, "PROF_NZ", -1, "60", NULL);
6340 ctl->prof_lon0 =
6341 scan_ctl(filename, argc, argv, "PROF_LON0", -1, "-180", NULL);
6342 ctl->prof_lon1 =
6343 scan_ctl(filename, argc, argv, "PROF_LON1", -1, "180", NULL);
6344 ctl->prof_nx =
6345 (int) scan_ctl(filename, argc, argv, "PROF_NX", -1, "360", NULL);
6346 ctl->prof_lat0 =
6347 scan_ctl(filename, argc, argv, "PROF_LAT0", -1, "-90", NULL);
6348 ctl->prof_lat1 =
6349 scan_ctl(filename, argc, argv, "PROF_LAT1", -1, "90", NULL);
6350 ctl->prof_ny =
6351 (int) scan_ctl(filename, argc, argv, "PROF_NY", -1, "180", NULL);
6352
6353 /* Output of sample data... */
6354 scan_ctl(filename, argc, argv, "SAMPLE_BASENAME", -1, "-",
6355 ctl->sample_basename);
6356 scan_ctl(filename, argc, argv, "SAMPLE_KERNEL", -1, "-",
6357 ctl->sample_kernel);
6358 scan_ctl(filename, argc, argv, "SAMPLE_OBSFILE", -1, "-",
6359 ctl->sample_obsfile);
6360 ctl->sample_dx =
6361 scan_ctl(filename, argc, argv, "SAMPLE_DX", -1, "50", NULL);
6362 ctl->sample_dz =
6363 scan_ctl(filename, argc, argv, "SAMPLE_DZ", -1, "-999", NULL);
6364
6365 /* Output of station data... */
6366 scan_ctl(filename, argc, argv, "STAT_BASENAME", -1, "-",
6367 ctl->stat_basename);
6368 ctl->stat_lon = scan_ctl(filename, argc, argv, "STAT_LON", -1, "0", NULL);
6369 ctl->stat_lat = scan_ctl(filename, argc, argv, "STAT_LAT", -1, "0", NULL);
6370 ctl->stat_r = scan_ctl(filename, argc, argv, "STAT_R", -1, "50", NULL);
6371 ctl->stat_t0 =
6372 scan_ctl(filename, argc, argv, "STAT_T0", -1, "-1e100", NULL);
6373 ctl->stat_t1 = scan_ctl(filename, argc, argv, "STAT_T1", -1, "1e100", NULL);
6374
6375 /* Output of VTK data... */
6376 scan_ctl(filename, argc, argv, "VTK_BASENAME", -1, "-", ctl->vtk_basename);
6377 ctl->vtk_dt_out =
6378 scan_ctl(filename, argc, argv, "VTK_DT_OUT", -1, "86400", NULL);
6379 ctl->vtk_stride =
6380 (int) scan_ctl(filename, argc, argv, "VTK_STRIDE", -1, "1", NULL);
6381 ctl->vtk_scale =
6382 scan_ctl(filename, argc, argv, "VTK_SCALE", -1, "1.0", NULL);
6383 ctl->vtk_offset =
6384 scan_ctl(filename, argc, argv, "VTK_OFFSET", -1, "0.0", NULL);
6385 ctl->vtk_sphere =
6386 (int) scan_ctl(filename, argc, argv, "VTK_SPHERE", -1, "0", NULL);
6387
6388 /* Domain decomposition... */
6389 ctl->dd = (int) scan_ctl(filename, argc, argv, "DD", -1, "0", NULL);
6391 (int) scan_ctl(filename, argc, argv, "DD_SUBDOMAINS_MERIDIONAL", -1,
6392 (ctl->dd == 1) ? "2" : "1", NULL);
6393 ctl->dd_subdomains_zonal =
6394 (int) scan_ctl(filename, argc, argv, "DD_SUBDOMAINS_ZONAL", -1,
6395 (ctl->dd == 1) ? "2" : "1", NULL);
6397 ctl->dd = 1;
6398 else if (ctl->dd == 1)
6399 ERRMSG("Please provide zonal and meridional subdomain numbers!")
6400 ctl->dd_nbr_neighbours =
6401 (int) scan_ctl(filename, argc, argv, "DD_NBR_NEIGHBOURS", -1, "8",
6402 NULL);
6403 ctl->dd_halos_size =
6404 (int) scan_ctl(filename, argc, argv, "DD_HALOS_SIZE", -1, "1", NULL);
6405}
6406
6407/*****************************************************************************/
6408
6410 const char *filename,
6411 const ctl_t *ctl,
6412 const clim_t *clim,
6413 met_t *met,
6414 dd_t *dd) {
6415
6416 /* Write info... */
6417 LOG(1, "Read meteo data: %s", filename);
6418
6419 /* Set rank... */
6420 int rank = 0;
6421#ifdef MPI
6422 if (ctl->met_mpi_share)
6423 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6424#endif
6425
6426 /* Check rank... */
6427 if (!ctl->met_mpi_share || rank == 0) {
6428
6429 /* Read netCDF data... */
6430 if (ctl->met_type == 0) {
6431 if (read_met_nc(filename, ctl, met, dd) != 1)
6432 return 0;
6433 }
6434
6435 /* Read binary data... */
6436 else if ((ctl->met_type >= 1 && ctl->met_type <= 5) || ctl->met_type == 7) {
6437 if (read_met_bin(filename, ctl, met) != 1)
6438 return 0;
6439 }
6440
6441#ifdef ECCODES
6442 /* Read grib data... */
6443 else if (ctl->met_type == 6) {
6444 if (read_met_grib(filename, ctl, met) != 1)
6445 return 0;
6446 }
6447#endif
6448
6449 /* Not implemented... */
6450 else
6451 ERRMSG("MET_TYPE not implemented!");
6452
6453 /* Preprocessing for netCDF and grib files... */
6454 if (ctl->met_type == 0 || ctl->met_type == 6) {
6455
6456 /* Extrapolate data for lower boundary... */
6458
6459 /* Fix polar winds... */
6461
6462 /* Create periodic boundary conditions... */
6463#ifndef DD
6464 read_met_periodic(met);
6465#endif
6466
6467 /* Downsampling... */
6468 read_met_sample(ctl, met);
6469
6470 /* Calculate geopotential heights... */
6471 read_met_geopot(ctl, met);
6472
6473 /* Calculate potential vorticity... */
6474 read_met_pv(met);
6475
6476 /* Calculate boundary layer data... */
6477 read_met_pbl(ctl, met);
6478
6479 /* Calculate tropopause data... */
6480 read_met_tropo(ctl, clim, met);
6481
6482 /* Calculate cloud properties... */
6483 read_met_cloud(met);
6484
6485 /* Calculate convective available potential energy... */
6486 read_met_cape(ctl, clim, met);
6487
6488 /* Calculate total column ozone... */
6489 read_met_ozone(met);
6490
6491 /* Detrending... */
6492 read_met_detrend(ctl, met);
6493
6494 /* Check meteo data and smooth zeta profiles ... */
6495 read_met_monotonize(ctl, met);
6496 }
6497 }
6498
6499 /* Broadcast data via MPI... */
6500#ifdef MPI
6501 if (ctl->met_mpi_share) {
6502
6503 /* Set timer... */
6504 SELECT_TIMER("READ_MET_MPI_BCAST", "COMM", NVTX_SEND);
6505 LOG(2, "Broadcast data on rank %d...", rank);
6506
6507 /* Broadcast... */
6508 broadcast_large_data(met, sizeof(met_t));
6509 }
6510#endif
6511
6512 /* Return success... */
6513 return 1;
6514}
6515
6516/*****************************************************************************/
6517
6519 ctl_t *ctl,
6520 cache_t *cache,
6521 clim_t *clim,
6522 met_t **met0,
6523 met_t **met1,
6524 atm_t *atm,
6525 double t,
6526 dd_t *dd) {
6527
6528 /* Initialize modules... */
6529 if (t == ctl->t_start) {
6530
6531 /* Initialize isosurface data... */
6532 if (ctl->isosurf >= 1 && ctl->isosurf <= 4)
6533 module_isosurf_init(ctl, cache, *met0, *met1, atm);
6534
6535 /* Initialize advection... */
6536 module_advect_init(ctl, cache, *met0, *met1, atm);
6537
6538 /* Initialize chemistry... */
6539 module_chem_init(ctl, cache, clim, *met0, *met1, atm);
6540 }
6541
6542 /* Set time steps of air parcels... */
6543 module_timesteps(ctl, cache, *met0, atm, t);
6544
6545 /* Sort particles... */
6546 if (ctl->sort_dt > 0 && fmod(t, ctl->sort_dt) == 0)
6547 module_sort(ctl, *met0, atm);
6548
6549
6550 /* Check positions (initial)... */
6551 module_position(cache, *met0, *met1, atm);
6552
6553 /* Advection... */
6554 if (ctl->advect > 0)
6555 module_advect(ctl, cache, *met0, *met1, atm);
6556
6557 /* Turbulent diffusion... */
6558 if (ctl->diffusion == 1
6559 && (ctl->turb_dx_pbl > 0 || ctl->turb_dz_pbl > 0
6560 || ctl->turb_dx_trop > 0 || ctl->turb_dz_trop > 0
6561 || ctl->turb_dx_strat > 0 || ctl->turb_dz_strat > 0))
6562 module_diff_turb(ctl, cache, clim, *met0, *met1, atm);
6563
6564 /* Mesoscale diffusion... */
6565 if (ctl->diffusion == 1 && (ctl->turb_mesox > 0 || ctl->turb_mesoz > 0))
6566 module_diff_meso(ctl, cache, *met0, *met1, atm);
6567
6568 /* Diffusion... */
6569 if (ctl->diffusion == 2)
6570 module_diff_pbl(ctl, cache, *met0, *met1, atm);
6571
6572 /* Convection... */
6573 if ((ctl->conv_mix_pbl || ctl->conv_cape >= 0)
6574 && (ctl->conv_dt <= 0 || fmod(t, ctl->conv_dt) == 0))
6575 module_convection(ctl, cache, *met0, *met1, atm);
6576
6577 /* Sedimentation... */
6578 if (ctl->qnt_rp >= 0 && ctl->qnt_rhop >= 0)
6579 module_sedi(ctl, cache, *met0, *met1, atm);
6580
6581 /* Isosurface... */
6582 if (ctl->isosurf >= 1 && ctl->isosurf <= 4)
6583 module_isosurf(ctl, cache, *met0, *met1, atm);
6584
6585 /* Check positions (final)... */
6586 module_position(cache, *met0, *met1, atm);
6587
6588 /* Interpolate meteo data... */
6589 if (ctl->met_dt_out > 0
6590 && (ctl->met_dt_out < ctl->dt_mod || fmod(t, ctl->met_dt_out) == 0))
6591 module_meteo(ctl, cache, clim, *met0, *met1, atm);
6592
6593 /* Check boundary conditions (initial)... */
6594 if ((ctl->bound_lat0 < ctl->bound_lat1)
6595 && (ctl->bound_p0 > ctl->bound_p1))
6596 module_bound_cond(ctl, cache, clim, *met0, *met1, atm);
6597
6598 /* Initialize quantity of total loss rate... */
6599 if (ctl->qnt_loss_rate >= 0) {
6600 PARTICLE_LOOP(0, atm->np, 1, "acc data present(ctl,atm)") {
6601 atm->q[ctl->qnt_loss_rate][ip] = 0;
6602 }
6603 }
6604
6605 /* Decay of particle mass... */
6606 if (ctl->tdec_trop > 0 && ctl->tdec_strat > 0)
6607 module_decay(ctl, cache, clim, atm);
6608
6609 /* Interparcel mixing... */
6610 if (ctl->mixing_trop >= 0 && ctl->mixing_strat >= 0
6611 && (ctl->mixing_dt <= 0 || fmod(t, ctl->mixing_dt) == 0))
6612 module_mixing(ctl, clim, atm, t);
6613
6614 /* Calculate the tracer vmr in the chemistry grid... */
6615 if (ctl->oh_chem_reaction != 0 || ctl->h2o2_chem_reaction != 0
6616 || (ctl->kpp_chem && fmod(t, ctl->dt_kpp) == 0))
6617 module_chem_grid(ctl, *met0, *met1, atm, t);
6618
6619 /* OH chemistry... */
6620 if (ctl->oh_chem_reaction != 0)
6621 module_oh_chem(ctl, cache, clim, *met0, *met1, atm);
6622
6623 /* H2O2 chemistry (for SO2 aqueous phase oxidation)... */
6624 if (ctl->h2o2_chem_reaction != 0)
6625 module_h2o2_chem(ctl, cache, clim, *met0, *met1, atm);
6626
6627 /* First-order tracer chemistry... */
6628 if (ctl->tracer_chem)
6629 module_tracer_chem(ctl, cache, clim, *met0, *met1, atm);
6630
6631 /* Domain decomposition... */
6632 if (dd->init) {
6633#ifdef DD
6634 module_dd(ctl, atm, cache, dd, met0);
6635#else
6636 ERRMSG("DD initialized, but model is compiled without DD.")
6637#endif
6638 }
6639
6640 /* KPP chemistry... */
6641 if (ctl->kpp_chem && fmod(t, ctl->dt_kpp) == 0) {
6642#ifdef KPP
6643 module_kpp_chem(ctl, cache, clim, *met0, *met1, atm);
6644#else
6645 ERRMSG("Code was compiled without KPP!");
6646#endif
6647 }
6648
6649 /* Wet deposition... */
6650 if ((ctl->wet_depo_ic_a > 0 || ctl->wet_depo_ic_h[0] > 0)
6651 && (ctl->wet_depo_bc_a > 0 || ctl->wet_depo_bc_h[0] > 0))
6652 module_wet_depo(ctl, cache, *met0, *met1, atm);
6653
6654 /* Dry deposition... */
6655 if (ctl->dry_depo_vdep > 0)
6656 module_dry_depo(ctl, cache, *met0, *met1, atm);
6657
6658 /* Check boundary conditions (final)... */
6659 if ((ctl->bound_lat0 < ctl->bound_lat1)
6660 && (ctl->bound_p0 > ctl->bound_p1))
6661 module_bound_cond(ctl, cache, clim, *met0, *met1, atm);
6662}
6663
6664/*****************************************************************************/
6665
6667 const ctl_t *ctl,
6668 const cache_t *cache,
6669 const clim_t *clim,
6670 met_t **met0,
6671 met_t **met1,
6672 const atm_t *atm) {
6673
6674 /* Update GPU... */
6675 if (ctl != NULL) {
6676#ifdef _OPENACC
6677 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6678#pragma acc update device(ctl[:1])
6679#endif
6680 }
6681
6682 if (cache != NULL) {
6683#ifdef _OPENACC
6684 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6685#pragma acc update device(cache[:1])
6686#endif
6687 }
6688
6689 if (clim != NULL) {
6690#ifdef _OPENACC
6691 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6692#pragma acc update device(clim[:1])
6693#endif
6694 }
6695
6696 if (met0 != NULL) {
6697#ifdef _OPENACC
6698 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6699 met_t *met0up = *met0;
6700#pragma acc update device(met0up[:1])
6701#endif
6702 }
6703
6704 if (met1 != NULL) {
6705#ifdef _OPENACC
6706 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6707 met_t *met1up = *met1;
6708#pragma acc update device(met1up[:1])
6709#endif
6710 }
6711
6712 if (atm != NULL) {
6713#ifdef _OPENACC
6714 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6715#pragma acc update device(atm[:1])
6716#endif
6717 }
6718}
6719
6720/*****************************************************************************/
6721
6723 const ctl_t *ctl,
6724 const cache_t *cache,
6725 const clim_t *clim,
6726 met_t **met0,
6727 met_t **met1,
6728 const atm_t *atm) {
6729
6730 /* Update GPU... */
6731 if (ctl != NULL) {
6732#ifdef _OPENACC
6733 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
6734#pragma acc update host(ctl[:1])
6735#endif
6736 }
6737
6738 if (cache != NULL) {
6739#ifdef _OPENACC
6740 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
6741#pragma acc update host(cache[:1])
6742#endif
6743 }
6744
6745 if (clim != NULL) {
6746#ifdef _OPENACC
6747 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
6748#pragma acc update host(clim[:1])
6749#endif
6750 }
6751
6752 if (met0 != NULL) {
6753#ifdef _OPENACC
6754 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6755 met_t *met0up = *met0;
6756#pragma acc update host(met0up[:1])
6757#endif
6758 }
6759
6760 if (met1 != NULL) {
6761#ifdef _OPENACC
6762 SELECT_TIMER("UPDATE_DEVICE", "MEMORY", NVTX_H2D);
6763 met_t *met1up = *met1;
6764#pragma acc update host(met1up[:1])
6765#endif
6766 }
6767
6768 if (atm != NULL) {
6769#ifdef _OPENACC
6770 SELECT_TIMER("UPDATE_HOST", "MEMORY", NVTX_H2D);
6771#pragma acc update host(atm[:1])
6772#endif
6773 }
6774}
6775
6776/*****************************************************************************/
6777
6779 const char *filename,
6780 const ctl_t *ctl,
6781 const atm_t *atm,
6782 const double t) {
6783
6784 /* Set timer... */
6785 SELECT_TIMER("WRITE_ATM", "OUTPUT", NVTX_WRITE);
6786
6787 /* Write info... */
6788 LOG(1, "Write atmospheric data: %s", filename);
6789
6790 /* Write ASCII data... */
6791 if (ctl->atm_type_out == 0)
6792 write_atm_asc(filename, ctl, atm, t);
6793
6794 /* Write binary data... */
6795 else if (ctl->atm_type_out == 1)
6796 write_atm_bin(filename, ctl, atm);
6797
6798 /* Write netCDF data... */
6799 else if (ctl->atm_type_out == 2)
6800 write_atm_nc(filename, ctl, atm);
6801
6802 /* Write CLaMS trajectory data... */
6803 else if (ctl->atm_type_out == 3)
6804 write_atm_clams_traj(filename, ctl, atm, t);
6805
6806 /* Write CLaMS pos data... */
6807 else if (ctl->atm_type_out == 4)
6808 write_atm_clams(filename, ctl, atm);
6809
6810 /* Error... */
6811 else
6812 ERRMSG("Atmospheric data type not supported!");
6813
6814 /* Write info... */
6815 double mini, maxi;
6816 LOG(2, "Number of particles: %d", atm->np);
6817 gsl_stats_minmax(&mini, &maxi, atm->time, 1, (size_t) atm->np);
6818 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
6819 gsl_stats_minmax(&mini, &maxi, atm->p, 1, (size_t) atm->np);
6820 LOG(2, "Altitude range: %g ... %g km", Z(maxi), Z(mini));
6821 LOG(2, "Pressure range: %g ... %g hPa", maxi, mini);
6822 gsl_stats_minmax(&mini, &maxi, atm->lon, 1, (size_t) atm->np);
6823 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
6824 gsl_stats_minmax(&mini, &maxi, atm->lat, 1, (size_t) atm->np);
6825 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
6826 for (int iq = 0; iq < ctl->nq; iq++) {
6827 char msg[5 * LEN];
6828 sprintf(msg, "Quantity %s range: %s ... %s %s",
6829 ctl->qnt_name[iq], ctl->qnt_format[iq],
6830 ctl->qnt_format[iq], ctl->qnt_unit[iq]);
6831 gsl_stats_minmax(&mini, &maxi, atm->q[iq], 1, (size_t) atm->np);
6832 LOG(2, msg, mini, maxi);
6833 }
6834}
6835
6836/*****************************************************************************/
6837
6839 const char *filename,
6840 const ctl_t *ctl,
6841 met_t *met) {
6842
6843 /* Set timer... */
6844 SELECT_TIMER("WRITE_MET", "OUTPUT", NVTX_WRITE);
6845
6846 /* Write info... */
6847 LOG(1, "Write meteo data: %s", filename);
6848
6849 /* Check compression flags... */
6850#ifndef ZFP
6851 if (ctl->met_type == 3)
6852 ERRMSG("MPTRAC was compiled without ZFP compression!");
6853#endif
6854#ifndef ZSTD
6855 if (ctl->met_type == 4)
6856 ERRMSG("MPTRAC was compiled without ZSTD compression!");
6857#endif
6858#ifndef CMS
6859 if (ctl->met_type == 5)
6860 ERRMSG("MPTRAC was compiled without cmultiscale compression!");
6861#endif
6862#ifndef SZ3
6863 if (ctl->met_type == 7)
6864 ERRMSG("MPTRAC was compiled without SZ3 compression!");
6865#endif
6866
6867 /* Write netCDF data... */
6868 if (ctl->met_type == 0)
6869 write_met_nc(filename, ctl, met);
6870
6871 /* Write binary data... */
6872 else if (ctl->met_type >= 1 && ctl->met_type <= 7)
6873 write_met_bin(filename, ctl, met);
6874
6875 /* Not implemented... */
6876 else
6877 ERRMSG("MET_TYPE not implemented!");
6878}
6879
6880/*****************************************************************************/
6881
6883 const char *dirname,
6884 const ctl_t *ctl,
6885 met_t *met0,
6886 met_t *met1,
6887 atm_t *atm,
6888 const double t) {
6889
6890 char ext[10], filename[2 * LEN];
6891
6892 double r;
6893
6894 int year, mon, day, hour, min, sec;
6895
6896 /* Get time... */
6897 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
6898
6899 /* Update host... */
6900 if ((ctl->atm_basename[0] != '-' && fmod(t, ctl->atm_dt_out) == 0)
6901 || (ctl->grid_basename[0] != '-' && fmod(t, ctl->grid_dt_out) == 0)
6902 || (ctl->ens_basename[0] != '-' && fmod(t, ctl->ens_dt_out) == 0)
6903 || ctl->csi_basename[0] != '-' || ctl->prof_basename[0] != '-'
6904 || ctl->sample_basename[0] != '-' || ctl->stat_basename[0] != '-'
6905 || (ctl->vtk_basename[0] != '-' && fmod(t, ctl->vtk_dt_out) == 0))
6906 mptrac_update_host(NULL, NULL, NULL, NULL, NULL, atm);
6907
6908 /* Write atmospheric data... */
6909 if (ctl->atm_basename[0] != '-' &&
6910 (fmod(t, ctl->atm_dt_out) == 0 || t == ctl->t_stop)) {
6911 if (ctl->atm_type_out == 0)
6912 sprintf(ext, "tab");
6913 else if (ctl->atm_type_out == 1)
6914 sprintf(ext, "bin");
6915 else if (ctl->atm_type_out == 2)
6916 sprintf(ext, "nc");
6917 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
6918 dirname, ctl->atm_basename, year, mon, day, hour, min, ext);
6919 mptrac_write_atm(filename, ctl, atm, t);
6920 }
6921
6922 /* Write gridded data... */
6923 if (ctl->grid_basename[0] != '-' && fmod(t, ctl->grid_dt_out) == 0) {
6924 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
6925 dirname, ctl->grid_basename, year, mon, day, hour, min,
6926 ctl->grid_type == 0 ? "tab" : "nc");
6927 write_grid(filename, ctl, met0, met1, atm, t);
6928 }
6929
6930 /* Write CSI data... */
6931 if (ctl->csi_basename[0] != '-') {
6932 sprintf(filename, "%s/%s.tab", dirname, ctl->csi_basename);
6933 write_csi(filename, ctl, atm, t);
6934 }
6935
6936 /* Write ensemble data... */
6937 if (ctl->ens_basename[0] != '-' && fmod(t, ctl->ens_dt_out) == 0) {
6938 sprintf(filename, "%s/%s_%04d_%02d_%02d_%02d_%02d.tab",
6939 dirname, ctl->ens_basename, year, mon, day, hour, min);
6940 write_ens(filename, ctl, atm, t);
6941 }
6942
6943 /* Write profile data... */
6944 if (ctl->prof_basename[0] != '-') {
6945 sprintf(filename, "%s/%s.tab", dirname, ctl->prof_basename);
6946 write_prof(filename, ctl, met0, met1, atm, t);
6947 }
6948
6949 /* Write sample data... */
6950 if (ctl->sample_basename[0] != '-') {
6951 sprintf(filename, "%s/%s.tab", dirname, ctl->sample_basename);
6952 write_sample(filename, ctl, met0, met1, atm, t);
6953 }
6954
6955 /* Write station data... */
6956 if (ctl->stat_basename[0] != '-') {
6957 sprintf(filename, "%s/%s.tab", dirname, ctl->stat_basename);
6958 write_station(filename, ctl, atm, t);
6959 }
6960
6961 /* Write VTK data... */
6962 if (ctl->vtk_basename[0] != '-' && fmod(t, ctl->vtk_dt_out) == 0) {
6963 static int nvtk;
6964 if (t == ctl->t_start)
6965 nvtk = 0;
6966 sprintf(filename, "%s/%s_%05d.vtk", dirname, ctl->vtk_basename, ++nvtk);
6967 write_vtk(filename, ctl, atm, t);
6968 }
6969}
6970
6971/*****************************************************************************/
6972
6974 const double p,
6975 const double h2o,
6976 const double hno3) {
6977
6978 /* Check water vapor volume mixing ratio... */
6979 const double h2o_help = MAX(h2o, 0.1e-6);
6980
6981 /* Calculate T_NAT... */
6982 const double p_hno3 = hno3 * p / 1.333224;
6983 const double p_h2o = h2o_help * p / 1.333224;
6984 const double a = 0.009179 - 0.00088 * log10(p_h2o);
6985 const double b = (38.9855 - log10(p_hno3) - 2.7836 * log10(p_h2o)) / a;
6986 const double c = -11397.0 / a;
6987 double tnat = (-b + sqrt(b * b - 4. * c)) / 2.;
6988 double x2 = (-b - sqrt(b * b - 4. * c)) / 2.;
6989 if (x2 > 0)
6990 tnat = x2;
6991
6992 return tnat;
6993}
6994
6995/*****************************************************************************/
6996
6998 const ctl_t *ctl,
6999 const atm_t *atm,
7000 const int ip,
7001 const double pbl,
7002 const double ps) {
7003
7004 /* Get pressure range... */
7005 const double p1 = pbl - ctl->conv_pbl_trans * (ps - pbl);
7006 const double p0 = pbl;
7007
7008 /* Get weighting factor... */
7009 if (atm->p[ip] > p0)
7010 return 1;
7011 else if (atm->p[ip] < p1)
7012 return 0;
7013 else
7014 return LIN(p0, 1.0, p1, 0.0, atm->p[ip]);
7015}
7016
7017/*****************************************************************************/
7018
7020 const char *filename,
7021 const ctl_t *ctl,
7022 atm_t *atm) {
7023
7024 /* Open file... */
7025 FILE *in;
7026 if (!(in = fopen(filename, "r"))) {
7027 WARN("Cannot open file!");
7028 return 0;
7029 }
7030
7031 /* Read line... */
7032 char line[LEN];
7033 while (fgets(line, LEN, in)) {
7034
7035 /* Read data... */
7036 char *tok;
7037 TOK(line, tok, "%lg", atm->time[atm->np]);
7038 TOK(NULL, tok, "%lg", atm->p[atm->np]);
7039 TOK(NULL, tok, "%lg", atm->lon[atm->np]);
7040 TOK(NULL, tok, "%lg", atm->lat[atm->np]);
7041 for (int iq = 0; iq < ctl->nq; iq++)
7042 TOK(NULL, tok, "%lg", atm->q[iq][atm->np]);
7043
7044 /* Convert altitude to pressure... */
7045 atm->p[atm->np] = P(atm->p[atm->np]);
7046
7047 /* Increment data point counter... */
7048 if ((++atm->np) > NP)
7049 ERRMSG("Too many data points!");
7050 }
7051
7052 /* Close file... */
7053 fclose(in);
7054
7055 /* Return success... */
7056 return 1;
7057}
7058
7059/*****************************************************************************/
7060
7062 const char *filename,
7063 const ctl_t *ctl,
7064 atm_t *atm) {
7065
7066 /* Open file... */
7067 FILE *in;
7068 if (!(in = fopen(filename, "r")))
7069 return 0;
7070
7071 /* Check version of binary data... */
7072 int version;
7073 FREAD(&version, int,
7074 1,
7075 in);
7076 if (version != 100)
7077 ERRMSG("Wrong version of binary data!");
7078
7079 /* Read data... */
7080 FREAD(&atm->np, int,
7081 1,
7082 in);
7083 FREAD(atm->time, double,
7084 (size_t) atm->np,
7085 in);
7086 FREAD(atm->p, double,
7087 (size_t) atm->np,
7088 in);
7089 FREAD(atm->lon, double,
7090 (size_t) atm->np,
7091 in);
7092 FREAD(atm->lat, double,
7093 (size_t) atm->np,
7094 in);
7095 for (int iq = 0; iq < ctl->nq; iq++)
7096 FREAD(atm->q[iq], double,
7097 (size_t) atm->np,
7098 in);
7099
7100 /* Read final flag... */
7101 int final;
7102 FREAD(&final, int,
7103 1,
7104 in);
7105 if (final != 999)
7106 ERRMSG("Error while reading binary data!");
7107
7108 /* Close file... */
7109 fclose(in);
7110
7111 /* Return success... */
7112 return 1;
7113}
7114
7115/*****************************************************************************/
7116
7118 const char *filename,
7119 const ctl_t *ctl,
7120 atm_t *atm) {
7121
7122 int ncid, varid;
7123
7124 /* Open file... */
7125 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
7126 return 0;
7127
7128 /* Get dimensions... */
7129 NC_INQ_DIM("NPARTS", &atm->np, 1, NP, 1);
7130
7131 /* Get time... */
7132 if (nc_inq_varid(ncid, "TIME_INIT", &varid) == NC_NOERR) {
7133 NC(nc_get_var_double(ncid, varid, atm->time));
7134 } else {
7135 WARN("TIME_INIT not found use time instead!");
7136 double time_init;
7137 NC_GET_DOUBLE("time", &time_init, 1);
7138 for (int ip = 0; ip < atm->np; ip++) {
7139 atm->time[ip] = time_init;
7140 }
7141 }
7142
7143 /* Read zeta coordinate, pressure is optional... */
7144 if (ctl->advect_vert_coord == 1) {
7145 NC_GET_DOUBLE("ZETA", atm->q[ctl->qnt_zeta], 1);
7146 NC_GET_DOUBLE("PRESS", atm->p, 0);
7147 }
7148
7149 /* Read pressure, zeta coordinate is optional... */
7150 else {
7151 if (nc_inq_varid(ncid, "PRESS_INIT", &varid) == NC_NOERR) {
7152 NC(nc_get_var_double(ncid, varid, atm->p));
7153 } else {
7154 WARN("PRESS_INIT not found use PRESS instead!");
7155 nc_inq_varid(ncid, "PRESS", &varid);
7156 NC(nc_get_var_double(ncid, varid, atm->p));
7157 }
7158 }
7159
7160 /* Read further quantities if requested... */
7161 for (int iq = 0; iq < ctl->nq; iq++)
7162 NC_GET_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
7163
7164 /* Read longitude and latitude... */
7165 NC_GET_DOUBLE("LON", atm->lon, 1);
7166 NC_GET_DOUBLE("LAT", atm->lat, 1);
7167
7168 /* Close file... */
7169 NC(nc_close(ncid));
7170
7171 /* Return success... */
7172 return 1;
7173}
7174
7175/*****************************************************************************/
7176
7178 const char *filename,
7179 const ctl_t *ctl,
7180 atm_t *atm) {
7181
7182 int ncid, varid;
7183
7184 /* Open file... */
7185 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
7186 return 0;
7187
7188 /* Get dimensions... */
7189 NC_INQ_DIM("obs", &atm->np, 1, NP, 1);
7190
7191 /* Read geolocations... */
7192 NC_GET_DOUBLE("time", atm->time, 1);
7193 NC_GET_DOUBLE("press", atm->p, 1);
7194 NC_GET_DOUBLE("lon", atm->lon, 1);
7195 NC_GET_DOUBLE("lat", atm->lat, 1);
7196
7197 /* Read variables... */
7198 for (int iq = 0; iq < ctl->nq; iq++)
7199 NC_GET_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
7200
7201 /* Close file... */
7202 NC(nc_close(ncid));
7203
7204 /* Return success... */
7205 return 1;
7206}
7207
7208/*****************************************************************************/
7209
7211 const char *filename,
7212 clim_photo_t *photo) {
7213
7214 int ncid, varid;
7215
7216 /* Write info... */
7217 LOG(1, "Read photolysis rates: %s", filename);
7218
7219 /* Open netCDF file... */
7220 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
7221 WARN("Photolysis rate data are missing!");
7222 return;
7223 }
7224
7225 /* Read pressure data... */
7226 NC_INQ_DIM("press", &photo->np, 2, CP, 1);
7227 NC_GET_DOUBLE("press", photo->p, 1);
7228 if (photo->p[0] < photo->p[1])
7229 ERRMSG("Pressure data are not descending!");
7230
7231 /* Read total column ozone data... */
7232 NC_INQ_DIM("total_o3col", &photo->no3c, 2, CO3, 1);
7233 NC_GET_DOUBLE("total_o3col", photo->o3c, 1);
7234 if (photo->o3c[0] > photo->o3c[1])
7235 ERRMSG("Total column ozone data are not ascending!");
7236
7237 /* Read solar zenith angle data... */
7238 NC_INQ_DIM("sza", &photo->nsza, 2, CSZA, 1);
7239 NC_GET_DOUBLE("sza", photo->sza, 1);
7240 if (photo->sza[0] > photo->sza[1])
7241 ERRMSG("Solar zenith angle data are not ascending!");
7242
7243 /* Read data... */
7244 read_clim_photo_help(ncid, "J_N2O", photo, photo->n2o);
7245 read_clim_photo_help(ncid, "J_CCl4", photo, photo->ccl4);
7246 read_clim_photo_help(ncid, "J_CFC-11", photo, photo->ccl3f);
7247 read_clim_photo_help(ncid, "J_CFC-12", photo, photo->ccl2f2);
7248 read_clim_photo_help(ncid, "J_O2", photo, photo->o2);
7249 read_clim_photo_help(ncid, "J_O3b", photo, photo->o3_1);
7250 read_clim_photo_help(ncid, "J_O3a", photo, photo->o3_2);
7251 read_clim_photo_help(ncid, "J_H2O2", photo, photo->h2o2);
7252 read_clim_photo_help(ncid, "J_H2O", photo, photo->h2o);
7253
7254 /* Close netCDF file... */
7255 NC(nc_close(ncid));
7256
7257 /* Write info... */
7258 LOG(2, "Number of pressure levels: %d", photo->np);
7259 LOG(2, "Altitude levels: %g, %g ... %g km",
7260 Z(photo->p[0]), Z(photo->p[1]), Z(photo->p[photo->np - 1]));
7261 LOG(2, "Pressure levels: %g, %g ... %g hPa",
7262 photo->p[0], photo->p[1], photo->p[photo->np - 1]);
7263 LOG(2, "Number of solar zenith angles: %d", photo->nsza);
7264 LOG(2, "Solar zenith angles: %g, %g ... %g deg",
7265 RAD2DEG(photo->sza[0]), RAD2DEG(photo->sza[1]),
7266 RAD2DEG(photo->sza[photo->nsza - 1]));
7267 LOG(2, "Number of total column ozone values: %d", photo->no3c);
7268 LOG(2, "Total column ozone: %g, %g ... %g DU",
7269 photo->o3c[0], photo->o3c[1], photo->o3c[photo->no3c - 1]);
7270 LOG(2, "N2O photolysis rate: %g, %g ... %g s**-1",
7271 photo->n2o[0][0][0], photo->n2o[1][0][0],
7272 photo->n2o[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7273 LOG(2, "CCl4 photolysis rate: %g, %g ... %g s**-1",
7274 photo->ccl4[0][0][0], photo->ccl4[1][0][0],
7275 photo->ccl4[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7276 LOG(2, "CFC-11 photolysis rate: %g, %g ... %g s**-1",
7277 photo->ccl3f[0][0][0], photo->ccl3f[1][0][0],
7278 photo->ccl3f[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7279 LOG(2, "CFC-12 photolysis rate: %g, %g ... %g s**-1",
7280 photo->ccl2f2[0][0][0], photo->ccl2f2[1][0][0],
7281 photo->ccl2f2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7282 LOG(2, "O2 photolysis rate: %g, %g ... %g s**-1",
7283 photo->o2[0][0][0], photo->o2[1][0][0],
7284 photo->o2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7285 LOG(2, "O3 -> O(1D) photolysis rate: %g, %g ... %g s**-1",
7286 photo->o3_1[0][0][0], photo->o3_1[1][0][0],
7287 photo->o3_1[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7288 LOG(2, "O3 -> O(3P) photolysis rate: %g, %g ... %g s**-1",
7289 photo->o3_2[0][0][0], photo->o3_2[1][0][0],
7290 photo->o3_2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7291 LOG(2, "H2O2 photolysis rate: %g, %g ... %g s**-1",
7292 photo->h2o2[0][0][0], photo->h2o2[1][0][0],
7293 photo->h2o2[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7294 LOG(2, "H2O photolysis rate: %g, %g ... %g s**-1",
7295 photo->h2o[0][0][0], photo->h2o[1][0][0],
7296 photo->h2o[photo->np - 1][photo->nsza - 1][photo->no3c - 1]);
7297}
7298
7299/*****************************************************************************/
7300
7302 const int ncid,
7303 const char *varname,
7304 const clim_photo_t *photo,
7305 double var[CP][CSZA][CO3]) {
7306
7307 /* Allocate... */
7308 double *help;
7309 ALLOC(help, double,
7310 photo->np * photo->nsza * photo->no3c);
7311
7312 /* Read varible... */
7313 int varid;
7314 NC_GET_DOUBLE(varname, help, 1);
7315
7316 /* Copy data... */
7317 for (int ip = 0; ip < photo->np; ip++)
7318 for (int is = 0; is < photo->nsza; is++)
7319 for (int io = 0; io < photo->no3c; io++)
7320 var[ip][is][io] =
7321 help[ARRAY_3D(ip, is, photo->nsza, io, photo->no3c)];
7322
7323 /* Free... */
7324 free(help);
7325}
7326
7327/*****************************************************************************/
7328
7330 const char *filename,
7331 clim_ts_t *ts) {
7332
7333 /* Write info... */
7334 LOG(1, "Read climatological time series: %s", filename);
7335
7336 /* Open file... */
7337 FILE *in;
7338 if (!(in = fopen(filename, "r"))) {
7339 WARN("Cannot open file!");
7340 return 0;
7341 }
7342
7343 /* Read data... */
7344 char line[LEN];
7345 int nh = 0;
7346 while (fgets(line, LEN, in))
7347 if (sscanf(line, "%lg %lg", &ts->time[nh], &ts->vmr[nh]) == 2) {
7348
7349 /* Convert years to seconds... */
7350 ts->time[nh] = (ts->time[nh] - 2000.0) * 365.25 * 86400.;
7351
7352 /* Check data... */
7353 if (nh > 0 && ts->time[nh] <= ts->time[nh - 1])
7354 ERRMSG("Time series must be ascending!");
7355
7356 /* Count time steps... */
7357 if ((++nh) >= CTS)
7358 ERRMSG("Too many data points!");
7359 }
7360
7361 /* Close file... */
7362 fclose(in);
7363
7364 /* Check number of data points... */
7365 ts->ntime = nh;
7366 if (nh < 2)
7367 ERRMSG("Not enough data points!");
7368
7369 /* Write info... */
7370 LOG(2, "Number of time steps: %d", ts->ntime);
7371 LOG(2, "Time steps: %.2f, %.2f ... %.2f s", ts->time[0], ts->time[1],
7372 ts->time[nh - 1]);
7373 LOG(2, "Volume mixing ratio range: %g ... %g ppv",
7374 gsl_stats_min(ts->vmr, 1, (size_t) nh), gsl_stats_max(ts->vmr, 1,
7375 (size_t) nh));
7376
7377 /* Exit success... */
7378 return 1;
7379}
7380
7381/*****************************************************************************/
7382
7384 const char *filename,
7385 const char *varname,
7386 clim_zm_t *zm) {
7387
7388 int ncid, varid, it, iy, iz, iz2, nt;
7389
7390 double *help, varmin = 1e99, varmax = -1e99;
7391
7392 /* Write info... */
7393 LOG(1, "Read %s data: %s", varname, filename);
7394
7395 /* Open netCDF file... */
7396 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
7397 WARN("%s climatology data are missing!", varname);
7398 return;
7399 }
7400
7401 /* Read pressure data... */
7402 NC_INQ_DIM("press", &zm->np, 2, CP, 1);
7403 NC_GET_DOUBLE("press", zm->p, 1);
7404 if (zm->p[0] < zm->p[1])
7405 ERRMSG("Pressure data are not descending!");
7406
7407 /* Read latitudes... */
7408 NC_INQ_DIM("lat", &zm->nlat, 2, CY, 1);
7409 NC_GET_DOUBLE("lat", zm->lat, 1);
7410 if (zm->lat[0] > zm->lat[1])
7411 ERRMSG("Latitude data are not ascending!");
7412
7413 /* Set time data (for monthly means)... */
7414 zm->ntime = 12;
7415 zm->time[0] = 1209600.00;
7416 zm->time[1] = 3888000.00;
7417 zm->time[2] = 6393600.00;
7418 zm->time[3] = 9072000.00;
7419 zm->time[4] = 11664000.00;
7420 zm->time[5] = 14342400.00;
7421 zm->time[6] = 16934400.00;
7422 zm->time[7] = 19612800.00;
7423 zm->time[8] = 22291200.00;
7424 zm->time[9] = 24883200.00;
7425 zm->time[10] = 27561600.00;
7426 zm->time[11] = 30153600.00;
7427
7428 /* Check number of timesteps... */
7429 NC_INQ_DIM("time", &nt, 12, 12, 1);
7430
7431 /* Read data... */
7432 ALLOC(help, double,
7433 zm->nlat * zm->np * zm->ntime);
7434 NC_GET_DOUBLE(varname, help, 1);
7435 for (it = 0; it < zm->ntime; it++)
7436 for (iz = 0; iz < zm->np; iz++)
7437 for (iy = 0; iy < zm->nlat; iy++)
7438 zm->vmr[it][iz][iy] = help[ARRAY_3D(it, iz, zm->np, iy, zm->nlat)];
7439 free(help);
7440
7441 /* Fix data gaps... */
7442 for (it = 0; it < zm->ntime; it++)
7443 for (iy = 0; iy < zm->nlat; iy++)
7444 for (iz = 0; iz < zm->np; iz++) {
7445 if (zm->vmr[it][iz][iy] < 0) {
7446 for (iz2 = 0; iz2 < zm->np; iz2++)
7447 if (zm->vmr[it][iz2][iy] >= 0) {
7448 zm->vmr[it][iz][iy] = zm->vmr[it][iz2][iy];
7449 break;
7450 }
7451 for (iz2 = zm->np - 1; iz2 >= 0; iz2--)
7452 if (zm->vmr[it][iz2][iy] >= 0) {
7453 zm->vmr[it][iz][iy] = zm->vmr[it][iz2][iy];
7454 break;
7455 }
7456 }
7457 varmin = MIN(varmin, zm->vmr[it][iz][iy]);
7458 varmax = MAX(varmax, zm->vmr[it][iz][iy]);
7459 }
7460
7461 /* Close netCDF file... */
7462 NC(nc_close(ncid));
7463
7464 /* Write info... */
7465 LOG(2, "Number of time steps: %d", zm->ntime);
7466 LOG(2, "Time steps: %.2f, %.2f ... %.2f s",
7467 zm->time[0], zm->time[1], zm->time[zm->ntime - 1]);
7468 LOG(2, "Number of pressure levels: %d", zm->np);
7469 LOG(2, "Altitude levels: %g, %g ... %g km",
7470 Z(zm->p[0]), Z(zm->p[1]), Z(zm->p[zm->np - 1]));
7471 LOG(2, "Pressure levels: %g, %g ... %g hPa", zm->p[0],
7472 zm->p[1], zm->p[zm->np - 1]);
7473 LOG(2, "Number of latitudes: %d", zm->nlat);
7474 LOG(2, "Latitudes: %g, %g ... %g deg",
7475 zm->lat[0], zm->lat[1], zm->lat[zm->nlat - 1]);
7476 LOG(2, "%s volume mixing ratio range: %g ... %g ppv", varname, varmin,
7477 varmax);
7478}
7479
7480/*****************************************************************************/
7481
7483 const char *filename,
7484 double kz[EP],
7485 double kw[EP],
7486 int *nk) {
7487
7488 /* Write info... */
7489 LOG(1, "Read kernel function: %s", filename);
7490
7491 /* Open file... */
7492 FILE *in;
7493 if (!(in = fopen(filename, "r")))
7494 ERRMSG("Cannot open file!");
7495
7496 /* Read data... */
7497 char line[LEN];
7498 int n = 0;
7499 while (fgets(line, LEN, in))
7500 if (sscanf(line, "%lg %lg", &kz[n], &kw[n]) == 2) {
7501 if (n > 0 && kz[n] < kz[n - 1])
7502 ERRMSG("Height levels must be ascending!");
7503 if ((++n) >= EP)
7504 ERRMSG("Too many height levels!");
7505 }
7506
7507 /* Close file... */
7508 fclose(in);
7509
7510 /* Check number of data points... */
7511 *nk = n;
7512 if (n < 2)
7513 ERRMSG("Not enough height levels!");
7514
7515 /* Normalize kernel function... */
7516 const double kmax = gsl_stats_max(kw, 1, (size_t) n);
7517 for (int iz = 0; iz < n; iz++)
7518 kw[iz] /= kmax;
7519}
7520
7521/*****************************************************************************/
7522
7524 const char *filename,
7525 const ctl_t *ctl,
7526 met_t *met) {
7527
7528 FILE *in;
7529
7530 double r;
7531
7532 int year, mon, day, hour, min, sec;
7533
7534 /* Set timer... */
7535 SELECT_TIMER("READ_MET_BIN", "INPUT", NVTX_READ);
7536
7537 /* Open file... */
7538 if (!(in = fopen(filename, "r"))) {
7539 WARN("Cannot open file!");
7540 return 0;
7541 }
7542
7543 /* Check type of binary data... */
7544 int met_type;
7545 FREAD(&met_type, int,
7546 1,
7547 in);
7548 if (met_type != ctl->met_type)
7549 ERRMSG("Wrong MET_TYPE of binary data!");
7550
7551 /* Check version of binary data... */
7552 int version;
7553 FREAD(&version, int,
7554 1,
7555 in);
7556 if (version != 103)
7557 ERRMSG("Wrong version of binary data!");
7558
7559 /* Read time... */
7560 FREAD(&met->time, double,
7561 1,
7562 in);
7563 jsec2time(met->time, &year, &mon, &day, &hour, &min, &sec, &r);
7564 LOG(2, "Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
7565 met->time, year, mon, day, hour, min);
7566 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
7567 || day < 1 || day > 31 || hour < 0 || hour > 23)
7568 ERRMSG("Error while reading time!");
7569
7570 /* Read dimensions... */
7571 FREAD(&met->nx, int,
7572 1,
7573 in);
7574 LOG(2, "Number of longitudes: %d", met->nx);
7575 if (met->nx < 2 || met->nx > EX)
7576 ERRMSG("Number of longitudes out of range!");
7577
7578 FREAD(&met->ny, int,
7579 1,
7580 in);
7581 LOG(2, "Number of latitudes: %d", met->ny);
7582 if (met->ny < 2 || met->ny > EY)
7583 ERRMSG("Number of latitudes out of range!");
7584
7585 FREAD(&met->np, int,
7586 1,
7587 in);
7588 LOG(2, "Number of levels: %d", met->np);
7589 if (met->np < 2 || met->np > EP)
7590 ERRMSG("Number of levels out of range!");
7591
7592 /* Read grid... */
7593 FREAD(met->lon, double,
7594 (size_t) met->nx,
7595 in);
7596 LOG(2, "Longitudes: %g, %g ... %g deg",
7597 met->lon[0], met->lon[1], met->lon[met->nx - 1]);
7598
7599 FREAD(met->lat, double,
7600 (size_t) met->ny,
7601 in);
7602 LOG(2, "Latitudes: %g, %g ... %g deg",
7603 met->lat[0], met->lat[1], met->lat[met->ny - 1]);
7604
7605 FREAD(met->p, double,
7606 (size_t) met->np,
7607 in);
7608 LOG(2, "Altitude levels: %g, %g ... %g km",
7609 Z(met->p[0]), Z(met->p[1]), Z(met->p[met->np - 1]));
7610 LOG(2, "Pressure levels: %g, %g ... %g hPa",
7611 met->p[0], met->p[1], met->p[met->np - 1]);
7612
7613 /* Read surface data... */
7614 read_met_bin_2d(in, met, met->ps, "PS");
7615 read_met_bin_2d(in, met, met->ts, "TS");
7616 read_met_bin_2d(in, met, met->zs, "ZS");
7617 read_met_bin_2d(in, met, met->us, "US");
7618 read_met_bin_2d(in, met, met->vs, "VS");
7619 read_met_bin_2d(in, met, met->ess, "ESS");
7620 read_met_bin_2d(in, met, met->nss, "NSS");
7621 read_met_bin_2d(in, met, met->shf, "SHF");
7622 read_met_bin_2d(in, met, met->lsm, "LSM");
7623 read_met_bin_2d(in, met, met->sst, "SST");
7624 read_met_bin_2d(in, met, met->pbl, "PBL");
7625 read_met_bin_2d(in, met, met->pt, "PT");
7626 read_met_bin_2d(in, met, met->tt, "TT");
7627 read_met_bin_2d(in, met, met->zt, "ZT");
7628 read_met_bin_2d(in, met, met->h2ot, "H2OT");
7629 read_met_bin_2d(in, met, met->pct, "PCT");
7630 read_met_bin_2d(in, met, met->pcb, "PCB");
7631 read_met_bin_2d(in, met, met->cl, "CL");
7632 read_met_bin_2d(in, met, met->plcl, "PLCL");
7633 read_met_bin_2d(in, met, met->plfc, "PLFC");
7634 read_met_bin_2d(in, met, met->pel, "PEL");
7635 read_met_bin_2d(in, met, met->cape, "CAPE");
7636 read_met_bin_2d(in, met, met->cin, "CIN");
7637 read_met_bin_2d(in, met, met->o3c, "O3C");
7638
7639 /* Read level data... */
7640 read_met_bin_3d(in, ctl, met, met->z, "Z", -1e34f, 1e34f);
7641 read_met_bin_3d(in, ctl, met, met->t, "T", 0, 1e34f);
7642 read_met_bin_3d(in, ctl, met, met->u, "U", -1e34f, 1e34f);
7643 read_met_bin_3d(in, ctl, met, met->v, "V", -1e34f, 1e34f);
7644 read_met_bin_3d(in, ctl, met, met->w, "W", -1e34f, 1e34f);
7645 read_met_bin_3d(in, ctl, met, met->pv, "PV", -1e34f, 1e34f);
7646 read_met_bin_3d(in, ctl, met, met->h2o, "H2O", 0, 1e34f);
7647 read_met_bin_3d(in, ctl, met, met->o3, "O3", 0, 1e34f);
7648 read_met_bin_3d(in, ctl, met, met->lwc, "LWC", 0, 1e34f);
7649 read_met_bin_3d(in, ctl, met, met->rwc, "RWC", 0, 1e34f);
7650 read_met_bin_3d(in, ctl, met, met->iwc, "IWC", 0, 1e34f);
7651 read_met_bin_3d(in, ctl, met, met->swc, "SWC", 0, 1e34f);
7652 read_met_bin_3d(in, ctl, met, met->cc, "CC", 0, 1);
7653
7654 /* Read final flag... */
7655 int final;
7656 FREAD(&final, int,
7657 1,
7658 in);
7659 if (final != 999)
7660 ERRMSG("Error while reading binary data!");
7661
7662 /* Close file... */
7663 fclose(in);
7664
7665 /* Return success... */
7666 return 1;
7667}
7668
7669/*****************************************************************************/
7670
7672 FILE *in,
7673 const met_t *met,
7674 float var[EX][EY],
7675 const char *varname) {
7676
7677 float *help;
7678
7679 /* Allocate... */
7680 ALLOC(help, float,
7681 EX * EY);
7682
7683 /* Read uncompressed... */
7684 LOG(2, "Read 2-D variable: %s (uncompressed)", varname);
7685 FREAD(help, float,
7686 (size_t) (met->nx * met->ny),
7687 in);
7688
7689 /* Copy data... */
7690 for (int ix = 0; ix < met->nx; ix++)
7691 for (int iy = 0; iy < met->ny; iy++)
7692 var[ix][iy] = help[ARRAY_2D(ix, iy, met->ny)];
7693
7694 /* Free... */
7695 free(help);
7696}
7697
7698/*****************************************************************************/
7699
7701 FILE *in,
7702 const ctl_t *ctl,
7703 const met_t *met,
7704 float var[EX][EY][EP],
7705 const char *varname,
7706 const float bound_min,
7707 const float bound_max) {
7708
7709 float *help;
7710
7711 /* Allocate... */
7712 ALLOC(help, float,
7713 EX * EY * EP);
7714
7715 /* Read uncompressed data... */
7716 if (ctl->met_type == 1) {
7717 LOG(2, "Read 3-D variable: %s (uncompressed)", varname);
7718 FREAD(help, float,
7719 (size_t) (met->nx * met->ny * met->np),
7720 in);
7721 }
7722
7723 /* Read packed data... */
7724 else if (ctl->met_type == 2)
7725 compress_pck(varname, help, (size_t) (met->ny * met->nx),
7726 (size_t) met->np, 1, in);
7727
7728 /* Read ZFP data... */
7729 else if (ctl->met_type == 3) {
7730#ifdef ZFP
7731 int precision;
7732 FREAD(&precision, int,
7733 1,
7734 in);
7735
7736 double tolerance;
7737 FREAD(&tolerance, double,
7738 1,
7739 in);
7740
7741 compress_zfp(varname, help, met->np, met->ny, met->nx, precision,
7742 tolerance, 1, in);
7743#else
7744 ERRMSG("MPTRAC was compiled without ZFP compression!");
7745#endif
7746 }
7747
7748 /* Read zstd data... */
7749 else if (ctl->met_type == 4) {
7750#ifdef ZSTD
7751 compress_zstd(varname, help, (size_t) (met->np * met->ny * met->nx), 1,
7752 ctl->met_zstd_level, in);
7753#else
7754 ERRMSG("MPTRAC was compiled without ZSTD compression!");
7755#endif
7756 }
7757
7758 /* Read cmultiscale data... */
7759 else if (ctl->met_type == 5) {
7760#ifdef CMS
7761 compress_cms(ctl, varname, help, (size_t) met->nx, (size_t) met->ny,
7762 (size_t) met->np, met->p, 1, in);
7763#else
7764 ERRMSG("MPTRAC was compiled without cmultiscale compression!");
7765#endif
7766 }
7767
7768 /* Read SZ3 data... */
7769 else if (ctl->met_type == 7) {
7770#ifdef SZ3
7771 int precision;
7772 FREAD(&precision, int,
7773 1,
7774 in);
7775
7776 double tolerance;
7777 FREAD(&tolerance, double,
7778 1,
7779 in);
7780
7781 compress_sz3(varname, help, met->np, met->ny, met->nx, precision,
7782 tolerance, 1, in);
7783#else
7784 ERRMSG("MPTRAC was compiled without sz3 compression!");
7785#endif
7786 }
7787
7788 /* Copy data... */
7789#pragma omp parallel for default(shared) collapse(2)
7790 for (int ix = 0; ix < met->nx; ix++)
7791 for (int iy = 0; iy < met->ny; iy++)
7792 for (int ip = 0; ip < met->np; ip++) {
7793 var[ix][iy][ip] = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
7794 if (var[ix][iy][ip] < bound_min)
7795 var[ix][iy][ip] = bound_min;
7796 else if (var[ix][iy][ip] > bound_max)
7797 var[ix][iy][ip] = bound_max;
7798 }
7799
7800 /* Free... */
7801 free(help);
7802}
7803
7804/*****************************************************************************/
7805
7807 const ctl_t *ctl,
7808 const clim_t *clim,
7809 met_t *met) {
7810
7811 /* Check parameters... */
7812 if (ctl->met_cape != 1)
7813 return;
7814
7815 /* Set timer... */
7816 SELECT_TIMER("READ_MET_CAPE", "METPROC", NVTX_READ);
7817 LOG(2, "Calculate CAPE...");
7818
7819 /* Vertical spacing (about 100 m)... */
7820 const double pfac = 1.01439, dz0 = RI / MA / G0 * log(pfac);
7821
7822 /* Loop over columns... */
7823#pragma omp parallel for default(shared) collapse(2)
7824 for (int ix = 0; ix < met->nx; ix++)
7825 for (int iy = 0; iy < met->ny; iy++) {
7826
7827 /* Get potential temperature and water vapor at lowest 50 hPa... */
7828 int n = 0;
7829 double h2o = 0, t, theta = 0;
7830 double pbot = MIN(met->ps[ix][iy], met->p[0]);
7831 double ptop = pbot - 50.;
7832 for (int ip = 0; ip < met->np; ip++) {
7833 if (met->p[ip] <= pbot) {
7834 theta += THETA(met->p[ip], met->t[ix][iy][ip]);
7835 h2o += met->h2o[ix][iy][ip];
7836 n++;
7837 }
7838 if (met->p[ip] < ptop && n > 0)
7839 break;
7840 }
7841 theta /= n;
7842 h2o /= n;
7843
7844 /* Cannot compute anything if water vapor is missing... */
7845 met->plcl[ix][iy] = NAN;
7846 met->plfc[ix][iy] = NAN;
7847 met->pel[ix][iy] = NAN;
7848 met->cape[ix][iy] = NAN;
7849 met->cin[ix][iy] = NAN;
7850 if (h2o <= 0)
7851 continue;
7852
7853 /* Find lifted condensation level (LCL)... */
7854 ptop = P(20.);
7855 pbot = met->ps[ix][iy];
7856 do {
7857 met->plcl[ix][iy] = (float) (0.5 * (pbot + ptop));
7858 t = theta / pow(1000. / met->plcl[ix][iy], 0.286);
7859 if (RH(met->plcl[ix][iy], t, h2o) > 100.)
7860 ptop = met->plcl[ix][iy];
7861 else
7862 pbot = met->plcl[ix][iy];
7863 } while (pbot - ptop > 0.1);
7864
7865 /* Calculate CIN up to LCL... */
7867 double dcape, dz, h2o_env, t_env;
7868 double p = met->ps[ix][iy];
7869 met->cape[ix][iy] = met->cin[ix][iy] = 0;
7870 do {
7871 dz = dz0 * TVIRT(t, h2o);
7872 p /= pfac;
7873 t = theta / pow(1000. / p, 0.286);
7874 intpol_met_space_3d(met, met->t, p, met->lon[ix], met->lat[iy],
7875 &t_env, ci, cw, 1);
7876 intpol_met_space_3d(met, met->h2o, p, met->lon[ix], met->lat[iy],
7877 &h2o_env, ci, cw, 0);
7878 dcape = 1e3 * G0 * (TVIRT(t, h2o) - TVIRT(t_env, h2o_env)) /
7879 TVIRT(t_env, h2o_env) * dz;
7880 if (dcape < 0)
7881 met->cin[ix][iy] += fabsf((float) dcape);
7882 } while (p > met->plcl[ix][iy]);
7883
7884 /* Calculate level of free convection (LFC), equilibrium level (EL),
7885 and convective available potential energy (CAPE)... */
7886 dcape = 0;
7887 p = met->plcl[ix][iy];
7888 t = theta / pow(1000. / p, 0.286);
7889 ptop = 0.75 * clim_tropo(clim, met->time, met->lat[iy]);
7890 do {
7891 dz = dz0 * TVIRT(t, h2o);
7892 p /= pfac;
7893 t -= lapse_rate(t, h2o) * dz;
7894 double psat = PSAT(t);
7895 h2o = psat / (p - (1. - EPS) * psat);
7896 intpol_met_space_3d(met, met->t, p, met->lon[ix], met->lat[iy],
7897 &t_env, ci, cw, 1);
7898 intpol_met_space_3d(met, met->h2o, p, met->lon[ix], met->lat[iy],
7899 &h2o_env, ci, cw, 0);
7900 double dcape_old = dcape;
7901 dcape = 1e3 * G0 * (TVIRT(t, h2o) - TVIRT(t_env, h2o_env)) /
7902 TVIRT(t_env, h2o_env) * dz;
7903 if (dcape > 0) {
7904 met->cape[ix][iy] += (float) dcape;
7905 if (!isfinite(met->plfc[ix][iy]))
7906 met->plfc[ix][iy] = (float) p;
7907 } else if (dcape_old > 0)
7908 met->pel[ix][iy] = (float) p;
7909 if (dcape < 0 && !isfinite(met->plfc[ix][iy]))
7910 met->cin[ix][iy] += fabsf((float) dcape);
7911 } while (p > ptop);
7912
7913 /* Check results... */
7914 if (!isfinite(met->plfc[ix][iy]))
7915 met->cin[ix][iy] = NAN;
7916 }
7917}
7918
7919/*****************************************************************************/
7920
7922 met_t *met) {
7923
7924 /* Set timer... */
7925 SELECT_TIMER("READ_MET_CLOUD", "METPROC", NVTX_READ);
7926 LOG(2, "Calculate cloud data...");
7927
7928 /* Thresholds for cloud detection... */
7929 const double ccmin = 0.01, cwmin = 1e-6;
7930
7931 /* Loop over columns... */
7932#pragma omp parallel for default(shared) collapse(2)
7933 for (int ix = 0; ix < met->nx; ix++)
7934 for (int iy = 0; iy < met->ny; iy++) {
7935
7936 /* Init... */
7937 met->pct[ix][iy] = NAN;
7938 met->pcb[ix][iy] = NAN;
7939 met->cl[ix][iy] = 0;
7940
7941 /* Loop over pressure levels... */
7942 for (int ip = 0; ip < met->np - 1; ip++) {
7943
7944 /* Check pressure... */
7945 if (met->p[ip] > met->ps[ix][iy] || met->p[ip] < P(20.))
7946 continue;
7947
7948 /* Check ice water and liquid water content... */
7949 if (met->cc[ix][iy][ip] > ccmin
7950 && (met->lwc[ix][iy][ip] > cwmin
7951 || met->rwc[ix][iy][ip] > cwmin
7952 || met->iwc[ix][iy][ip] > cwmin
7953 || met->swc[ix][iy][ip] > cwmin)) {
7954
7955 /* Get cloud top pressure ... */
7956 met->pct[ix][iy]
7957 = (float) (0.5 * (met->p[ip] + (float) met->p[ip + 1]));
7958
7959 /* Get cloud bottom pressure ... */
7960 if (!isfinite(met->pcb[ix][iy]))
7961 met->pcb[ix][iy]
7962 = (float) (0.5 * (met->p[ip] + met->p[MAX(ip - 1, 0)]));
7963 }
7964
7965 /* Get cloud water... */
7966 met->cl[ix][iy] += (float)
7967 (0.5 * (met->lwc[ix][iy][ip] + met->lwc[ix][iy][ip + 1]
7968 + met->rwc[ix][iy][ip] + met->rwc[ix][iy][ip + 1]
7969 + met->iwc[ix][iy][ip] + met->iwc[ix][iy][ip + 1]
7970 + met->swc[ix][iy][ip] + met->swc[ix][iy][ip + 1])
7971 * 100. * (met->p[ip] - met->p[ip + 1]) / G0);
7972 }
7973 }
7974}
7975
7976/*****************************************************************************/
7977
7979 const ctl_t *ctl,
7980 met_t *met) {
7981
7982 met_t *help;
7983
7984 /* Check parameters... */
7985 if (ctl->met_detrend <= 0)
7986 return;
7987
7988 /* Set timer... */
7989 SELECT_TIMER("READ_MET_DETREND", "METPROC", NVTX_READ);
7990 LOG(2, "Detrend meteo data...");
7991
7992 /* Allocate... */
7993 ALLOC(help, met_t, 1);
7994
7995 /* Calculate standard deviation... */
7996 const double sigma = ctl->met_detrend / 2.355;
7997 const double tssq = 2. * SQR(sigma);
7998
7999 /* Calculate box size in latitude... */
8000 int sy = (int) (3. * DY2DEG(sigma) / fabs(met->lat[1] - met->lat[0]));
8001 sy = MIN(MAX(1, sy), met->ny / 2);
8002
8003 /* Calculate background... */
8004#pragma omp parallel for default(shared) collapse(2)
8005 for (int ix = 0; ix < met->nx; ix++) {
8006 for (int iy = 0; iy < met->ny; iy++) {
8007
8008 /* Calculate Cartesian coordinates... */
8009 double x0[3];
8010 geo2cart(0.0, met->lon[ix], met->lat[iy], x0);
8011
8012 /* Calculate box size in longitude... */
8013 int sx =
8014 (int) (3. * DX2DEG(sigma, met->lat[iy]) /
8015 fabs(met->lon[1] - met->lon[0]));
8016 sx = MIN(MAX(1, sx), met->nx / 2);
8017
8018 /* Init... */
8019 float wsum = 0;
8020 for (int ip = 0; ip < met->np; ip++) {
8021 help->t[ix][iy][ip] = 0;
8022 help->u[ix][iy][ip] = 0;
8023 help->v[ix][iy][ip] = 0;
8024 help->w[ix][iy][ip] = 0;
8025 }
8026
8027 /* Loop over neighboring grid points... */
8028 for (int ix2 = ix - sx; ix2 <= ix + sx; ix2++) {
8029 int ix3 = ix2;
8030 if (ix3 < 0)
8031 ix3 += met->nx;
8032 else if (ix3 >= met->nx)
8033 ix3 -= met->nx;
8034 for (int iy2 = MAX(iy - sy, 0);
8035 iy2 <= MIN(iy + sy, met->ny - 1); iy2++) {
8036
8037 /* Calculate Cartesian coordinates... */
8038 double x1[3];
8039 geo2cart(0.0, met->lon[ix3], met->lat[iy2], x1);
8040
8041 /* Calculate weighting factor... */
8042 const float w = (float) exp(-DIST2(x0, x1) / tssq);
8043
8044 /* Add data... */
8045 wsum += w;
8046 for (int ip = 0; ip < met->np; ip++) {
8047 help->t[ix][iy][ip] += w * met->t[ix3][iy2][ip];
8048 help->u[ix][iy][ip] += w * met->u[ix3][iy2][ip];
8049 help->v[ix][iy][ip] += w * met->v[ix3][iy2][ip];
8050 help->w[ix][iy][ip] += w * met->w[ix3][iy2][ip];
8051 }
8052 }
8053 }
8054
8055 /* Normalize... */
8056 for (int ip = 0; ip < met->np; ip++) {
8057 help->t[ix][iy][ip] /= wsum;
8058 help->u[ix][iy][ip] /= wsum;
8059 help->v[ix][iy][ip] /= wsum;
8060 help->w[ix][iy][ip] /= wsum;
8061 }
8062 }
8063 }
8064
8065 /* Subtract background... */
8066#pragma omp parallel for default(shared) collapse(3)
8067 for (int ix = 0; ix < met->nx; ix++)
8068 for (int iy = 0; iy < met->ny; iy++)
8069 for (int ip = 0; ip < met->np; ip++) {
8070 met->t[ix][iy][ip] -= help->t[ix][iy][ip];
8071 met->u[ix][iy][ip] -= help->u[ix][iy][ip];
8072 met->v[ix][iy][ip] -= help->v[ix][iy][ip];
8073 met->w[ix][iy][ip] -= help->w[ix][iy][ip];
8074 }
8075
8076 /* Free... */
8077 free(help);
8078}
8079
8080/*****************************************************************************/
8081
8083 met_t *met) {
8084
8085 /* Set timer... */
8086 SELECT_TIMER("READ_MET_EXTRAPOLATE", "METPROC", NVTX_READ);
8087 LOG(2, "Extrapolate meteo data...");
8088
8089 /* Loop over columns... */
8090#pragma omp parallel for default(shared) collapse(2)
8091 for (int ix = 0; ix < met->nx; ix++)
8092 for (int iy = 0; iy < met->ny; iy++) {
8093
8094 /* Find lowest valid data point... */
8095 int ip0;
8096 for (ip0 = met->np - 1; ip0 >= 0; ip0--)
8097 if (!isfinite(met->t[ix][iy][ip0])
8098 || !isfinite(met->u[ix][iy][ip0])
8099 || !isfinite(met->v[ix][iy][ip0])
8100 || !isfinite(met->w[ix][iy][ip0]))
8101 break;
8102
8103 /* Extrapolate... */
8104 for (int ip = ip0; ip >= 0; ip--) {
8105 met->t[ix][iy][ip] = met->t[ix][iy][ip + 1];
8106 met->u[ix][iy][ip] = met->u[ix][iy][ip + 1];
8107 met->v[ix][iy][ip] = met->v[ix][iy][ip + 1];
8108 met->w[ix][iy][ip] = met->w[ix][iy][ip + 1];
8109 met->h2o[ix][iy][ip] = met->h2o[ix][iy][ip + 1];
8110 met->o3[ix][iy][ip] = met->o3[ix][iy][ip + 1];
8111 met->lwc[ix][iy][ip] = met->lwc[ix][iy][ip + 1];
8112 met->rwc[ix][iy][ip] = met->rwc[ix][iy][ip + 1];
8113 met->iwc[ix][iy][ip] = met->iwc[ix][iy][ip + 1];
8114 met->swc[ix][iy][ip] = met->swc[ix][iy][ip + 1];
8115 met->cc[ix][iy][ip] = met->cc[ix][iy][ip + 1];
8116 }
8117 }
8118}
8119
8120/*****************************************************************************/
8121
8123 const ctl_t *ctl,
8124 met_t *met) {
8125
8126 float *help;
8127
8128 double logp[EP];
8129
8130 int dx = ctl->met_geopot_sx, dy = ctl->met_geopot_sy;
8131
8132 /* Set timer... */
8133 SELECT_TIMER("READ_MET_GEOPOT", "METPROC", NVTX_READ);
8134 LOG(2, "Calculate geopotential heights...");
8135
8136 /* Allocate... */
8137 ALLOC(help, float,
8138 EX * EY * EP);
8139
8140 /* Calculate log pressure... */
8141#pragma omp parallel for default(shared)
8142 for (int ip = 0; ip < met->np; ip++)
8143 logp[ip] = log(met->p[ip]);
8144
8145 /* Apply hydrostatic equation to calculate geopotential heights... */
8146#pragma omp parallel for default(shared) collapse(2)
8147 for (int ix = 0; ix < met->nx; ix++)
8148 for (int iy = 0; iy < met->ny; iy++) {
8149
8150 /* Get surface height and pressure... */
8151 const double zs = met->zs[ix][iy];
8152 const double lnps = log(met->ps[ix][iy]);
8153
8154 /* Get temperature and water vapor at the surface... */
8155 const int ip0 = locate_irr(met->p, met->np, met->ps[ix][iy]);
8156 const double ts = LIN(met->p[ip0], met->t[ix][iy][ip0], met->p[ip0 + 1],
8157 met->t[ix][iy][ip0 + 1], met->ps[ix][iy]);
8158 const double h2os =
8159 LIN(met->p[ip0], met->h2o[ix][iy][ip0], met->p[ip0 + 1],
8160 met->h2o[ix][iy][ip0 + 1], met->ps[ix][iy]);
8161
8162 /* Upper part of profile... */
8163 met->z[ix][iy][ip0 + 1]
8164 = (float) (zs +
8165 ZDIFF(lnps, ts, h2os, logp[ip0 + 1],
8166 met->t[ix][iy][ip0 + 1], met->h2o[ix][iy][ip0 + 1]));
8167 for (int ip = ip0 + 2; ip < met->np; ip++)
8168 met->z[ix][iy][ip]
8169 = (float) (met->z[ix][iy][ip - 1] +
8170 ZDIFF(logp[ip - 1], met->t[ix][iy][ip - 1],
8171 met->h2o[ix][iy][ip - 1], logp[ip],
8172 met->t[ix][iy][ip], met->h2o[ix][iy][ip]));
8173
8174 /* Lower part of profile... */
8175 met->z[ix][iy][ip0]
8176 = (float) (zs +
8177 ZDIFF(lnps, ts, h2os, logp[ip0],
8178 met->t[ix][iy][ip0], met->h2o[ix][iy][ip0]));
8179 for (int ip = ip0 - 1; ip >= 0; ip--)
8180 met->z[ix][iy][ip]
8181 = (float) (met->z[ix][iy][ip + 1] +
8182 ZDIFF(logp[ip + 1], met->t[ix][iy][ip + 1],
8183 met->h2o[ix][iy][ip + 1], logp[ip],
8184 met->t[ix][iy][ip], met->h2o[ix][iy][ip]));
8185 }
8186
8187 /* Check control parameters... */
8188 if (dx == 0 || dy == 0)
8189 return;
8190
8191 /* Default smoothing parameters... */
8192 if (dx < 0 || dy < 0) {
8193 if (fabs(met->lon[1] - met->lon[0]) < 0.5) {
8194 dx = 3;
8195 dy = 2;
8196 } else {
8197 dx = 6;
8198 dy = 4;
8199 }
8200 }
8201
8202 /* Calculate weights for smoothing... */
8203 float ws[dx + 1][dy + 1];
8204#pragma omp parallel for default(shared) collapse(2)
8205 for (int ix = 0; ix <= dx; ix++)
8206 for (int iy = 0; iy < dy; iy++)
8207 ws[ix][iy] = (1.0f - (float) ix / (float) dx)
8208 * (1.0f - (float) iy / (float) dy);
8209
8210 /* Copy data... */
8211#pragma omp parallel for default(shared) collapse(3)
8212 for (int ix = 0; ix < met->nx; ix++)
8213 for (int iy = 0; iy < met->ny; iy++)
8214 for (int ip = 0; ip < met->np; ip++)
8215 help[ARRAY_3D(ip, ix, met->nx, iy, met->ny)] = met->z[ix][iy][ip];
8216
8217 /* Horizontal smoothing... */
8218#pragma omp parallel for default(shared) collapse(3)
8219 for (int ip = 0; ip < met->np; ip++)
8220 for (int ix = 0; ix < met->nx; ix++)
8221 for (int iy = 0; iy < met->ny; iy++) {
8222 float res = 0, wsum = 0;
8223 int iy0 = MAX(iy - dy + 1, 0);
8224 int iy1 = MIN(iy + dy - 1, met->ny - 1);
8225 for (int ix2 = ix - dx + 1; ix2 <= ix + dx - 1; ++ix2) {
8226 int ix3 = ix2;
8227 if (ix3 < 0)
8228 ix3 += met->nx;
8229 else if (ix3 >= met->nx)
8230 ix3 -= met->nx;
8231 for (int iy2 = iy0; iy2 <= iy1; ++iy2)
8232 if (isfinite(help[ARRAY_3D(ip, ix3, met->nx, iy2, met->ny)])) {
8233 float w = ws[abs(ix - ix2)][abs(iy - iy2)];
8234 res += w * help[ARRAY_3D(ip, ix3, met->nx, iy2, met->ny)];
8235 wsum += w;
8236 }
8237 }
8238 if (wsum > 0)
8239 met->z[ix][iy][ip] = res / wsum;
8240 else
8241 met->z[ix][iy][ip] = NAN;
8242 }
8243
8244 /* Free... */
8245 free(help);
8246}
8247
8248/*****************************************************************************/
8249
8251 const char *filename,
8252 const int ncid,
8253 const ctl_t *ctl,
8254 met_t *met,
8255 dd_t *dd) {
8256
8257 char levname[LEN], tstr[10];
8258
8259 double rtime = 0, r, r2;
8260
8261 int varid, ndims, dimids[NC_MAX_DIMS], year2, mon2, day2, hour2, min2, sec2,
8262 year, mon, day, hour, min, sec;
8263
8264 size_t dimlen;
8265
8266 /* Set timer... */
8267 SELECT_TIMER("READ_MET_NC_GRID", "INPUT", NVTX_READ);
8268 LOG(2, "Read meteo grid information...");
8269
8270 /* MPTRAC meteo files... */
8271 if (!ctl->met_clams) {
8272
8273 /* Get time from filename... */
8274 met->time = time_from_filename(filename, 16);
8275
8276 /* Check time information from data file... */
8277 jsec2time(met->time, &year, &mon, &day, &hour, &min, &sec, &r);
8278 if (nc_inq_varid(ncid, "time", &varid) == NC_NOERR) {
8279 NC(nc_get_var_double(ncid, varid, &rtime));
8280 if (fabs(year * 10000. + mon * 100. + day + hour / 24. - rtime) > 1.0)
8281 WARN("Time information in meteo file does not match filename!");
8282 } else
8283 WARN("Time information in meteo file is missing!");
8284 }
8285
8286 /* CLaMS meteo files... */
8287 else {
8288
8289 /* Read time from file... */
8290 NC_GET_DOUBLE("time", &rtime, 0);
8291
8292 /* Get time from filename (considering the century)... */
8293 if (rtime < 0)
8294 sprintf(tstr, "19%.2s", &filename[strlen(filename) - 11]);
8295 else
8296 sprintf(tstr, "20%.2s", &filename[strlen(filename) - 11]);
8297 year = atoi(tstr);
8298 sprintf(tstr, "%.2s", &filename[strlen(filename) - 9]);
8299 mon = atoi(tstr);
8300 sprintf(tstr, "%.2s", &filename[strlen(filename) - 7]);
8301 day = atoi(tstr);
8302 sprintf(tstr, "%.2s", &filename[strlen(filename) - 5]);
8303 hour = atoi(tstr);
8304 time2jsec(year, mon, day, hour, 0, 0, 0, &met->time);
8305 }
8306
8307 /* Check time... */
8308 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
8309 || day < 1 || day > 31 || hour < 0 || hour > 23)
8310 ERRMSG("Cannot read time from filename!");
8311 jsec2time(met->time, &year2, &mon2, &day2, &hour2, &min2, &sec2, &r2);
8312 LOG(2, "Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
8313 met->time, year2, mon2, day2, hour2, min2);
8314
8315 /* Get vertical dimension... */
8316 if (nc_inq_varid(ncid, "u", &varid) != NC_NOERR)
8317 if (nc_inq_varid(ncid, "U", &varid) != NC_NOERR)
8318 ERRMSG
8319 ("Variable 'u' or 'U' not found, cannot determine vertical dimension!");
8320
8321 NC(nc_inq_varndims(ncid, varid, &ndims));
8322 NC(nc_inq_vardimid(ncid, varid, dimids));
8323
8324 if (ndims == 4) {
8325 NC(nc_inq_dim
8326 (ncid, dimids[ctl->met_convention == 0 ? 1 : 3], levname, &dimlen));
8327 } else if (ndims == 3) {
8328 NC(nc_inq_dim
8329 (ncid, dimids[ctl->met_convention == 0 ? 0 : 2], levname, &dimlen));
8330 } else
8331 ERRMSG("Cannot determine vertical dimension!")
8332 met->np = (int) dimlen;
8333
8334 LOG(2, "Number of levels: %d", met->np);
8335 if (met->np < 2 || met->np > EP)
8336 ERRMSG("Number of levels out of range!");
8337
8338 if (!ctl->dd) {
8339
8340 /* Get grid dimensions... */
8341 NC_INQ_DIM("lon", &met->nx, 2, EX, 1);
8342 LOG(2, "Number of longitudes: %d", met->nx);
8343
8344 NC_INQ_DIM("lat", &met->ny, 2, EY, 1);
8345 LOG(2, "Number of latitudes: %d", met->ny);
8346
8347 /* Read longitudes and latitudes... */
8348 NC_GET_DOUBLE("lon", met->lon, 1);
8349 LOG(2, "Longitudes: %g, %g ... %g deg",
8350 met->lon[0], met->lon[1], met->lon[met->nx - 1]);
8351 NC_GET_DOUBLE("lat", met->lat, 1);
8352 LOG(2, "Latitudes: %g, %g ... %g deg",
8353 met->lat[0], met->lat[1], met->lat[met->ny - 1]);
8354
8355 } else {
8356
8357 /* Use 'naive', i.e. equidistant lat-lon domain decomposition... */
8358 read_met_nc_grid_dd_naive(dd, ctl, met, ncid);
8359
8360 }
8361
8362 /* Read pressure levels... */
8363 if (ctl->met_np <= 0) {
8364 NC_GET_DOUBLE(levname, met->p, 1);
8365 for (int ip = 0; ip < met->np; ip++)
8366 met->p[ip] /= 100.;
8367 LOG(2, "Altitude levels: %g, %g ... %g km",
8368 Z(met->p[0]), Z(met->p[1]), Z(met->p[met->np - 1]));
8369 LOG(2, "Pressure levels: %g, %g ... %g hPa",
8370 met->p[0], met->p[1], met->p[met->np - 1]);
8371 }
8372
8373 /* Read hybrid levels... */
8374 if (strcasecmp(levname, "hybrid") == 0)
8375 NC_GET_DOUBLE("hybrid", met->hybrid, 1);
8376
8377 /* Read model level coefficients from file... */
8378 if (ctl->met_vert_coord == 2) {
8379 NC_GET_DOUBLE("hyam", met->hyam, 1);
8380 NC_GET_DOUBLE("hybm", met->hybm, 1);
8381 }
8382
8383 /* Copy model level coefficients from control parameters... */
8384 else if (ctl->met_vert_coord == 3 || ctl->met_vert_coord == 4) {
8385 if (ctl->met_nlev <= 0)
8386 ERRMSG("You need to specify MET_NLEV, MET_LEV_HYAM, and MET_LEV_HYBM!");
8387 for (int ip = 0; ip < ctl->met_nlev; ip++) {
8388 met->hyam[ip] = ctl->met_lev_hyam[ip];
8389 met->hybm[ip] = ctl->met_lev_hybm[ip];
8390 }
8391 }
8392
8393 /* Calculate eta levels... */
8394 for (int k = 0; k < MAX(met->np, ctl->met_nlev); ++k) {
8395 met->eta[k] = met->hyam[k] / 100000.0 + met->hybm[k];
8396 if (ctl->met_vert_coord >= 2 && k > 0 && met->eta[k] <= met->eta[k - 1])
8397 ERRMSG("Eta levels must be ascending!");
8398 }
8399
8400 /* Check horizontal grid spacing... */
8401 for (int ix = 2; ix < met->nx; ix++)
8402 if (fabs
8403 (fabs(met->lon[ix] - met->lon[ix - 1]) -
8404 fabs(met->lon[1] - met->lon[0])) > 0.001)
8405 ERRMSG("No regular grid spacing in longitudes!");
8406 for (int iy = 2; iy < met->ny; iy++)
8407 if (fabs
8408 (fabs(met->lat[iy] - met->lat[iy - 1]) -
8409 fabs(met->lat[1] - met->lat[0])) > 0.001) {
8410 WARN("No regular grid spacing in latitudes!");
8411 break;
8412 }
8413}
8414
8415/*****************************************************************************/
8416
8418 const int ncid,
8419 const ctl_t *ctl,
8420 met_t *met,
8421 dd_t *dd) {
8422
8423 /* Set timer... */
8424 SELECT_TIMER("READ_MET_SURFACE", "INPUT", NVTX_READ);
8425 LOG(2, "Read surface data...");
8426
8427 /* Read surface pressure... */
8428 if (read_met_nc_2d
8429 (ncid, "lnsp", "LNSP", NULL, NULL, NULL, NULL, ctl, met, dd, met->ps,
8430 1.0f, 1)) {
8431 for (int ix = 0; ix < met->nx; ix++)
8432 for (int iy = 0; iy < met->ny; iy++)
8433 met->ps[ix][iy] = (float) (exp(met->ps[ix][iy]) / 100.);
8434 } else
8435 if (!read_met_nc_2d
8436 (ncid, "ps", "PS", "sp", "SP", NULL, NULL, ctl, met, dd, met->ps,
8437 0.01f, 1)) {
8438 WARN("Cannot not read surface pressure data (use lowest level)!");
8439 for (int ix = 0; ix < met->nx; ix++)
8440 for (int iy = 0; iy < met->ny; iy++)
8441 met->ps[ix][iy]
8442 = (ctl->met_np > 0 ? (float) ctl->met_p[0] : (float) met->p[0]);
8443 }
8444
8445 /* MPTRAC meteo data... */
8446 if (ctl->met_clams == 0) {
8447
8448 /* Read geopotential height at the surface... */
8449 if (!read_met_nc_2d
8450 (ncid, "z", "Z", NULL, NULL, NULL, NULL, ctl, met, dd, met->zs,
8451 (float) (1. / (1000. * G0)), 1))
8452 if (!read_met_nc_2d
8453 (ncid, "zm", "ZM", NULL, NULL, NULL, NULL, ctl, met, dd, met->zs,
8454 (float) (1. / 1000.), 1))
8455 WARN("Cannot read surface geopotential height!");
8456 }
8457
8458 /* CLaMS meteo data... */
8459 else {
8460
8461 /* Read geopotential height at the surface
8462 (use lowermost level of 3-D data field)... */
8463 float *help;
8464 ALLOC(help, float,
8465 EX * EY * EP);
8466 memcpy(help, met->pl, sizeof(met->pl));
8467 if (!read_met_nc_3d
8468 (ncid, "gph", "GPH", NULL, NULL, ctl, met, dd, met->pl,
8469 (float) (1e-3 / G0)))
8470 ERRMSG("Cannot read geopotential height!");
8471 for (int ix = 0; ix < met->nx; ix++)
8472 for (int iy = 0; iy < met->ny; iy++)
8473 met->zs[ix][iy] = met->pl[ix][iy][0];
8474 memcpy(met->pl, help, sizeof(met->pl));
8475 free(help);
8476 }
8477
8478 /* Read temperature at the surface... */
8479 if (!read_met_nc_2d
8480 (ncid, "t2m", "T2M", "2t", "2T", "t2", "T2", ctl, met, dd, met->ts, 1.0,
8481 1))
8482 WARN("Cannot read surface temperature!");
8483
8484 /* Read zonal wind at the surface... */
8485 if (!read_met_nc_2d
8486 (ncid, "u10m", "U10M", "10u", "10U", "u10", "U10", ctl, met, dd,
8487 met->us, 1.0, 1))
8488 WARN("Cannot read surface zonal wind!");
8489
8490 /* Read meridional wind at the surface... */
8491 if (!read_met_nc_2d
8492 (ncid, "v10m", "V10M", "10v", "10V", "v10", "V10", ctl, met, dd,
8493 met->vs, 1.0, 1))
8494 WARN("Cannot read surface meridional wind!");
8495
8496 /* Read eastward turbulent surface stress... */
8497 if (!read_met_nc_2d
8498 (ncid, "iews", "IEWS", NULL, NULL, NULL, NULL, ctl, met, dd, met->ess,
8499 1.0, 1))
8500 WARN("Cannot read eastward turbulent surface stress!");
8501
8502 /* Read northward turbulent surface stress... */
8503 if (!read_met_nc_2d
8504 (ncid, "inss", "INSS", NULL, NULL, NULL, NULL, ctl, met, dd, met->nss,
8505 1.0, 1))
8506 WARN("Cannot read nothward turbulent surface stress!");
8507
8508 /* Read surface sensible heat flux... */
8509 if (!read_met_nc_2d
8510 (ncid, "ishf", "ISHF", NULL, NULL, NULL, NULL, ctl, met, dd, met->shf,
8511 1.0, 1))
8512 WARN("Cannot read surface sensible heat flux!");
8513
8514 /* Read land-sea mask... */
8515 if (!read_met_nc_2d
8516 (ncid, "lsm", "LSM", NULL, NULL, NULL, NULL, ctl, met, dd, met->lsm,
8517 1.0, 1))
8518 WARN("Cannot read land-sea mask!");
8519
8520 /* Read sea surface temperature... */
8521 if (!read_met_nc_2d
8522 (ncid, "sstk", "SSTK", "sst", "SST", NULL, NULL, ctl, met, dd, met->sst,
8523 1.0, 1))
8524 WARN("Cannot read sea surface temperature!");
8525
8526 /* Read PBL... */
8527 if (ctl->met_pbl == 0)
8528 if (!read_met_nc_2d
8529 (ncid, "blp", "BLP", NULL, NULL, NULL, NULL, ctl, met, dd, met->pbl,
8530 0.01f, 1))
8531 WARN("Cannot read planetary boundary layer pressure!");
8532 if (ctl->met_pbl == 1)
8533 if (!read_met_nc_2d
8534 (ncid, "blh", "BLH", NULL, NULL, NULL, NULL, ctl, met, dd, met->pbl,
8535 0.001f, 1))
8536 WARN("Cannot read planetary boundary layer height!");
8537
8538 /* Read CAPE... */
8539 if (ctl->met_cape == 0)
8540 if (!read_met_nc_2d
8541 (ncid, "cape", "CAPE", NULL, NULL, NULL, NULL, ctl, met, dd,
8542 met->cape, 1.0, 1))
8543 WARN("Cannot read CAPE!");
8544
8545 /* Read CIN... */
8546 if (ctl->met_cape == 0)
8547 if (!read_met_nc_2d
8548 (ncid, "cin", "CIN", NULL, NULL, NULL, NULL, ctl, met, dd, met->cin,
8549 1.0, 1))
8550 WARN("Cannot read convective inhibition!");
8551}
8552
8553/*****************************************************************************/
8554
8556 const int ncid,
8557 const ctl_t *ctl,
8558 met_t *met,
8559 dd_t *dd) {
8560
8561 /* Set timer... */
8562 SELECT_TIMER("READ_MET_NC_LEVELS", "INPUT", NVTX_READ);
8563 LOG(2, "Read level data...");
8564
8565 /* Read temperature... */
8566 if (!read_met_nc_3d
8567 (ncid, "t", "T", "temp", "TEMP", ctl, met, dd, met->t, 1.0))
8568 ERRMSG("Cannot read temperature!");
8569
8570 /* Read horizontal wind and vertical velocity... */
8571 if (!read_met_nc_3d(ncid, "u", "U", NULL, NULL, ctl, met, dd, met->u, 1.0))
8572 ERRMSG("Cannot read zonal wind!");
8573 if (!read_met_nc_3d(ncid, "v", "V", NULL, NULL, ctl, met, dd, met->v, 1.0))
8574 ERRMSG("Cannot read meridional wind!");
8575 if (!read_met_nc_3d
8576 (ncid, "w", "W", "omega", "OMEGA", ctl, met, dd, met->w, 0.01f))
8577 WARN("Cannot read vertical velocity!");
8578
8579 /* Read water vapor... */
8580 if (!ctl->met_relhum) {
8581 if (!read_met_nc_3d
8582 (ncid, "q", "Q", "sh", "SH", ctl, met, dd, met->h2o,
8583 (float) (MA / MH2O)))
8584 WARN("Cannot read specific humidity!");
8585 } else {
8586 if (!read_met_nc_3d
8587 (ncid, "rh", "RH", NULL, NULL, ctl, met, dd, met->h2o, 0.01f))
8588 WARN("Cannot read relative humidity!");
8589#pragma omp parallel for default(shared) collapse(2)
8590 for (int ix = 0; ix < met->nx; ix++)
8591 for (int iy = 0; iy < met->ny; iy++)
8592 for (int ip = 0; ip < met->np; ip++) {
8593 double pw = met->h2o[ix][iy][ip] * PSAT(met->t[ix][iy][ip]);
8594 met->h2o[ix][iy][ip] =
8595 (float) (pw / (met->p[ip] - (1.0 - EPS) * pw));
8596 }
8597 }
8598
8599 /* Read ozone... */
8600 if (!read_met_nc_3d
8601 (ncid, "o3", "O3", NULL, NULL, ctl, met, dd, met->o3,
8602 (float) (MA / MO3)))
8603 WARN("Cannot read ozone data!");
8604
8605 /* Read cloud data... */
8606 if (!read_met_nc_3d
8607 (ncid, "clwc", "CLWC", NULL, NULL, ctl, met, dd, met->lwc, 1.0))
8608 WARN("Cannot read cloud liquid water content!");
8609 if (!read_met_nc_3d
8610 (ncid, "crwc", "CRWC", NULL, NULL, ctl, met, dd, met->rwc, 1.0))
8611 WARN("Cannot read cloud rain water content!");
8612 if (!read_met_nc_3d
8613 (ncid, "ciwc", "CIWC", NULL, NULL, ctl, met, dd, met->iwc, 1.0))
8614 WARN("Cannot read cloud ice water content!");
8615 if (!read_met_nc_3d
8616 (ncid, "cswc", "CSWC", NULL, NULL, ctl, met, dd, met->swc, 1.0))
8617 WARN("Cannot read cloud snow water content!");
8618 if (!read_met_nc_3d
8619 (ncid, "cc", "CC", NULL, NULL, ctl, met, dd, met->cc, 1.0))
8620 WARN("Cannot read cloud cover!");
8621
8622 /* Read zeta and zeta_dot... */
8623 if (ctl->advect_vert_coord == 1) {
8624 if (!read_met_nc_3d
8625 (ncid, "ZETA", "zeta", NULL, NULL, ctl, met, dd, met->zetal, 1.0))
8626 WARN("Cannot read ZETA!");
8627 if (!read_met_nc_3d
8628 (ncid, "ZETA_DOT_TOT", "ZETA_DOT_clr", "zeta_dot_clr",
8629 NULL, ctl, met, dd, met->zeta_dotl, 0.00001157407f))
8630 WARN("Cannot read ZETA_DOT!");
8631 }
8632
8633 /* Read eta and eta_dot... */
8634 else if (ctl->advect_vert_coord == 3) {
8635#pragma omp parallel for default(shared)
8636 for (int ix = 0; ix < met->nx; ix++)
8637 for (int iy = 0; iy < met->ny; iy++)
8638 for (int ip = 0; ip < met->np; ip++)
8639 met->zetal[ix][iy][ip] =
8640 (float) (met->hyam[ip] / 100000.0 + met->hybm[ip]);
8641 if (!read_met_nc_3d
8642 (ncid, "etadot", "ETADOT", NULL, NULL, ctl, met, dd, met->zeta_dotl,
8643 1.0))
8644 WARN("Cannot read eta vertical velocity!");
8645 }
8646
8647 /* Store velocities on model levels... */
8648 if (ctl->met_vert_coord != 0) {
8649#pragma omp parallel for default(shared)
8650 for (int ix = 0; ix < met->nx; ix++)
8651 for (int iy = 0; iy < met->ny; iy++)
8652 for (int ip = 0; ip < met->np; ip++) {
8653 met->ul[ix][iy][ip] = met->u[ix][iy][ip];
8654 met->vl[ix][iy][ip] = met->v[ix][iy][ip];
8655 met->wl[ix][iy][ip] = met->w[ix][iy][ip];
8656 }
8657
8658 /* Save number of model levels... */
8659 met->npl = met->np;
8660 }
8661
8662 /* Get pressure on model levels... */
8663 if (ctl->met_np > 0 || ctl->met_vert_coord != 0) {
8664
8665 /* Read 3-D pressure field... */
8666 if (ctl->met_vert_coord == 1) {
8667 if (!read_met_nc_3d
8668 (ncid, "pl", "PL", "pressure", "PRESSURE", ctl, met, dd, met->pl,
8669 0.01f))
8670 if (!read_met_nc_3d
8671 (ncid, "press", "PRESS", NULL, NULL, ctl, met, dd, met->pl, 1.0))
8672 ERRMSG("Cannot read pressure on model levels!");
8673 }
8674
8675 /* Use a and b coefficients for full levels (at layer midpoints)... */
8676 else if (ctl->met_vert_coord == 2 || ctl->met_vert_coord == 3) {
8677
8678 /* Check number of levels... */
8679 if (ctl->met_vert_coord == 3 && met->np != ctl->met_nlev)
8680 ERRMSG("Mismatch in number of model levels!");
8681
8682 /* Calculate pressure... */
8683 for (int ix = 0; ix < met->nx; ix++)
8684 for (int iy = 0; iy < met->ny; iy++)
8685 for (int ip = 0; ip < met->np; ip++)
8686 met->pl[ix][iy][ip] =
8687 (float) (met->hyam[ip] / 100. +
8688 met->hybm[ip] * met->ps[ix][iy]);
8689 }
8690
8691 /* Use a and b coefficients for half levels (at layer interfaces)... */
8692 else if (ctl->met_vert_coord == 4) {
8693
8694 /* Check number of levels... */
8695 if (met->np + 1 != ctl->met_nlev)
8696 ERRMSG("Mismatch in number of model levels!");
8697
8698 /* Calculate pressure... */
8699#pragma omp parallel for default(shared) collapse(2)
8700 for (int ix = 0; ix < met->nx; ix++)
8701 for (int iy = 0; iy < met->ny; iy++)
8702 for (int ip = 0; ip < met->np; ip++) {
8703 const double p0 =
8704 met->hyam[ip] / 100. + met->hybm[ip] * met->ps[ix][iy];
8705 const double p1 =
8706 met->hyam[ip + 1] / 100. + met->hybm[ip + 1] * met->ps[ix][iy];
8707 met->pl[ix][iy][ip] = (float) ((p1 - p0) / log(p1 / p0));
8708 }
8709 }
8710
8711 /* Check ordering of pressure levels... */
8712 for (int ix = 0; ix < met->nx; ix++)
8713 for (int iy = 0; iy < met->ny; iy++)
8714 for (int ip = 1; ip < met->np; ip++)
8715 if ((met->pl[ix][iy][0] > met->pl[ix][iy][1]
8716 && met->pl[ix][iy][ip - 1] <= met->pl[ix][iy][ip])
8717 || (met->pl[ix][iy][0] < met->pl[ix][iy][1]
8718 && met->pl[ix][iy][ip - 1] >= met->pl[ix][iy][ip]))
8719 ERRMSG("Pressure profiles are not monotonic!");
8720 }
8721
8722 /* Interpolate from model levels to pressure levels... */
8723 if (ctl->met_np > 0) {
8724
8725 /* Interpolate variables... */
8726 read_met_ml2pl(ctl, met, met->t, "T");
8727 read_met_ml2pl(ctl, met, met->u, "U");
8728 read_met_ml2pl(ctl, met, met->v, "V");
8729 read_met_ml2pl(ctl, met, met->w, "W");
8730 read_met_ml2pl(ctl, met, met->h2o, "H2O");
8731 read_met_ml2pl(ctl, met, met->o3, "O3");
8732 read_met_ml2pl(ctl, met, met->lwc, "LWC");
8733 read_met_ml2pl(ctl, met, met->rwc, "RWC");
8734 read_met_ml2pl(ctl, met, met->iwc, "IWC");
8735 read_met_ml2pl(ctl, met, met->swc, "SWC");
8736 read_met_ml2pl(ctl, met, met->cc, "CC");
8737
8738 /* Set new pressure levels... */
8739 met->np = ctl->met_np;
8740 for (int ip = 0; ip < met->np; ip++)
8741 met->p[ip] = ctl->met_p[ip];
8742 }
8743
8744 /* Check ordering of pressure levels... */
8745 for (int ip = 1; ip < met->np; ip++)
8746 if (met->p[ip - 1] < met->p[ip])
8747 ERRMSG("Pressure levels must be descending!");
8748}
8749
8750/*****************************************************************************/
8751
8753 const int ncid,
8754 const char *varname,
8755 const char *varname2,
8756 const char *varname3,
8757 const char *varname4,
8758 const char *varname5,
8759 const char *varname6,
8760 const ctl_t *ctl,
8761 const met_t *met,
8762 dd_t *dd,
8763 float dest[EX][EY],
8764 const float scl,
8765 const int init) {
8766
8767 char varsel[LEN];
8768
8769 float offset, scalfac;
8770
8771 int varid;
8772
8773 /* Check if variable exists... */
8774 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
8775 sprintf(varsel, "%s", varname);
8776 else if (varname2 != NULL
8777 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
8778 sprintf(varsel, "%s", varname2);
8779 else if (varname3 != NULL
8780 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
8781 sprintf(varsel, "%s", varname3);
8782 else if (varname4 != NULL
8783 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
8784 sprintf(varsel, "%s", varname4);
8785 else if (varname5 != NULL
8786 && nc_inq_varid(ncid, varname5, &varid) == NC_NOERR)
8787 sprintf(varsel, "%s", varname5);
8788 else if (varname6 != NULL
8789 && nc_inq_varid(ncid, varname6, &varid) == NC_NOERR)
8790 sprintf(varsel, "%s", varname6);
8791 else
8792 return 0;
8793
8794 /* Read packed data... */
8795 if (ctl->met_nc_scale && !ctl->dd
8796 && nc_get_att_float(ncid, varid, "add_offset", &offset) == NC_NOERR
8797 && nc_get_att_float(ncid, varid, "scale_factor",
8798 &scalfac) == NC_NOERR) {
8799
8800 /* Allocate... */
8801 short *help;
8802 ALLOC(help, short,
8803 EX * EY * EP);
8804
8805 /* Read fill value and missing value... */
8806 short fillval, missval;
8807 if (nc_get_att_short(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
8808 fillval = 0;
8809 if (nc_get_att_short(ncid, varid, "missing_value", &missval) != NC_NOERR)
8810 missval = 0;
8811
8812 /* Write info... */
8813 LOG(2, "Read 2-D variable: %s"
8814 " (FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
8815 varsel, fillval, missval, scalfac, offset);
8816
8817 /* Read data... */
8818 NC(nc_get_var_short(ncid, varid, help));
8819
8820 /* Check meteo data layout... */
8821 if (ctl->met_convention != 0)
8822 ERRMSG("Meteo data layout not implemented for packed netCDF files!");
8823
8824 /* Copy and check data... */
8825 omp_set_dynamic(1);
8826#pragma omp parallel for default(shared)
8827 for (int ix = 0; ix < met->nx; ix++)
8828 for (int iy = 0; iy < met->ny; iy++) {
8829 if (init)
8830 dest[ix][iy] = 0;
8831 const short aux = help[ARRAY_2D(iy, ix, met->nx)];
8832 if ((fillval == 0 || aux != fillval)
8833 && (missval == 0 || aux != missval)
8834 && fabsf(aux * scalfac + offset) < 1e14f)
8835 dest[ix][iy] += scl * (aux * scalfac + offset);
8836 else
8837 dest[ix][iy] = NAN;
8838 }
8839 omp_set_dynamic(0);
8840
8841 /* Free... */
8842 free(help);
8843 }
8844
8845 /* Unpacked data... */
8846 else if (!ctl->dd) {
8847
8848 /* Allocate... */
8849 float *help;
8850 ALLOC(help, float,
8851 EX * EY);
8852
8853 /* Read fill value and missing value... */
8854 float fillval, missval;
8855 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
8856 fillval = 0;
8857 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
8858 missval = 0;
8859
8860 /* Write info... */
8861 LOG(2, "Read 2-D variable: %s (FILL = %g, MISS = %g)",
8862 varsel, fillval, missval);
8863
8864 /* Read data... */
8865 NC(nc_get_var_float(ncid, varid, help));
8866
8867 /* Check meteo data layout... */
8868 if (ctl->met_convention == 0) {
8869
8870 /* Copy and check data (ordering: lat, lon)... */
8871 omp_set_dynamic(1);
8872#pragma omp parallel for default(shared)
8873 for (int ix = 0; ix < met->nx; ix++)
8874 for (int iy = 0; iy < met->ny; iy++) {
8875 if (init)
8876 dest[ix][iy] = 0;
8877 const float aux = help[ARRAY_2D(iy, ix, met->nx)];
8878 if ((fillval == 0 || aux != fillval)
8879 && (missval == 0 || aux != missval)
8880 && fabsf(aux) < 1e14f)
8881 dest[ix][iy] += scl * aux;
8882 else
8883 dest[ix][iy] = NAN;
8884 }
8885 omp_set_dynamic(0);
8886
8887 } else {
8888
8889 /* Copy and check data (ordering: lon, lat)... */
8890 omp_set_dynamic(1);
8891#pragma omp parallel for default(shared)
8892 for (int iy = 0; iy < met->ny; iy++)
8893 for (int ix = 0; ix < met->nx; ix++) {
8894 if (init)
8895 dest[ix][iy] = 0;
8896 const float aux = help[ARRAY_2D(ix, iy, met->ny)];
8897 if ((fillval == 0 || aux != fillval)
8898 && (missval == 0 || aux != missval)
8899 && fabsf(aux) < 1e14f)
8900 dest[ix][iy] += scl * aux;
8901 else
8902 dest[ix][iy] = NAN;
8903 }
8904 omp_set_dynamic(0);
8905 }
8906
8907 /* Free... */
8908 free(help);
8909
8910 }
8911 /* Domain decomposed data... */
8912 else {
8913
8914 /* Read fill value and missing value... */
8915 float fillval, missval;
8916 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
8917 fillval = 0;
8918 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
8919 missval = 0;
8920
8921 /* Write info... */
8922 LOG(2, "Read 2-D variable: %s (FILL = %g, MISS = %g)",
8923 varsel, fillval, missval);
8924
8925 /* Define hyperslab... */
8926 float *help;
8927 size_t help_subdomain_start[3];
8928 size_t help_subdomain_count[3];
8929
8930 help_subdomain_start[0] = 0;
8931 help_subdomain_start[1] = dd->subdomain_start[2];
8932 help_subdomain_start[2] = dd->subdomain_start[3];
8933
8934 help_subdomain_count[0] = 1;
8935 help_subdomain_count[1] = dd->subdomain_count[2]; //y
8936 help_subdomain_count[2] = dd->subdomain_count[3]; //x
8937
8938 ALLOC(help, float,
8939 (int) dd->subdomain_count[2] * (int) dd->subdomain_count[3]
8940 );
8941
8942 /* Read data... */
8943 NC(nc_get_vara_float
8944 (ncid, varid, help_subdomain_start, help_subdomain_count, help));
8945
8946 /* Read halos at boundaries... */
8947 size_t help_halo_bnd_start[3];
8948 size_t help_halo_bnd_count[3];
8949
8950 help_halo_bnd_start[0] = 0;
8951 help_halo_bnd_start[1] = dd->halo_bnd_start[2];
8952 help_halo_bnd_start[2] = dd->halo_bnd_start[3];
8953
8954 help_halo_bnd_count[0] = 1;
8955 help_halo_bnd_count[1] = dd->halo_bnd_count[2]; //y
8956 help_halo_bnd_count[2] = dd->halo_bnd_count[3]; //x
8957
8958 float *help_halo;
8959 ALLOC(help_halo, float,
8960 help_halo_bnd_count[1] * help_halo_bnd_count[2]);
8961 NC(nc_get_vara_float
8962 (ncid, varid, help_halo_bnd_start, help_halo_bnd_count, help_halo));
8963
8964 /* Check meteo data layout... */
8965 if (ctl->met_convention == 0) {
8966 /* Copy and check data (ordering: lat, lon)... */
8967#pragma omp parallel for default(shared) num_threads(12)
8968 for (int ix = 0; ix < (int) help_subdomain_count[2]; ix++)
8969 for (int iy = 0; iy < (int) help_subdomain_count[1]; iy++) {
8970 if (init == 1)
8971 dest[ix + dd->halo_offset_start][iy] = 0;
8972 const float aux =
8973 help[ARRAY_2D(iy, ix, (int) help_subdomain_count[2])];
8974 if ((fillval == 0 || aux != fillval)
8975 && (missval == 0 || aux != missval)
8976 && fabsf(aux) < 1e14f) {
8977 dest[ix + dd->halo_offset_start][iy] += scl * aux;
8978 } else
8979 dest[ix + dd->halo_offset_start][iy] = NAN;
8980 }
8981
8982 /* Copy and check data (ordering: lat, lon)... */
8983#pragma omp parallel for default(shared) num_threads(12)
8984 for (int ix = 0; ix < (int) help_halo_bnd_count[2]; ix++)
8985 for (int iy = 0; iy < (int) help_halo_bnd_count[1]; iy++) {
8986 if (init == 1)
8987 dest[ix + dd->halo_offset_end][iy] = 0;
8988 const float aux =
8989 help_halo[ARRAY_2D(iy, ix, (int) help_halo_bnd_count[2])];
8990 if ((fillval == 0 || aux != fillval)
8991 && (missval == 0 || aux != missval)
8992 && fabsf(aux) < 1e14f)
8993 dest[ix + dd->halo_offset_end][iy] += scl * aux;
8994 else {
8995 dest[ix + dd->halo_offset_end][iy] = NAN;
8996 }
8997 }
8998
8999 } else {
9000 ERRMSG("Domain decomposition with data convection incompatible!");
9001 }
9002
9003 /* Free... */
9004 free(help);
9005 free(help_halo);
9006 }
9007
9008 /* Return... */
9009 return 1;
9010}
9011
9012/*****************************************************************************/
9013
9015 const int ncid,
9016 const char *varname,
9017 const char *varname2,
9018 const char *varname3,
9019 const char *varname4,
9020 const ctl_t *ctl,
9021 const met_t *met,
9022 dd_t *dd,
9023 float dest[EX][EY][EP],
9024 const float scl) {
9025
9026 SELECT_TIMER("read_met_nc_3d", "INPUT", NVTX_READ);
9027
9028 char varsel[LEN];
9029
9030 float offset, scalfac;
9031
9032 int varid;
9033
9034 /* Check if variable exists... */
9035 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
9036 sprintf(varsel, "%s", varname);
9037 else if (varname2 != NULL
9038 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
9039 sprintf(varsel, "%s", varname2);
9040 else if (varname3 != NULL
9041 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
9042 sprintf(varsel, "%s", varname3);
9043 else if (varname4 != NULL
9044 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
9045 sprintf(varsel, "%s", varname4);
9046 else
9047 return 0;
9048
9049 if (ctl->met_nc_scale && !ctl->dd
9050 && nc_get_att_float(ncid, varid, "add_offset", &offset) == NC_NOERR
9051 && nc_get_att_float(ncid, varid, "scale_factor",
9052 &scalfac) == NC_NOERR) {
9053
9054 /* Allocate... */
9055 short *help;
9056 ALLOC(help, short,
9057 EX * EY * EP);
9058
9059 /* Read fill value and missing value... */
9060 short fillval, missval;
9061 if (nc_get_att_short(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
9062 fillval = 0;
9063 if (nc_get_att_short(ncid, varid, "missing_value", &missval) != NC_NOERR)
9064 missval = 0;
9065
9066 /* Write info... */
9067 LOG(2, "Read 3-D variable: %s "
9068 "(FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
9069 varsel, fillval, missval, scalfac, offset);
9070
9071 /* Read data... */
9072 NC(nc_get_var_short(ncid, varid, help));
9073
9074 /* Check meteo data layout... */
9075 if (ctl->met_convention != 0)
9076 ERRMSG("Meteo data layout not implemented for packed netCDF files!");
9077
9078 /* Copy and check data... */
9079 omp_set_dynamic(1);
9080#pragma omp parallel for default(shared)
9081 for (int ix = 0; ix < met->nx; ix++)
9082 for (int iy = 0; iy < met->ny; iy++)
9083 for (int ip = 0; ip < met->np; ip++) {
9084 const short aux = help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)];
9085 if ((fillval == 0 || aux != fillval)
9086 && (missval == 0 || aux != missval)
9087 && fabsf(aux * scalfac + offset) < 1e14f)
9088 dest[ix][iy][ip] = scl * (aux * scalfac + offset);
9089 else
9090 dest[ix][iy][ip] = NAN;
9091 }
9092 omp_set_dynamic(0);
9093
9094 /* Free... */
9095 free(help);
9096 }
9097
9098 /* Unpacked data... */
9099 else if (!ctl->dd) {
9100
9101 /* Allocate... */
9102 float *help;
9103 ALLOC(help, float,
9104 EX * EY * EP);
9105
9106 /* Read fill value and missing value... */
9107 float fillval, missval;
9108 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
9109 fillval = 0;
9110 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
9111 missval = 0;
9112
9113 /* Write info... */
9114 LOG(2, "Read 3-D variable: %s (FILL = %g, MISS = %g)",
9115 varsel, fillval, missval);
9116
9117 /* Read data... */
9118 NC(nc_get_var_float(ncid, varid, help));
9119
9120 /* Check meteo data layout... */
9121 if (ctl->met_convention == 0) {
9122
9123 /* Copy and check data (ordering: lev, lat, lon)... */
9124 omp_set_dynamic(1);
9125#pragma omp parallel for default(shared)
9126 for (int ix = 0; ix < met->nx; ix++)
9127 for (int iy = 0; iy < met->ny; iy++)
9128 for (int ip = 0; ip < met->np; ip++) {
9129 const float aux = help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)];
9130 if ((fillval == 0 || aux != fillval)
9131 && (missval == 0 || aux != missval)
9132 && fabsf(aux) < 1e14f)
9133 dest[ix][iy][ip] = scl * aux;
9134 else
9135 dest[ix][iy][ip] = NAN;
9136 }
9137 omp_set_dynamic(0);
9138
9139 } else {
9140
9141 /* Copy and check data (ordering: lon, lat, lev)... */
9142 omp_set_dynamic(1);
9143#pragma omp parallel for default(shared)
9144 for (int ip = 0; ip < met->np; ip++)
9145 for (int iy = 0; iy < met->ny; iy++)
9146 for (int ix = 0; ix < met->nx; ix++) {
9147 const float aux = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
9148 if ((fillval == 0 || aux != fillval)
9149 && (missval == 0 || aux != missval)
9150 && fabsf(aux) < 1e14f)
9151 dest[ix][iy][ip] = scl * aux;
9152 else
9153 dest[ix][iy][ip] = NAN;
9154 }
9155 omp_set_dynamic(0);
9156 }
9157
9158 /* Free... */
9159 free(help);
9160
9161 }
9162 /* Domain decomposed data... */
9163 else {
9164
9165 /* Read fill value and missing value... */
9166 float fillval, missval;
9167 if (nc_get_att_float(ncid, varid, "_FillValue", &fillval) != NC_NOERR)
9168 fillval = 0;
9169 if (nc_get_att_float(ncid, varid, "missing_value", &missval) != NC_NOERR)
9170 missval = 0;
9171
9172 /* Write info... */
9173 LOG(2, "Read 3-D variable: %s (FILL = %g, MISS = %g)",
9174 varsel, fillval, missval);
9175
9176 SELECT_TIMER("read_met_nc_3d_CP1", "INPUT", NVTX_READ);
9177
9178 /* Define hyperslab... */
9179
9180 /* Allocate... */
9181 float *help;
9182 ALLOC(help, float,
9183 (int) dd->subdomain_count[0] * (int) dd->subdomain_count[1]
9184 * (int) dd->subdomain_count[2] * (int) dd->subdomain_count[3]);
9185
9186 SELECT_TIMER("read_met_nc_3d_CP2", "INPUT", NVTX_READ);
9187
9188 /* Use default NetCDF parallel I/O behavior */
9189 NC(nc_get_vara_float
9190 (ncid, varid, dd->subdomain_start, dd->subdomain_count, help));
9191
9192 /* Read halos separately at boundaries... */
9193 float *help_halo;
9194 ALLOC(help_halo, float,
9195 dd->halo_bnd_count[0] * dd->halo_bnd_count[1] *
9196 dd->halo_bnd_count[2] * dd->halo_bnd_count[3]);
9197
9198 SELECT_TIMER("read_met_nc_3d_CP3", "INPUT", NVTX_READ);
9199
9200 /* Halo read also uses independent access */
9201 NC(nc_get_vara_float(ncid,
9202 varid,
9203 dd->halo_bnd_start, dd->halo_bnd_count, help_halo));
9204
9205 SELECT_TIMER("read_met_nc_3d_CP4", "INPUT", NVTX_READ);
9206
9207 /* Check meteo data layout... */
9208 if (ctl->met_convention == 0) {
9209 /* Copy and check data (ordering: lev, lat, lon)... */
9210#pragma omp parallel for default(shared) num_threads(12)
9211 for (int ix = 0; ix < (int) dd->subdomain_count[3]; ix++)
9212 for (int iy = 0; iy < (int) dd->subdomain_count[2]; iy++)
9213 for (int ip = 0; ip < met->np; ip++) {
9214 const float aux =
9215 help[ARRAY_3D(ip, iy, (int) dd->subdomain_count[2], ix,
9216 (int) dd->subdomain_count[3])];
9217 if ((fillval == 0 || aux != fillval)
9218 && (missval == 0 || aux != missval)
9219 && fabsf(aux) < 1e14f)
9220 dest[ix + dd->halo_offset_start][iy][ip] = scl * aux;
9221 else
9222 dest[ix + dd->halo_offset_start][iy][ip] = NAN;
9223 }
9224
9225#pragma omp parallel for default(shared) num_threads(12)
9226 for (int ix = 0; ix < (int) dd->halo_bnd_count[3]; ix++)
9227 for (int iy = 0; iy < (int) dd->halo_bnd_count[2]; iy++)
9228 for (int ip = 0; ip < met->np; ip++) {
9229 const float aux =
9230 help_halo[ARRAY_3D(ip, iy, (int) dd->halo_bnd_count[2], ix,
9231 (int) dd->halo_bnd_count[3])];
9232 if ((fillval == 0 || aux != fillval)
9233 && (missval == 0 || aux != missval)
9234 && fabsf(aux) < 1e14f)
9235 dest[ix + dd->halo_offset_end][iy][ip] = scl * aux;
9236 else
9237 dest[ix + dd->halo_offset_end][iy][ip] = NAN;
9238 }
9239
9240 } else {
9241
9242 /* Copy and check data (ordering: lon, lat, lev)... */
9243#pragma omp parallel for default(shared) num_threads(12)
9244 for (int ip = 0; ip < met->np; ip++)
9245 for (int iy = 0; iy < (int) dd->subdomain_count[2]; iy++)
9246 for (int ix = 0; ix < (int) dd->subdomain_count[3]; ix++) {
9247 const float aux = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
9248 if ((fillval == 0 || aux != fillval)
9249 && (missval == 0 || aux != missval)
9250 && fabsf(aux) < 1e14f)
9251 dest[ix + dd->halo_offset_end][iy][ip] = scl * aux;
9252 else
9253 dest[ix + dd->halo_offset_end][iy][ip] = NAN;
9254 }
9255
9256#pragma omp parallel for default(shared) num_threads(12)
9257 for (int ip = 0; ip < met->np; ip++)
9258 for (int iy = 0; iy < (int) dd->halo_bnd_count[2]; iy++)
9259 for (int ix = 0; ix < (int) dd->halo_bnd_count[3]; ix++) {
9260 const float aux = help[ARRAY_3D(ix, iy, met->ny, ip, met->np)];
9261 if ((fillval == 0 || aux != fillval)
9262 && (missval == 0 || aux != missval)
9263 && fabsf(aux) < 1e14f)
9264 dest[ix + dd->halo_offset_start][iy][ip] = scl * aux;
9265 else
9266 dest[ix + dd->halo_offset_start][iy][ip] = NAN;
9267 }
9268 }
9269
9270 /* Free... */
9271 free(help);
9272 free(help_halo);
9273 }
9274
9275 /* Return... */
9276 return 1;
9277}
9278
9279/*****************************************************************************/
9280
9281#ifdef ECCODES
9282int read_met_grib(
9283 const char *filename,
9284 const ctl_t *ctl,
9285 met_t *met) {
9286
9287 /* Set filenames... */
9288 size_t filename_len = strlen(filename) + 1;
9289 char sf_filename[filename_len];
9290 char ml_filename[filename_len];
9291 strcpy(sf_filename, filename);
9292 strcpy(ml_filename, filename);
9293 get_met_replace(ml_filename, "XX", "ml");
9294 get_met_replace(sf_filename, "XX", "sf");
9295
9296 /* Open files... */
9297 FILE *ml_file = fopen(ml_filename, "rb");
9298 FILE *sf_file = fopen(sf_filename, "rb");
9299 if (ml_file == NULL || sf_file == NULL) {
9300 if (ml_file != NULL) {
9301 fclose(ml_file);
9302 WARN("Cannot open file: %s", sf_filename);
9303 }
9304 if (sf_file != NULL) {
9305 fclose(sf_file);
9306 WARN("Cannot open file: %s", ml_filename);
9307 }
9308 return 0;
9309 }
9310
9311 /* Get handles for model level data... */
9312 int ml_num_messages = 0, err = 0;
9313 ECC(codes_count_in_file(0, ml_file, &ml_num_messages));
9314 codes_handle **ml_handles =
9315 (codes_handle **) malloc(sizeof(codes_handle *) *
9316 (size_t) ml_num_messages);
9317 for (int i = 0; i < ml_num_messages; i++) {
9318 codes_handle *h = NULL;
9319 if ((h = codes_grib_handle_new_from_file(0, ml_file, &err)) != NULL)
9320 ml_handles[i] = h;
9321 }
9322
9323 /* Get handles for surface data... */
9324 int sf_num_messages = 0;
9325 ECC(codes_count_in_file(0, sf_file, &sf_num_messages));
9326 codes_handle **sf_handles =
9327 (codes_handle **) malloc(sizeof(codes_handle *) *
9328 (size_t) sf_num_messages);
9329 for (int i = 0; i < sf_num_messages; i++) {
9330 codes_handle *h = NULL;
9331 if ((h = codes_grib_handle_new_from_file(0, sf_file, &err)) != NULL)
9332 sf_handles[i] = h;
9333 }
9334
9335 /* Close files... */
9336 fclose(ml_file);
9337 fclose(sf_file);
9338
9339 /* Read grid data... */
9340 read_met_grib_grid(ml_handles, ml_num_messages, met);
9341
9342 /* Read surface data... */
9343 read_met_grib_surface(sf_handles, sf_num_messages, ctl, met);
9344 for (int i = 0; i < sf_num_messages; i++)
9345 codes_handle_delete(sf_handles[i]);
9346 free(sf_handles);
9347
9348 /* Compute 3D pressure field... */
9349 size_t value_count = 0;
9350 ECC(codes_get_size(ml_handles[0], "pv", &value_count));
9351 if (value_count % 2 != 0)
9352 ERRMSG("Unexpected pv array length!");
9353 size_t nlevels = value_count / 2 - 1; /* number of full model levels */
9354 double *values;
9355 ALLOC(values, double,
9356 value_count);
9357 ECC(codes_get_double_array(ml_handles[0], "pv", values, &value_count));
9358 double *a_vals = values;
9359 double *b_vals = values + nlevels;
9360 if (met->npl > (int) nlevels)
9361 ERRMSG("met->npl exceeds number of pressure levels in GRIB!");
9362 for (int nx = 0; nx < met->nx; nx++)
9363 for (int ny = 0; ny < met->ny; ny++)
9364 for (int level = 0; level <= met->npl; level++) {
9365 const float p1 = (float) (a_vals[level] * 0.01f +
9366 met->ps[nx][ny] * b_vals[level]);
9367 const float p2 = (float) (a_vals[level + 1] * 0.01f +
9368 met->ps[nx][ny] * b_vals[level + 1]);
9369 met->pl[nx][ny][level] = 0.5f * (p1 + p2);
9370 }
9371 free(values);
9372
9373 /* Read model level data... */
9374 read_met_grib_levels(ml_handles, ml_num_messages, ctl, met);
9375 for (int i = 0; i < ml_num_messages; i++)
9376 codes_handle_delete(ml_handles[i]);
9377 free(ml_handles);
9378
9379 /* Return success... */
9380 return 1;
9381}
9382#endif
9383
9384/*****************************************************************************/
9385
9386#ifdef ECCODES
9388 codes_handle **handles,
9389 int count_handles,
9390 met_t *met) {
9391
9392 /* Set timer... */
9393 SELECT_TIMER("READ_MET_GRIB_GRID", "INPUT", NVTX_READ);
9394 LOG(2, "Read meteo grid information...");
9395
9396 /* Read date and time... */
9397 char datestr[LEN], timestr[LEN];
9398 size_t s_date = sizeof(datestr);
9399 ECC(codes_get_string(handles[0], "dataDate", datestr, &s_date));
9400 size_t s_time = sizeof(timestr);
9401 ECC(codes_get_string(handles[0], "dataTime", timestr, &s_time));
9402 int year, month, day, hour;
9403 if (sscanf(datestr, "%4d%2d%2d", &year, &month, &day) != 3)
9404 ERRMSG("Failed to parse dataDate: %s", datestr);
9405 if (sscanf(timestr, "%2d", &hour) != 1)
9406 ERRMSG("Failed to parse dataTime: %s", timestr);
9407 time2jsec(year, month, day, hour, 0, 0, 0, &(met->time));
9408 LOG(2, "Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)", met->time, year, month,
9409 day, hour, 0);
9410
9411 /* Read grid information... */
9412 long count_lat = 0, count_lon = 0;
9413 ECC(codes_get_long(handles[0], "Nj", &count_lat));
9414 ECC(codes_get_long(handles[0], "Ni", &count_lon));
9415 met->ny = (int) count_lat;
9416 met->nx = (int) count_lon;
9417
9418 /* Check grid dimensions... */
9419 LOG(2, "Number of longitudes: %d", met->nx);
9420 if (met->nx < 2 || met->nx > EX)
9421 ERRMSG("Number of longitudes out of range!");
9422 LOG(2, "Number of latitudes: %d", met->ny);
9423 if (met->ny < 2 || met->ny > EY)
9424 ERRMSG("Number of latitudes out of range!");
9425
9426 double first_lon, last_lon, first_lat, last_lat, inc_lon, inc_lat;
9427 ECC(codes_get_double
9428 (handles[0], "longitudeOfFirstGridPointInDegrees", &first_lon));
9429 ECC(codes_get_double
9430 (handles[0], "latitudeOfFirstGridPointInDegrees", &first_lat));
9431 ECC(codes_get_double
9432 (handles[0], "longitudeOfLastGridPointInDegrees", &last_lon));
9433 ECC(codes_get_double
9434 (handles[0], "latitudeOfLastGridPointInDegrees", &last_lat));
9435 ECC(codes_get_double(handles[0], "iDirectionIncrementInDegrees", &inc_lon));
9436 ECC(codes_get_double(handles[0], "jDirectionIncrementInDegrees", &inc_lat));
9437
9438 long jscanpos, iscanneg;
9439 ECC(codes_get_long(handles[0], "iScansNegatively", &iscanneg));
9440 ECC(codes_get_long(handles[0], "jScansPositively", &jscanpos));
9441
9442 /* Compute longitude-latitude grid... */
9443 int counter = 0;
9444 if (iscanneg == 0)
9445 for (double i = first_lon; i <= last_lon + 1e-6; i += inc_lon) {
9446 met->lon[counter] = i;
9447 counter++;
9448 } else
9449 for (double i = first_lon; i > last_lon - 1e-6; i -= inc_lon) {
9450 met->lon[counter] = i;
9451 counter++;
9452 }
9453
9454 counter = 0;
9455 if (jscanpos == 0)
9456 for (double i = first_lat; i > last_lat - 1e-6; i -= inc_lat) {
9457 met->lat[counter] = i;
9458 counter++;
9459 } else
9460 for (double i = first_lat; i <= last_lat + 1e-6; i += inc_lat) {
9461 met->lat[counter] = i;
9462 counter++;
9463 }
9464
9465 /* Write info... */
9466 LOG(2, "Longitudes: %g, %g ... %g deg",
9467 met->lon[0], met->lon[1], met->lon[met->nx - 1]);
9468 LOG(2, "Latitudes: %g, %g ... %g deg",
9469 met->lat[0], met->lat[1], met->lat[met->ny - 1]);
9470
9471 /* Read vertical levels... */
9472 int max_level = 0;
9473 for (int i = 0; i < count_handles; i++) {
9474 long level;
9475 ECC(codes_get_long(handles[i], "level", &level));
9476 if (level > max_level)
9477 max_level = (int) level;
9478 }
9479 met->npl = max_level;
9480
9481 /* Check number of levels... */
9482 LOG(2, "Number of levels: %d", met->npl);
9483 if (met->npl < 2 || met->npl > EP)
9484 ERRMSG("Number of levels out of range!");
9485}
9486#endif
9487
9488/*****************************************************************************/
9489
9490#ifdef ECCODES
9492 codes_handle **handles,
9493 const int num_messages,
9494 const ctl_t *ctl,
9495 met_t *met) {
9496
9497 /* Set timer... */
9498 SELECT_TIMER("READ_MET_GRIB_LEVELS", "INPUT", NVTX_READ);
9499 LOG(2, "Read level data...");
9500
9501 /* Init... */
9502 int t_flag = 0, u_flag = 0, v_flag = 0, w_flag = 0, o3_flag = 0, h2o_flag =
9503 0, lwc_flag = 0, rwc_flag = 0, iwc_flag = 0, swc_flag = 0, cc_flag = 0;
9504
9505 /* Iterate over all messages... */
9506 for (int i = 0; i < num_messages; i++) {
9507
9508 size_t max_size = LEN;
9509 char short_name[max_size];
9510 size_t value_count;
9511 double *values;
9512
9513 /* Get the current level */
9514 long current_level;
9515 ECC(codes_get_long(handles[i], "level", &current_level));
9516 current_level -= 1;
9517
9518 /* Retrieve data from current message */
9519 ECC(codes_get_string(handles[i], "shortName", short_name, &max_size));
9520 ECC(codes_get_size(handles[i], "values", &value_count));
9521 ALLOC(values, double,
9522 value_count);
9523 ECC(codes_get_double_array(handles[i], "values", values, &value_count));
9524
9525 /* Read temperature... */
9526 ECC_READ_3D("t", current_level, met->t, 1.0, t_flag);
9527
9528 /* Read horizontal wind and vertical velocity... */
9529 ECC_READ_3D("u", current_level, met->u, 1.0, u_flag);
9530 ECC_READ_3D("v", current_level, met->v, 1.0, v_flag);
9531 ECC_READ_3D("w", current_level, met->w, 0.01f, w_flag);
9532
9533 /* Read water vapor and ozone... */
9534 ECC_READ_3D("q", current_level, met->h2o, (float) (MA / MH2O), h2o_flag);
9535 ECC_READ_3D("o3", current_level, met->o3, (float) (MA / MO3), o3_flag);
9536
9537 /* Read cloud data... */
9538 ECC_READ_3D("clwc", current_level, met->lwc, 1.0, lwc_flag);
9539 ECC_READ_3D("crwc", current_level, met->rwc, 1.0, rwc_flag);
9540 ECC_READ_3D("ciwc", current_level, met->iwc, 1.0, iwc_flag);
9541 ECC_READ_3D("cswc", current_level, met->swc, 1.0, swc_flag);
9542 ECC_READ_3D("cc", current_level, met->cc, 1.0, cc_flag);
9543
9544 /*Free allocated array */
9545 free(values);
9546 }
9547
9548 /* Check whether data were found... */
9549 if (t_flag != met->npl)
9550 ERRMSG("Cannot read temperature!");
9551 if (u_flag != met->npl)
9552 ERRMSG("Cannot read zonal wind!");
9553 if (v_flag != met->npl)
9554 ERRMSG("Cannot read meridional wind!");
9555 if (w_flag != met->npl)
9556 WARN("Cannot read vertical velocity!");
9557 if (h2o_flag != met->npl)
9558 WARN("Cannot read specific humidity!");
9559 if (o3_flag != met->npl)
9560 WARN("Cannot read ozone data!");
9561 if (lwc_flag != met->npl)
9562 WARN("Cannot read cloud liquid water content!");
9563 if (rwc_flag != met->npl)
9564 WARN("Cannot read cloud rain water content!");
9565 if (iwc_flag != met->npl)
9566 WARN("Cannot read cloud ice water content!");
9567 if (swc_flag != met->npl)
9568 WARN("Cannot read cloud snow water content!");
9569 if (cc_flag != met->npl)
9570 WARN("Cannot read cloud cover!");
9571
9572 /* Check ordering of pressure levels... */
9573 for (int ix = 0; ix < met->nx; ix++)
9574 for (int iy = 0; iy < met->ny; iy++)
9575 for (int ip = 1; ip < met->np; ip++)
9576 if ((met->pl[ix][iy][0] > met->pl[ix][iy][1]
9577 && met->pl[ix][iy][ip - 1] <= met->pl[ix][iy][ip])
9578 || (met->pl[ix][iy][0] < met->pl[ix][iy][1]
9579 && met->pl[ix][iy][ip - 1] >= met->pl[ix][iy][ip])) {
9580 LOG(1, "%f %f %f %f", met->pl[ix][iy][0], met->pl[ix][iy][1],
9581 met->pl[ix][iy][ip - 1], met->pl[ix][iy][ip]);
9582 ERRMSG("Pressure profiles are not monotonic!");
9583 }
9584
9585 /* Interpolate from model levels to pressure levels... */
9586 if (ctl->met_np > 0) {
9587 met->np = ctl->met_np;
9588
9589 /* Interpolate variables... */
9590 read_met_ml2pl(ctl, met, met->t, "T");
9591 read_met_ml2pl(ctl, met, met->u, "U");
9592 read_met_ml2pl(ctl, met, met->v, "V");
9593 read_met_ml2pl(ctl, met, met->w, "W");
9594 read_met_ml2pl(ctl, met, met->h2o, "H2O");
9595 read_met_ml2pl(ctl, met, met->o3, "O3");
9596 read_met_ml2pl(ctl, met, met->lwc, "LWC");
9597 read_met_ml2pl(ctl, met, met->rwc, "RWC");
9598 read_met_ml2pl(ctl, met, met->iwc, "IWC");
9599 read_met_ml2pl(ctl, met, met->swc, "SWC");
9600 read_met_ml2pl(ctl, met, met->cc, "CC");
9601
9602 /* Set new pressure levels... */
9603 for (int ip = 0; ip < met->np; ip++)
9604 met->p[ip] = ctl->met_p[ip];
9605 }
9606
9607 /* Check ordering of pressure levels... */
9608 for (int ip = 1; ip < met->np; ip++)
9609 if (met->p[ip - 1] < met->p[ip])
9610 ERRMSG("Pressure levels must be descending!");
9611}
9612#endif
9613
9614/*****************************************************************************/
9615
9616#ifdef ECCODES
9618 codes_handle **handles,
9619 const int num_messages,
9620 const ctl_t *ctl,
9621 met_t *met) {
9622
9623 /* Set timer... */
9624 SELECT_TIMER("READ_MET_GRIB_SURFACE", "INPUT", NVTX_READ);
9625 LOG(2, "Read surface data...");
9626
9627 /* Init... */
9628 int sp_flag = 0, z_flag = 0, t_flag = 0, u_flag = 0, v_flag = 0, lsm_flag =
9629 0, sst_flag = 0, cape_flag = 0, cin_flag = 0, pbl_flag = 0;
9630
9631 /* Iterate over all messages... */
9632 for (int i = 0; i < num_messages; i++) {
9633
9634 size_t max_size = LEN, value_count;
9635
9636 char short_name[max_size];
9637
9638 /* Store values with shortname... */
9639 ECC(codes_get_string(handles[i], "shortName", short_name, &max_size));
9640 ECC(codes_get_size(handles[i], "values", &value_count));
9641 double *values = (double *) malloc(value_count * sizeof(double));
9642 ECC(codes_get_double_array(handles[i], "values", values, &value_count));
9643
9644 /*Read surface pressure... */
9645 ECC_READ_2D("sp", met->ps, 0.01f, sp_flag);
9646
9647 /*Read geopotential height at the surface... */
9648 ECC_READ_2D("z", met->zs, (float) (1. / (1000. * G0)), z_flag);
9649
9650 /* Read temperature at the surface... */
9651 ECC_READ_2D("2t", met->ts, 1.0f, t_flag);
9652
9653 /* Read zonal wind at the surface... */
9654 ECC_READ_2D("10u", met->us, 1.0f, u_flag);
9655
9656 /* Read meridional wind at the surface... */
9657 ECC_READ_2D("10v", met->vs, 1.0f, v_flag);
9658
9659 /* Read land-sea mask... */
9660 ECC_READ_2D("lsm", met->lsm, 1.0f, lsm_flag);
9661
9662 /* Read sea surface temperature... */
9663 ECC_READ_2D("sst", met->sst, 1.0f, sst_flag);
9664 if (ctl->met_cape == 0) {
9665
9666 /* Read CAPE... */
9667 ECC_READ_2D("cape", met->cape, 1.0f, cape_flag);
9668
9669 /* Read CIN... */
9670 ECC_READ_2D("cin", met->cin, 1.0f, cin_flag);
9671 }
9672
9673 /* Read PBL... */
9674 if (ctl->met_pbl == 0)
9675 ECC_READ_2D("blh", met->pbl, 0.0001f, pbl_flag);
9676 }
9677
9678 /* Check whether data have been read... */
9679 if (sp_flag == 0)
9680 WARN("Cannot read surface pressure data!");
9681 if (z_flag == 0)
9682 WARN("Cannot read surface geopotential height!");
9683 if (t_flag == 0)
9684 WARN("Cannot read surface temperature!");
9685 if (u_flag == 0)
9686 WARN("Cannot read surface zonal wind!");
9687 if (v_flag == 0)
9688 WARN("Cannot read surface meridional wind!");
9689 if (lsm_flag == 0)
9690 WARN("Cannot read land-sea mask!");
9691 if (sst_flag == 0)
9692 WARN("Cannot read sea surface temperature!");
9693 if (ctl->met_cape == 0) {
9694 if (cape_flag == 0)
9695 WARN("Cannot read CAPE!");
9696 if (cin_flag == 0)
9697 WARN("Cannot read convective inhibition!");
9698 }
9699 if (ctl->met_pbl == 0 && pbl_flag == 0)
9700 WARN("Cannot read planetary boundary layer!");
9701}
9702#endif
9703
9704/*****************************************************************************/
9705
9707 const ctl_t *ctl,
9708 const met_t *met,
9709 float var[EX][EY][EP],
9710 const char *varname) {
9711
9712 double aux[EP], p[EP];
9713
9714 /* Set timer... */
9715 SELECT_TIMER("READ_MET_ML2PL", "METPROC", NVTX_READ);
9716 LOG(2, "Interpolate meteo data to pressure levels: %s", varname);
9717
9718 /* Loop over columns... */
9719#pragma omp parallel for default(shared) private(aux,p) collapse(2)
9720 for (int ix = 0; ix < met->nx; ix++)
9721 for (int iy = 0; iy < met->ny; iy++) {
9722
9723 /* Copy pressure profile... */
9724 for (int ip = 0; ip < met->np; ip++)
9725 p[ip] = met->pl[ix][iy][ip];
9726
9727 /* Interpolate... */
9728 for (int ip = 0; ip < ctl->met_np; ip++) {
9729 double pt = ctl->met_p[ip];
9730 if ((pt > p[0] && p[0] > p[1]) || (pt < p[0] && p[0] < p[1]))
9731 pt = p[0];
9732 else if ((pt > p[met->np - 1] && p[1] > p[0])
9733 || (pt < p[met->np - 1] && p[1] < p[0]))
9734 pt = p[met->np - 1];
9735 const int ip2 = locate_irr(p, met->np, pt);
9736 aux[ip] = LIN(p[ip2], var[ix][iy][ip2],
9737 p[ip2 + 1], var[ix][iy][ip2 + 1], pt);
9738 }
9739
9740 /* Copy data... */
9741 for (int ip = 0; ip < ctl->met_np; ip++)
9742 var[ix][iy][ip] = (float) aux[ip];
9743 }
9744}
9745
9746/*****************************************************************************/
9747
9749 const ctl_t *ctl,
9750 met_t *met) {
9751
9752 /* Check parameters... */
9753 if (ctl->advect_vert_coord != 1)
9754 return;
9755
9756 /* Set timer... */
9757 SELECT_TIMER("READ_MET_MONOTONIZE", "METPROC", NVTX_READ);
9758 LOG(2, "Make zeta profiles monotone...");
9759
9760 /* Create monotone zeta profiles... */
9761#pragma omp parallel for default(shared) collapse(2)
9762 for (int i = 0; i < met->nx; i++)
9763 for (int j = 0; j < met->ny; j++) {
9764 int k = 1;
9765
9766 while (k < met->npl) { /* Check if there is an inversion at level k... */
9767 if ((met->zetal[i][j][k - 1] >= met->zetal[i][j][k])) {
9768 /* Find the upper level k+l over the inversion... */
9769 int l = 0;
9770 do {
9771 l++;
9772 }
9773 while ((met->zetal[i][j][k - 1] >=
9774 met->zetal[i][j][k + l]) & (k + l < met->npl));
9775
9776 /* Interpolate linear between the top and bottom
9777 of the inversion... */
9778 float s =
9779 (float) (met->zetal[i][j][k + l] - met->zetal[i][j][k - 1])
9780 / (float) (met->hybrid[k + l] - met->hybrid[k - 1]);
9781
9782 for (int m = k; m < k + l; m++) {
9783 float d = (float) (met->hybrid[m] - met->hybrid[k - 1]);
9784 met->zetal[i][j][m] = s * d + met->zetal[i][j][k - 1];
9785 }
9786
9787 /* Search for more inversions above the last inversion ... */
9788 k = k + l;
9789 } else {
9790 k++;
9791 }
9792 }
9793 }
9794
9795 /* Create monotone pressure profiles... */
9796#pragma omp parallel for default(shared) collapse(2)
9797 for (int i = 0; i < met->nx; i++)
9798 for (int j = 0; j < met->ny; j++) {
9799 int k = 1;
9800
9801 while (k < met->npl) { /* Check if there is an inversion at level k... */
9802 if ((met->pl[i][j][k - 1] <= met->pl[i][j][k])) {
9803
9804 /* Find the upper level k+l over the inversion... */
9805 int l = 0;
9806 do {
9807 l++;
9808 }
9809 while ((met->pl[i][j][k - 1] <= met->pl[i][j][k + l]) & (k + l <
9810 met->npl));
9811
9812 /* Interpolate linear between the top and bottom
9813 of the inversion... */
9814 float s = (float) (met->pl[i][j][k + l] - met->pl[i][j][k - 1])
9815 / (float) (met->hybrid[k + l] - met->hybrid[k - 1]);
9816
9817 for (int m = k; m < k + l; m++) {
9818 float d = (float) (met->hybrid[m] - met->hybrid[k - 1]);
9819 met->pl[i][j][m] = s * d + met->pl[i][j][k - 1];
9820 }
9821
9822 /* Search for more inversions above the last inversion ... */
9823 k += l;
9824 } else {
9825 k++;
9826 }
9827 }
9828 }
9829}
9830
9831/*****************************************************************************/
9832
9834 const char *filename,
9835 const ctl_t *ctl,
9836 met_t *met,
9837 dd_t *dd) {
9838
9839 int ncid;
9840
9841 /* Open file... */
9842#ifdef DD
9843 if (ctl->dd) {
9844 NC(nc_open_par
9845 (filename, NC_NOWRITE | NC_SHARE, MPI_COMM_WORLD, MPI_INFO_NULL,
9846 &ncid))
9847 }
9848#else
9849 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
9850 WARN("Cannot open file!");
9851 return 0;
9852 }
9853#endif
9854
9855 /* Read coordinates of meteo data... */
9856 read_met_nc_grid(filename, ncid, ctl, met, dd);
9857
9858 /* Read surface data... */
9859 read_met_nc_surface(ncid, ctl, met, dd);
9860
9861 /* Read meteo data on vertical levels... */
9862 read_met_nc_levels(ncid, ctl, met, dd);
9863
9864 /* Close file... */
9865 NC(nc_close(ncid));
9866
9867 /* Return success... */
9868 return 1;
9869}
9870
9871/*****************************************************************************/
9872
9874 dd_t *dd,
9875 const ctl_t *ctl,
9876 met_t *met,
9877 const int ncid) {
9878
9879 int varid;
9880
9881 /* Get the MPI information... */
9882#ifdef MPI
9883 MPI_Comm_rank(MPI_COMM_WORLD, &dd->rank);
9884 MPI_Comm_size(MPI_COMM_WORLD, &dd->size);
9885#endif
9886
9887 int help_nx_glob;
9888 int help_ny_glob;
9889
9890 /* Get grid dimensions... */
9891 NC_INQ_DIM("lon", &help_nx_glob, 0, 0, 0);
9892 LOG(2, "Number of longitudes: %d", help_nx_glob);
9893 met->nx = (int) floor(help_nx_glob / ctl->dd_subdomains_zonal);
9894
9895 NC_INQ_DIM("lat", &help_ny_glob, 0, 0, 0);
9896 LOG(2, "Number of latitudes: %d", help_ny_glob);
9897 met->ny = (int) floor(help_ny_glob / ctl->dd_subdomains_meridional);
9898
9899 double *help_lon_glob;
9900 double *help_lat_glob;
9901 ALLOC(help_lon_glob, double,
9902 help_nx_glob);
9903 ALLOC(help_lat_glob, double,
9904 help_ny_glob);
9905
9906 /* Read global longitudes and latitudes... */
9907 NC_GET_DOUBLE("lon", help_lon_glob, 1);
9908 LOG(2, "Longitudes: %g, %g ... %g deg",
9909 help_lon_glob[0], help_lon_glob[1], help_lon_glob[help_nx_glob - 1]);
9910 NC_GET_DOUBLE("lat", help_lat_glob, 1);
9911 LOG(2, "Latitudes: %g, %g ... %g deg",
9912 help_lat_glob[0], help_lat_glob[1], help_lat_glob[help_ny_glob - 1]);
9913
9914 /* Determine hyperslabs for reading the data in parallel... */
9915
9916 /* Check for edge cases... */
9917 int left = (dd->rank <= ctl->dd_subdomains_meridional - 1);
9918 int right = (dd->rank >= dd->size - ctl->dd_subdomains_meridional);
9919 int top = (dd->rank % ctl->dd_subdomains_meridional == 0);
9920 int bottom =
9921 (dd->rank % ctl->dd_subdomains_meridional ==
9922 ctl->dd_subdomains_meridional - 1);
9923
9924 /* Set the hyperslab for the subdomain... */
9925 dd->subdomain_start[0] = 0;
9926 dd->subdomain_start[1] = 0;
9927 dd->subdomain_start[2] =
9928 (size_t) ((dd->rank % ctl->dd_subdomains_meridional) * met->ny);
9929 dd->subdomain_start[3] =
9930 (size_t) (floor(dd->rank / ctl->dd_subdomains_meridional) * met->nx);
9931
9932 /* Extend subdomains at the right and bottom to fit the full domain. */
9933 if (right) {
9934 int gap = help_nx_glob - ctl->dd_subdomains_zonal * met->nx;
9935 if (gap > 0) {
9936 met->nx = met->nx + gap;
9937 WARN("Extended subdomains at the right to fit to full domain.");
9938 }
9939 }
9940 if (bottom) {
9941 int gap = help_ny_glob - ctl->dd_subdomains_meridional * met->ny;
9942 if (gap > 0) {
9943 met->ny = met->ny + gap;
9944 WARN("Extended subdomains at the bottom to fit to full domain.");
9945 }
9946 }
9947
9948 /* Block-size, i.e. count */
9949 dd->subdomain_count[0] = 1;
9950 dd->subdomain_count[1] = (size_t) met->np;
9951 dd->subdomain_count[2] = (size_t) met->ny;
9952 dd->subdomain_count[3] = (size_t) met->nx;
9953
9954 /* Create halos and include them into the subdomain... */
9955 if (!left && !right) {
9956 // If we are not at the left or right edge extend in zonal direction...
9957 // Move the start one point to the left...
9958 dd->subdomain_count[3] =
9959 dd->subdomain_count[3] + (size_t) (ctl->dd_halos_size * 2);
9960 dd->subdomain_start[3] =
9961 dd->subdomain_start[3] - (size_t) ctl->dd_halos_size;
9962 } else {
9963 // If we are at the left or right edge, extend only in one zonal direction...
9964 dd->subdomain_count[3] =
9965 dd->subdomain_count[3] + (size_t) ctl->dd_halos_size;
9966 if (!left)
9967 // If we are not at the left edge, move the start to the left...
9968 dd->subdomain_start[3] =
9969 dd->subdomain_start[3] - (size_t) ctl->dd_halos_size;
9970 }
9971
9972 if (!top && !bottom) {
9973 // If we are not at the upper or lower edge extend in meridional direction...
9974 // Move the start point one point down...
9975 dd->subdomain_count[2] =
9976 dd->subdomain_count[2] + (size_t) (ctl->dd_halos_size * 2);
9977 dd->subdomain_start[2] =
9978 dd->subdomain_start[2] - (size_t) ctl->dd_halos_size;
9979 } else {
9980 // If we are at the top or the lower edge only extend in one mer. direction...
9981 dd->subdomain_count[2] =
9982 dd->subdomain_count[2] + (size_t) ctl->dd_halos_size;
9983 if (!top)
9984 // If we are not at the top, move the start one upward...
9985 dd->subdomain_start[2] =
9986 dd->subdomain_start[2] - (size_t) ctl->dd_halos_size;
9987 }
9988
9989 /* Set boundary halo hyperslabs ... */
9990 double lon_shift = 0;
9991 if (left || right) {
9992
9993 met->nx = met->nx + ctl->dd_halos_size;
9994
9995 dd->halo_bnd_start[0] = 0;
9996 dd->halo_bnd_start[1] = 0;
9997 dd->halo_bnd_start[3] = (size_t) (left ? (help_nx_glob - ctl->dd_halos_size) : (0)); //x
9998 dd->halo_bnd_start[2] = dd->subdomain_start[2]; //y
9999
10000 dd->halo_bnd_count[0] = 1;
10001 dd->halo_bnd_count[1] = (size_t) met->np;
10002 dd->halo_bnd_count[3] = (size_t) ctl->dd_halos_size;
10003 dd->halo_bnd_count[2] =
10004 (size_t) met->ny +
10005 (size_t) ctl->dd_halos_size * ((top || bottom) ? 1 : 2);
10006
10007 dd->halo_offset_start = (left ? (int) dd->halo_bnd_count[3] : 0);
10008 dd->halo_offset_end = (left ? 0 : (int) dd->subdomain_count[3]);
10009 lon_shift = (left ? -360 : 360);
10010
10011 } else {
10012
10013 dd->halo_bnd_start[0] = 0;
10014 dd->halo_bnd_start[1] = 0;
10015 dd->halo_bnd_start[3] = 0;
10016 dd->halo_bnd_start[2] = 0;
10017
10018 dd->halo_bnd_count[0] = 0;
10019 dd->halo_bnd_count[1] = 0;
10020 dd->halo_bnd_count[3] = 0;
10021 dd->halo_bnd_count[2] = 0;
10022 }
10023
10024 /* Get the range of the entire meteodata... */
10025 /* Handle both periodic (global) and non-periodic (regional) longitude grids */
10026 double lon_range = 360;
10027 //if (dd_is_periodic_longitude(met, help_nx_glob)) {
10028 /* For global grids with periodic boundaries, use full 360 degrees */
10029 //lon_range = 360.0;
10030 //LOG(3, "Detected periodic longitude boundaries, using lon_range = 360.0");
10031 //} else {
10032 /* For regional grids, use the actual data range */
10033 //lon_range = help_lon_glob[help_nx_glob - 1] - help_lon_glob[0];
10034 //LOG(3, "Detected non-periodic longitude boundaries, using lon_range = %g", lon_range);
10035 //}
10036
10037 double lat_range = help_lat_glob[help_ny_glob - 1] - help_lat_glob[0];
10038
10039 /* Focus on subdomain latitudes and longitudes... */
10040 for (int iy = 0; iy < (int) dd->subdomain_count[2]; iy++)
10041 met->lat[iy] = help_lat_glob[(int) dd->subdomain_start[2] + iy];
10042
10043 /* Focus on subdomain longitudes... */
10044 /* Keep space at the beginning or end of the array for halo... */
10045 for (int ix = 0; ix < (int) dd->subdomain_count[3]; ix++)
10046 met->lon[ix + dd->halo_offset_start] =
10047 help_lon_glob[(int) dd->subdomain_start[3] + ix];
10048
10049 for (int ix = 0; ix < (int) dd->halo_bnd_count[3]; ix++)
10050 met->lon[ix + dd->halo_offset_end] =
10051 help_lon_glob[(int) dd->halo_bnd_start[3] + ix] + lon_shift;
10052
10053 /* Reset the grid dimensions... */
10054 met->nx = (int) dd->subdomain_count[3] + (int) dd->halo_bnd_count[3];
10055 met->ny = (int) dd->subdomain_count[2];
10056
10057 /* Determine subdomain edges... */
10058 dd->subdomain_lon_min = floor(dd->rank / ctl->dd_subdomains_meridional)
10059 * (lon_range) / (double) ctl->dd_subdomains_zonal;
10061 + (lon_range) / (double) ctl->dd_subdomains_zonal;
10062
10063 /* Latitudes in descending order (90 to -90) */
10064 if (lat_range < 0) {
10065 dd->subdomain_lat_max = 90 + (dd->rank % ctl->dd_subdomains_meridional)
10066 * (lat_range) / (double) ctl->dd_subdomains_meridional;
10068 + (lat_range) / (double) ctl->dd_subdomains_meridional;
10069 } else {
10070 WARN
10071 ("lat_range > 0, but is expected to be negative, i.e. latitudes should range from 90 to -90")
10072 dd->subdomain_lat_min = -90 + (dd->rank % ctl->dd_subdomains_meridional)
10073 * (lat_range) / (double) ctl->dd_subdomains_meridional;
10075 + (lat_range) / (double) ctl->dd_subdomains_meridional;
10076 }
10077
10078 LOG(2, "Total longitude range: %g deg", lon_range);
10079 LOG(2, "Total latitude range: %g deg", lat_range);
10080
10081 LOG(2, "Define subdomain properties.");
10082 LOG(2, "MPI information: Rank %d, Size %d", dd->rank, dd->size);
10083 LOG(2, "Edge position: l=%d,r=%d,t=%d, b=%d", (int) left, (int) right,
10084 (int) top, (int) bottom);
10085 LOG(2, "Sizes for limits: EX %d EY %d EP %d", EX, EY, EP);
10086 LOG(2, "Total size for subdomain meteo data: nx %d ny %d np %d", met->nx,
10087 met->ny, met->np);
10088 LOG(2, "Hyperslab sizes for boundary halos: nx %d ny %d np %d",
10089 (int) dd->halo_bnd_count[3], (int) dd->halo_bnd_count[2],
10090 (int) dd->halo_bnd_count[1]);
10091 LOG(2, "Hyperslab sizes for subdomain and inner halos: nx %d ny %d np %d",
10092 (int) dd->subdomain_count[3], (int) dd->subdomain_count[2],
10093 (int) dd->subdomain_count[1]);
10094 LOG(2, "Subdomain start: nx %ld ny %ld np %ld", dd->subdomain_start[3],
10095 dd->subdomain_start[2], dd->subdomain_start[1]);
10096 LOG(2, "Boundary halo start: nx %ld ny %ld np %ld", dd->halo_bnd_start[3],
10097 dd->halo_bnd_start[2], dd->halo_bnd_start[1]);
10098 LOG(2, "Offsets: nx %d ny %d", dd->halo_offset_start, dd->halo_offset_end);
10099
10100 LOG(2, " %d Subdomain longitudes: %g, %g ... %g deg (edges: %g to %g)",
10101 dd->rank, met->lon[0], met->lon[1], met->lon[met->nx - 1],
10103 LOG(2, " %d Subdomain latitudes: %g, %g ... %g deg (edges: %g to %g)",
10104 dd->rank, met->lat[0], met->lat[1], met->lat[met->ny - 1],
10106
10107 free(help_lon_glob);
10108 free(help_lat_glob);
10109}
10110
10111/*****************************************************************************/
10112
10114 const ctl_t *ctl,
10115 met_t *met) {
10116
10117 /* Set timer... */
10118 SELECT_TIMER("READ_MET_PBL", "METPROC", NVTX_READ);
10119 LOG(2, "Calculate planetary boundary layer...");
10120
10121 /* Convert PBL height from meteo file to pressure... */
10122 if (ctl->met_pbl == 1) {
10123
10124 /* Loop over grid points... */
10125#pragma omp parallel for default(shared) collapse(2)
10126 for (int ix = 0; ix < met->nx; ix++)
10127 for (int iy = 0; iy < met->ny; iy++) {
10128
10129 /* Get pressure at top of PBL... */
10130 const float z = met->zs[ix][iy] + met->pbl[ix][iy];
10131 const int ip = locate_irr_float(met->z[ix][iy], met->np, z, 0);
10132 met->pbl[ix][iy] =
10133 (float) (LIN(met->z[ix][iy][ip], met->p[ip],
10134 met->z[ix][iy][ip + 1], met->p[ip + 1], z));
10135 }
10136 }
10137
10138 /* Determine PBL based on Richardson number... */
10139 else if (ctl->met_pbl == 2) {
10140
10141 /* Parameters used to estimate the height of the PBL
10142 (e.g., Vogelezang and Holtslag, 1996; Seidel et al., 2012)... */
10143 const double rib_crit = 0.25, dz = 0.05, umin = 5.0;
10144
10145 /* Loop over grid points... */
10146#pragma omp parallel for default(shared) collapse(2)
10147 for (int ix = 0; ix < met->nx; ix++)
10148 for (int iy = 0; iy < met->ny; iy++) {
10149
10150 /* Set bottom level of PBL... */
10151 const double pbl_bot = met->ps[ix][iy] * exp(-dz / H0);
10152
10153 /* Find lowest level near the bottom... */
10154 int ip;
10155 for (ip = 1; ip < met->np; ip++)
10156 if (met->p[ip] < pbl_bot)
10157 break;
10158
10159 /* Get near surface data... */
10160 const double h2os = LIN(met->p[ip - 1], met->h2o[ix][iy][ip - 1],
10161 met->p[ip], met->h2o[ix][iy][ip], pbl_bot);
10162 const double tvs = THETAVIRT(pbl_bot, met->ts[ix][iy], h2os);
10163
10164 /* Init... */
10165 double rib_old = 0;
10166
10167 /* Loop over levels... */
10168 for (; ip < met->np; ip++) {
10169
10170 /* Get squared horizontal wind speed... */
10171 double vh2 = SQR(met->u[ix][iy][ip] - met->us[ix][iy])
10172 + SQR(met->v[ix][iy][ip] - met->vs[ix][iy]);
10173 vh2 = MAX(vh2, SQR(umin));
10174
10175 /* Calculate bulk Richardson number... */
10176 const double rib =
10177 G0 * 1e3 * (met->z[ix][iy][ip] - met->zs[ix][iy]) / tvs
10178 * (THETAVIRT(met->p[ip], met->t[ix][iy][ip],
10179 met->h2o[ix][iy][ip]) - tvs) / vh2;
10180
10181 /* Check for critical value... */
10182 if (rib >= rib_crit) {
10183 met->pbl[ix][iy] = (float) (LIN(rib_old, met->p[ip - 1],
10184 rib, met->p[ip], rib_crit));
10185 if (met->pbl[ix][iy] > pbl_bot)
10186 met->pbl[ix][iy] = (float) pbl_bot;
10187 break;
10188 }
10189
10190 /* Save Richardson number... */
10191 rib_old = rib;
10192 }
10193 }
10194 }
10195
10196 /* Determine PBL based on potential temperature... */
10197 if (ctl->met_pbl == 3) {
10198
10199 /* Parameters used to estimate the height of the PBL
10200 (following HYSPLIT model)... */
10201 const double dtheta = 2.0, zmin = 0.1;
10202
10203 /* Loop over grid points... */
10204#pragma omp parallel for default(shared) collapse(2)
10205 for (int ix = 0; ix < met->nx; ix++)
10206 for (int iy = 0; iy < met->ny; iy++) {
10207
10208 /* Potential temperature at the surface... */
10209 const double theta0 = THETA(met->ps[ix][iy], met->ts[ix][iy]);
10210
10211 /* Find topmost level where theta exceeds surface value by 2 K... */
10212 int ip;
10213 for (ip = met->np - 2; ip > 0; ip--)
10214 if (met->p[ip] >= 300.)
10215 if (met->p[ip] > met->ps[ix][iy]
10216 || THETA(met->p[ip], met->t[ix][iy][ip]) <= theta0 + dtheta)
10217 break;
10218
10219 /* Interpolate... */
10220 met->pbl[ix][iy]
10221 = (float) (LIN(THETA(met->p[ip + 1], met->t[ix][iy][ip + 1]),
10222 met->p[ip + 1],
10223 THETA(met->p[ip], met->t[ix][iy][ip]),
10224 met->p[ip], theta0 + dtheta));
10225
10226 /* Check minimum value... */
10227 double pbl_min = met->ps[ix][iy] * exp(-zmin / H0);
10228 if (met->pbl[ix][iy] > pbl_min || met->p[ip] > met->ps[ix][iy])
10229 met->pbl[ix][iy] = (float) pbl_min;
10230 }
10231 }
10232
10233 /* Loop over grid points... */
10234#pragma omp parallel for default(shared) collapse(2)
10235 for (int ix = 0; ix < met->nx; ix++)
10236 for (int iy = 0; iy < met->ny; iy++) {
10237
10238 /* Check minimum value... */
10239 double pbl_min = met->ps[ix][iy] * exp(-ctl->met_pbl_min / H0);
10240 met->pbl[ix][iy] = MIN(met->pbl[ix][iy], (float) pbl_min);
10241
10242 /* Check maximum value... */
10243 double pbl_max = met->ps[ix][iy] * exp(-ctl->met_pbl_max / H0);
10244 met->pbl[ix][iy] = MAX(met->pbl[ix][iy], (float) pbl_max);
10245 }
10246}
10247
10248/*****************************************************************************/
10249
10251 met_t *met) {
10252
10253 /* Set timer... */
10254 SELECT_TIMER("READ_MET_PERIODIC", "METPROC", NVTX_READ);
10255 LOG(2, "Apply periodic boundary conditions...");
10256
10257 /* Check longitudes... */
10258 if (!(fabs(met->lon[met->nx - 1] - met->lon[0]
10259 + met->lon[1] - met->lon[0] - 360) < 0.01))
10260 return;
10261
10262 /* Increase longitude counter... */
10263 if ((++met->nx) >= EX)
10264 ERRMSG("Cannot create periodic boundary conditions!");
10265
10266 /* Set longitude... */
10267 met->lon[met->nx - 1] = met->lon[met->nx - 2] + met->lon[1] - met->lon[0];
10268
10269 /* Loop over latitudes and pressure levels... */
10270#pragma omp parallel for default(shared)
10271 for (int iy = 0; iy < met->ny; iy++) {
10272 met->ps[met->nx - 1][iy] = met->ps[0][iy];
10273 met->zs[met->nx - 1][iy] = met->zs[0][iy];
10274 met->ts[met->nx - 1][iy] = met->ts[0][iy];
10275 met->us[met->nx - 1][iy] = met->us[0][iy];
10276 met->vs[met->nx - 1][iy] = met->vs[0][iy];
10277 met->ess[met->nx - 1][iy] = met->ess[0][iy];
10278 met->nss[met->nx - 1][iy] = met->nss[0][iy];
10279 met->shf[met->nx - 1][iy] = met->shf[0][iy];
10280 met->lsm[met->nx - 1][iy] = met->lsm[0][iy];
10281 met->sst[met->nx - 1][iy] = met->sst[0][iy];
10282 met->pbl[met->nx - 1][iy] = met->pbl[0][iy];
10283 met->cape[met->nx - 1][iy] = met->cape[0][iy];
10284 met->cin[met->nx - 1][iy] = met->cin[0][iy];
10285 for (int ip = 0; ip < met->np; ip++) {
10286 met->t[met->nx - 1][iy][ip] = met->t[0][iy][ip];
10287 met->u[met->nx - 1][iy][ip] = met->u[0][iy][ip];
10288 met->v[met->nx - 1][iy][ip] = met->v[0][iy][ip];
10289 met->w[met->nx - 1][iy][ip] = met->w[0][iy][ip];
10290 met->h2o[met->nx - 1][iy][ip] = met->h2o[0][iy][ip];
10291 met->o3[met->nx - 1][iy][ip] = met->o3[0][iy][ip];
10292 met->lwc[met->nx - 1][iy][ip] = met->lwc[0][iy][ip];
10293 met->rwc[met->nx - 1][iy][ip] = met->rwc[0][iy][ip];
10294 met->iwc[met->nx - 1][iy][ip] = met->iwc[0][iy][ip];
10295 met->swc[met->nx - 1][iy][ip] = met->swc[0][iy][ip];
10296 met->cc[met->nx - 1][iy][ip] = met->cc[0][iy][ip];
10297 }
10298 for (int ip = 0; ip < met->npl; ip++) {
10299 met->ul[met->nx - 1][iy][ip] = met->ul[0][iy][ip];
10300 met->vl[met->nx - 1][iy][ip] = met->vl[0][iy][ip];
10301 met->wl[met->nx - 1][iy][ip] = met->wl[0][iy][ip];
10302 met->pl[met->nx - 1][iy][ip] = met->pl[0][iy][ip];
10303 met->zetal[met->nx - 1][iy][ip] = met->zetal[0][iy][ip];
10304 met->zeta_dotl[met->nx - 1][iy][ip] = met->zeta_dotl[0][iy][ip];
10305 }
10306 }
10307}
10308
10309/*****************************************************************************/
10310
10312 met_t *met) {
10313
10314 /* Set timer... */
10315 SELECT_TIMER("READ_MET_POLAR_WINDS", "METPROC", NVTX_READ);
10316 LOG(2, "Apply fix for polar winds...");
10317
10318 /* Check latitudes... */
10319 if (fabs(met->lat[0]) < 89.999 || fabs(met->lat[met->ny - 1]) < 89.999)
10320 return;
10321
10322 /* Loop over hemispheres... */
10323 for (int ihem = 0; ihem < 2; ihem++) {
10324
10325 /* Set latitude indices... */
10326 int i89 = 1, i90 = 0, sign = 1;
10327 if (ihem == 1) {
10328 i89 = met->ny - 2;
10329 i90 = met->ny - 1;
10330 }
10331 if (met->lat[i90] < 0)
10332 sign = -1;
10333
10334 /* Look-up table of cosinus and sinus... */
10335 double clon[EX], slon[EX];
10336#pragma omp parallel for default(shared)
10337 for (int ix = 0; ix < met->nx; ix++) {
10338 clon[ix] = cos(sign * DEG2RAD(met->lon[ix]));
10339 slon[ix] = sin(sign * DEG2RAD(met->lon[ix]));
10340 }
10341
10342 /* Loop over levels... */
10343#pragma omp parallel for default(shared)
10344 for (int ip = 0; ip < met->np; ip++) {
10345
10346 /* Transform 89 degree u and v winds into Cartesian coordinates and take the mean... */
10347 double vel89x = 0, vel89y = 0;
10348 for (int ix = 0; ix < met->nx; ix++) {
10349 vel89x +=
10350 (met->u[ix][i89][ip] * clon[ix] -
10351 met->v[ix][i89][ip] * slon[ix]) / met->nx;
10352 vel89y +=
10353 (met->u[ix][i89][ip] * slon[ix] +
10354 met->v[ix][i89][ip] * clon[ix]) / met->nx;
10355 }
10356
10357 /* Replace 90 degree winds by 89 degree mean... */
10358 for (int ix = 0; ix < met->nx; ix++) {
10359 met->u[ix][i90][ip]
10360 = (float) (vel89x * clon[ix] + vel89y * slon[ix]);
10361 met->v[ix][i90][ip]
10362 = (float) (-vel89x * slon[ix] + vel89y * clon[ix]);
10363 }
10364 }
10365 }
10366}
10367
10368/*****************************************************************************/
10369
10371 met_t *met) {
10372
10373 double pows[EP];
10374
10375 /* Set timer... */
10376 SELECT_TIMER("READ_MET_PV", "METPROC", NVTX_READ);
10377 LOG(2, "Calculate potential vorticity...");
10378
10379 /* Set powers... */
10380#pragma omp parallel for default(shared)
10381 for (int ip = 0; ip < met->np; ip++)
10382 pows[ip] = pow(1000. / met->p[ip], 0.286);
10383
10384 /* Loop over grid points... */
10385#pragma omp parallel for default(shared)
10386 for (int ix = 0; ix < met->nx; ix++) {
10387
10388 /* Set indices... */
10389 const int ix0 = MAX(ix - 1, 0);
10390 const int ix1 = MIN(ix + 1, met->nx - 1);
10391
10392 /* Loop over grid points... */
10393 for (int iy = 0; iy < met->ny; iy++) {
10394
10395 /* Set indices... */
10396 const int iy0 = MAX(iy - 1, 0);
10397 const int iy1 = MIN(iy + 1, met->ny - 1);
10398
10399 /* Set auxiliary variables... */
10400 const double latr = 0.5 * (met->lat[iy1] + met->lat[iy0]);
10401 const double dx = 1000. * DEG2DX(met->lon[ix1] - met->lon[ix0], latr);
10402 const double dy = 1000. * DEG2DY(met->lat[iy1] - met->lat[iy0]);
10403 const double c0 = cos(DEG2RAD(met->lat[iy0]));
10404 const double c1 = cos(DEG2RAD(met->lat[iy1]));
10405 const double cr = cos(DEG2RAD(latr));
10406 const double vort = 2 * 7.2921e-5 * sin(DEG2RAD(latr));
10407
10408 /* Loop over grid points... */
10409 for (int ip = 0; ip < met->np; ip++) {
10410
10411 /* Get gradients in longitude... */
10412 const double dtdx
10413 = (met->t[ix1][iy][ip] - met->t[ix0][iy][ip]) * pows[ip] / dx;
10414 const double dvdx = (met->v[ix1][iy][ip] - met->v[ix0][iy][ip]) / dx;
10415
10416 /* Get gradients in latitude... */
10417 const double dtdy
10418 = (met->t[ix][iy1][ip] - met->t[ix][iy0][ip]) * pows[ip] / dy;
10419 const double dudy
10420 = (met->u[ix][iy1][ip] * c1 - met->u[ix][iy0][ip] * c0) / dy;
10421
10422 /* Set indices... */
10423 const int ip0 = MAX(ip - 1, 0);
10424 const int ip1 = MIN(ip + 1, met->np - 1);
10425
10426 /* Get gradients in pressure... */
10427 double dtdp, dudp, dvdp;
10428 const double dp0 = 100. * (met->p[ip] - met->p[ip0]);
10429 const double dp1 = 100. * (met->p[ip1] - met->p[ip]);
10430 if (ip != ip0 && ip != ip1) {
10431 double denom = dp0 * dp1 * (dp0 + dp1);
10432 dtdp = (dp0 * dp0 * met->t[ix][iy][ip1] * pows[ip1]
10433 - dp1 * dp1 * met->t[ix][iy][ip0] * pows[ip0]
10434 + (dp1 * dp1 - dp0 * dp0) * met->t[ix][iy][ip] * pows[ip])
10435 / denom;
10436 dudp = (dp0 * dp0 * met->u[ix][iy][ip1]
10437 - dp1 * dp1 * met->u[ix][iy][ip0]
10438 + (dp1 * dp1 - dp0 * dp0) * met->u[ix][iy][ip])
10439 / denom;
10440 dvdp = (dp0 * dp0 * met->v[ix][iy][ip1]
10441 - dp1 * dp1 * met->v[ix][iy][ip0]
10442 + (dp1 * dp1 - dp0 * dp0) * met->v[ix][iy][ip])
10443 / denom;
10444 } else {
10445 const double denom = dp0 + dp1;
10446 dtdp =
10447 (met->t[ix][iy][ip1] * pows[ip1] -
10448 met->t[ix][iy][ip0] * pows[ip0]) / denom;
10449 dudp = (met->u[ix][iy][ip1] - met->u[ix][iy][ip0]) / denom;
10450 dvdp = (met->v[ix][iy][ip1] - met->v[ix][iy][ip0]) / denom;
10451 }
10452
10453 /* Calculate PV... */
10454 met->pv[ix][iy][ip] = (float)
10455 (1e6 * G0 *
10456 (-dtdp * (dvdx - dudy / cr + vort) + dvdp * dtdx - dudp * dtdy));
10457 }
10458 }
10459 }
10460
10461 /* Fix for polar regions... */
10462#pragma omp parallel for default(shared)
10463 for (int ix = 0; ix < met->nx; ix++)
10464 for (int ip = 0; ip < met->np; ip++) {
10465 met->pv[ix][0][ip]
10466 = met->pv[ix][1][ip]
10467 = met->pv[ix][2][ip];
10468 met->pv[ix][met->ny - 1][ip]
10469 = met->pv[ix][met->ny - 2][ip]
10470 = met->pv[ix][met->ny - 3][ip];
10471 }
10472}
10473
10474/*****************************************************************************/
10475
10477 met_t *met) {
10478
10479 /* Set timer... */
10480 SELECT_TIMER("READ_MET_OZONE", "METPROC", NVTX_READ);
10481 LOG(2, "Calculate total column ozone...");
10482
10483 /* Loop over columns... */
10484#pragma omp parallel for default(shared) collapse(2)
10485 for (int ix = 0; ix < met->nx; ix++)
10486 for (int iy = 0; iy < met->ny; iy++) {
10487
10488 /* Integrate... */
10489 double cd = 0;
10490 for (int ip = 1; ip < met->np; ip++)
10491 if (met->p[ip - 1] <= met->ps[ix][iy]) {
10492 const double vmr =
10493 0.5 * (met->o3[ix][iy][ip - 1] + met->o3[ix][iy][ip]);
10494 const double dp = met->p[ip - 1] - met->p[ip];
10495 cd += vmr * MO3 / MA * dp * 1e2 / G0;
10496 }
10497
10498 /* Convert to Dobson units... */
10499 met->o3c[ix][iy] = (float) (cd / 2.1415e-5);
10500 }
10501}
10502
10503/*****************************************************************************/
10504
10506 const ctl_t *ctl,
10507 met_t *met) {
10508
10509 met_t *help;
10510
10511 /* Check parameters... */
10512 if (ctl->met_dp <= 1 && ctl->met_dx <= 1 && ctl->met_dy <= 1
10513 && ctl->met_sp <= 1 && ctl->met_sx <= 1 && ctl->met_sy <= 1)
10514 return;
10515
10516 /* Set timer... */
10517 SELECT_TIMER("READ_MET_SAMPLE", "METPROC", NVTX_READ);
10518 LOG(2, "Downsampling of meteo data...");
10519
10520 /* Allocate... */
10521 ALLOC(help, met_t, 1);
10522
10523 /* Copy data... */
10524 help->nx = met->nx;
10525 help->ny = met->ny;
10526 help->np = met->np;
10527 memcpy(help->lon, met->lon, sizeof(met->lon));
10528 memcpy(help->lat, met->lat, sizeof(met->lat));
10529 memcpy(help->p, met->p, sizeof(met->p));
10530
10531 /* Smoothing... */
10532 for (int ix = 0; ix < met->nx; ix += ctl->met_dx) {
10533 for (int iy = 0; iy < met->ny; iy += ctl->met_dy) {
10534 for (int ip = 0; ip < met->np; ip += ctl->met_dp) {
10535 help->ps[ix][iy] = 0;
10536 help->zs[ix][iy] = 0;
10537 help->ts[ix][iy] = 0;
10538 help->us[ix][iy] = 0;
10539 help->vs[ix][iy] = 0;
10540 help->ess[ix][iy] = 0;
10541 help->nss[ix][iy] = 0;
10542 help->shf[ix][iy] = 0;
10543 help->lsm[ix][iy] = 0;
10544 help->sst[ix][iy] = 0;
10545 help->pbl[ix][iy] = 0;
10546 help->cape[ix][iy] = 0;
10547 help->cin[ix][iy] = 0;
10548 help->t[ix][iy][ip] = 0;
10549 help->u[ix][iy][ip] = 0;
10550 help->v[ix][iy][ip] = 0;
10551 help->w[ix][iy][ip] = 0;
10552 help->h2o[ix][iy][ip] = 0;
10553 help->o3[ix][iy][ip] = 0;
10554 help->lwc[ix][iy][ip] = 0;
10555 help->rwc[ix][iy][ip] = 0;
10556 help->iwc[ix][iy][ip] = 0;
10557 help->swc[ix][iy][ip] = 0;
10558 help->cc[ix][iy][ip] = 0;
10559 float wsum = 0;
10560 for (int ix2 = ix - ctl->met_sx + 1; ix2 <= ix + ctl->met_sx - 1;
10561 ix2++) {
10562 int ix3 = ix2;
10563 if (ix3 < 0)
10564 ix3 += met->nx;
10565 else if (ix3 >= met->nx)
10566 ix3 -= met->nx;
10567
10568 for (int iy2 = MAX(iy - ctl->met_sy + 1, 0);
10569 iy2 <= MIN(iy + ctl->met_sy - 1, met->ny - 1); iy2++)
10570 for (int ip2 = MAX(ip - ctl->met_sp + 1, 0);
10571 ip2 <= MIN(ip + ctl->met_sp - 1, met->np - 1); ip2++) {
10572 const float w =
10573 (1.0f - (float) abs(ix - ix2) / (float) ctl->met_sx)
10574 * (1.0f - (float) abs(iy - iy2) / (float) ctl->met_sy)
10575 * (1.0f - (float) abs(ip - ip2) / (float) ctl->met_sp);
10576 help->ps[ix][iy] += w * met->ps[ix3][iy2];
10577 help->zs[ix][iy] += w * met->zs[ix3][iy2];
10578 help->ts[ix][iy] += w * met->ts[ix3][iy2];
10579 help->us[ix][iy] += w * met->us[ix3][iy2];
10580 help->vs[ix][iy] += w * met->vs[ix3][iy2];
10581 help->ess[ix][iy] += w * met->ess[ix3][iy2];
10582 help->nss[ix][iy] += w * met->nss[ix3][iy2];
10583 help->shf[ix][iy] += w * met->shf[ix3][iy2];
10584 help->lsm[ix][iy] += w * met->lsm[ix3][iy2];
10585 help->sst[ix][iy] += w * met->sst[ix3][iy2];
10586 help->pbl[ix][iy] += w * met->pbl[ix3][iy2];
10587 help->cape[ix][iy] += w * met->cape[ix3][iy2];
10588 help->cin[ix][iy] += w * met->cin[ix3][iy2];
10589 help->t[ix][iy][ip] += w * met->t[ix3][iy2][ip2];
10590 help->u[ix][iy][ip] += w * met->u[ix3][iy2][ip2];
10591 help->v[ix][iy][ip] += w * met->v[ix3][iy2][ip2];
10592 help->w[ix][iy][ip] += w * met->w[ix3][iy2][ip2];
10593 help->h2o[ix][iy][ip] += w * met->h2o[ix3][iy2][ip2];
10594 help->o3[ix][iy][ip] += w * met->o3[ix3][iy2][ip2];
10595 help->lwc[ix][iy][ip] += w * met->lwc[ix3][iy2][ip2];
10596 help->rwc[ix][iy][ip] += w * met->rwc[ix3][iy2][ip2];
10597 help->iwc[ix][iy][ip] += w * met->iwc[ix3][iy2][ip2];
10598 help->swc[ix][iy][ip] += w * met->swc[ix3][iy2][ip2];
10599 help->cc[ix][iy][ip] += w * met->cc[ix3][iy2][ip2];
10600 wsum += w;
10601 }
10602 }
10603 help->ps[ix][iy] /= wsum;
10604 help->zs[ix][iy] /= wsum;
10605 help->ts[ix][iy] /= wsum;
10606 help->us[ix][iy] /= wsum;
10607 help->vs[ix][iy] /= wsum;
10608 help->ess[ix][iy] /= wsum;
10609 help->nss[ix][iy] /= wsum;
10610 help->shf[ix][iy] /= wsum;
10611 help->lsm[ix][iy] /= wsum;
10612 help->sst[ix][iy] /= wsum;
10613 help->pbl[ix][iy] /= wsum;
10614 help->cape[ix][iy] /= wsum;
10615 help->cin[ix][iy] /= wsum;
10616 help->t[ix][iy][ip] /= wsum;
10617 help->u[ix][iy][ip] /= wsum;
10618 help->v[ix][iy][ip] /= wsum;
10619 help->w[ix][iy][ip] /= wsum;
10620 help->h2o[ix][iy][ip] /= wsum;
10621 help->o3[ix][iy][ip] /= wsum;
10622 help->lwc[ix][iy][ip] /= wsum;
10623 help->rwc[ix][iy][ip] /= wsum;
10624 help->iwc[ix][iy][ip] /= wsum;
10625 help->swc[ix][iy][ip] /= wsum;
10626 help->cc[ix][iy][ip] /= wsum;
10627 }
10628 }
10629 }
10630
10631 /* Downsampling... */
10632 met->nx = 0;
10633 for (int ix = 0; ix < help->nx; ix += ctl->met_dx) {
10634 met->lon[met->nx] = help->lon[ix];
10635 met->ny = 0;
10636 for (int iy = 0; iy < help->ny; iy += ctl->met_dy) {
10637 met->lat[met->ny] = help->lat[iy];
10638 met->ps[met->nx][met->ny] = help->ps[ix][iy];
10639 met->zs[met->nx][met->ny] = help->zs[ix][iy];
10640 met->ts[met->nx][met->ny] = help->ts[ix][iy];
10641 met->us[met->nx][met->ny] = help->us[ix][iy];
10642 met->vs[met->nx][met->ny] = help->vs[ix][iy];
10643 met->ess[met->nx][met->ny] = help->ess[ix][iy];
10644 met->nss[met->nx][met->ny] = help->nss[ix][iy];
10645 met->shf[met->nx][met->ny] = help->shf[ix][iy];
10646 met->lsm[met->nx][met->ny] = help->lsm[ix][iy];
10647 met->sst[met->nx][met->ny] = help->sst[ix][iy];
10648 met->pbl[met->nx][met->ny] = help->pbl[ix][iy];
10649 met->cape[met->nx][met->ny] = help->cape[ix][iy];
10650 met->cin[met->nx][met->ny] = help->cin[ix][iy];
10651 met->np = 0;
10652 for (int ip = 0; ip < help->np; ip += ctl->met_dp) {
10653 met->p[met->np] = help->p[ip];
10654 met->t[met->nx][met->ny][met->np] = help->t[ix][iy][ip];
10655 met->u[met->nx][met->ny][met->np] = help->u[ix][iy][ip];
10656 met->v[met->nx][met->ny][met->np] = help->v[ix][iy][ip];
10657 met->w[met->nx][met->ny][met->np] = help->w[ix][iy][ip];
10658 met->h2o[met->nx][met->ny][met->np] = help->h2o[ix][iy][ip];
10659 met->o3[met->nx][met->ny][met->np] = help->o3[ix][iy][ip];
10660 met->lwc[met->nx][met->ny][met->np] = help->lwc[ix][iy][ip];
10661 met->rwc[met->nx][met->ny][met->np] = help->rwc[ix][iy][ip];
10662 met->iwc[met->nx][met->ny][met->np] = help->iwc[ix][iy][ip];
10663 met->swc[met->nx][met->ny][met->np] = help->swc[ix][iy][ip];
10664 met->cc[met->nx][met->ny][met->np] = help->cc[ix][iy][ip];
10665 met->np++;
10666 }
10667 met->ny++;
10668 }
10669 met->nx++;
10670 }
10671
10672 /* Free... */
10673 free(help);
10674}
10675
10676/*****************************************************************************/
10677
10679 const ctl_t *ctl,
10680 const clim_t *clim,
10681 met_t *met) {
10682
10683 double p2[200], pv[EP], pv2[200], t[EP], t2[200], th[EP],
10684 th2[200], z[EP], z2[200];
10685
10686 /* Set timer... */
10687 SELECT_TIMER("READ_MET_TROPO", "METPROC", NVTX_READ);
10688 LOG(2, "Calculate tropopause...");
10689
10690 /* Get altitude and pressure profiles... */
10691#pragma omp parallel for default(shared)
10692 for (int iz = 0; iz < met->np; iz++)
10693 z[iz] = Z(met->p[iz]);
10694#pragma omp parallel for default(shared)
10695 for (int iz = 0; iz <= 190; iz++) {
10696 z2[iz] = 4.5 + 0.1 * iz;
10697 p2[iz] = P(z2[iz]);
10698 }
10699
10700 /* Do not calculate tropopause... */
10701 if (ctl->met_tropo == 0)
10702#pragma omp parallel for default(shared) collapse(2)
10703 for (int ix = 0; ix < met->nx; ix++)
10704 for (int iy = 0; iy < met->ny; iy++)
10705 met->pt[ix][iy] = NAN;
10706
10707 /* Use tropopause climatology... */
10708 else if (ctl->met_tropo == 1) {
10709#pragma omp parallel for default(shared) collapse(2)
10710 for (int ix = 0; ix < met->nx; ix++)
10711 for (int iy = 0; iy < met->ny; iy++)
10712 met->pt[ix][iy] = (float) clim_tropo(clim, met->time, met->lat[iy]);
10713 }
10714
10715 /* Use cold point... */
10716 else if (ctl->met_tropo == 2) {
10717
10718 /* Loop over grid points... */
10719#pragma omp parallel for default(shared) private(t,t2) collapse(2)
10720 for (int ix = 0; ix < met->nx; ix++)
10721 for (int iy = 0; iy < met->ny; iy++) {
10722
10723 /* Interpolate temperature profile... */
10724 for (int iz = 0; iz < met->np; iz++)
10725 t[iz] = met->t[ix][iy][iz];
10726 spline(z, t, met->np, z2, t2, 171, ctl->met_tropo_spline);
10727
10728 /* Find minimum... */
10729 int iz = (int) gsl_stats_min_index(t2, 1, 171);
10730 if (iz > 0 && iz < 170)
10731 met->pt[ix][iy] = (float) p2[iz];
10732 else
10733 met->pt[ix][iy] = NAN;
10734 }
10735 }
10736
10737 /* Use WMO definition... */
10738 else if (ctl->met_tropo == 3 || ctl->met_tropo == 4) {
10739
10740 /* Loop over grid points... */
10741#pragma omp parallel for default(shared) private(t,t2) collapse(2)
10742 for (int ix = 0; ix < met->nx; ix++)
10743 for (int iy = 0; iy < met->ny; iy++) {
10744
10745 /* Interpolate temperature profile... */
10746 int iz;
10747 for (iz = 0; iz < met->np; iz++)
10748 t[iz] = met->t[ix][iy][iz];
10749 spline(z, t, met->np, z2, t2, 191, ctl->met_tropo_spline);
10750
10751 /* Find 1st tropopause... */
10752 met->pt[ix][iy] = NAN;
10753 for (iz = 0; iz <= 170; iz++) {
10754 int found = 1;
10755 for (int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
10756 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
10757 found = 0;
10758 break;
10759 }
10760 if (found) {
10761 if (iz > 0 && iz < 170)
10762 met->pt[ix][iy] = (float) p2[iz];
10763 break;
10764 }
10765 }
10766
10767 /* Find 2nd tropopause... */
10768 if (ctl->met_tropo == 4) {
10769 met->pt[ix][iy] = NAN;
10770 for (; iz <= 170; iz++) {
10771 int found = 1;
10772 for (int iz2 = iz + 1; iz2 <= iz + 10; iz2++)
10773 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) < 3.0) {
10774 found = 0;
10775 break;
10776 }
10777 if (found)
10778 break;
10779 }
10780 for (; iz <= 170; iz++) {
10781 int found = 1;
10782 for (int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
10783 if (LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
10784 found = 0;
10785 break;
10786 }
10787 if (found) {
10788 if (iz > 0 && iz < 170)
10789 met->pt[ix][iy] = (float) p2[iz];
10790 break;
10791 }
10792 }
10793 }
10794 }
10795 }
10796
10797 /* Use dynamical tropopause... */
10798 else if (ctl->met_tropo == 5) {
10799
10800 /* Loop over grid points... */
10801#pragma omp parallel for default(shared) private(pv,pv2,th,th2) collapse(2)
10802 for (int ix = 0; ix < met->nx; ix++)
10803 for (int iy = 0; iy < met->ny; iy++) {
10804
10805 /* Interpolate potential vorticity profile... */
10806 for (int iz = 0; iz < met->np; iz++)
10807 pv[iz] = met->pv[ix][iy][iz];
10808 spline(z, pv, met->np, z2, pv2, 171, ctl->met_tropo_spline);
10809
10810 /* Interpolate potential temperature profile... */
10811 for (int iz = 0; iz < met->np; iz++)
10812 th[iz] = THETA(met->p[iz], met->t[ix][iy][iz]);
10813 spline(z, th, met->np, z2, th2, 171, ctl->met_tropo_spline);
10814
10815 /* Find dynamical tropopause... */
10816 met->pt[ix][iy] = NAN;
10817 for (int iz = 0; iz <= 170; iz++)
10818 if (fabs(pv2[iz]) >= ctl->met_tropo_pv
10819 || th2[iz] >= ctl->met_tropo_theta) {
10820 if (iz > 0 && iz < 170)
10821 met->pt[ix][iy] = (float) p2[iz];
10822 break;
10823 }
10824 }
10825 }
10826
10827 else
10828 ERRMSG("Cannot calculate tropopause!");
10829
10830 /* Interpolate temperature, geopotential height, and water vapor... */
10831#pragma omp parallel for default(shared) collapse(2)
10832 for (int ix = 0; ix < met->nx; ix++)
10833 for (int iy = 0; iy < met->ny; iy++) {
10834 double h2ot, tt, zt;
10836 intpol_met_space_3d(met, met->t, met->pt[ix][iy], met->lon[ix],
10837 met->lat[iy], &tt, ci, cw, 1);
10838 intpol_met_space_3d(met, met->z, met->pt[ix][iy], met->lon[ix],
10839 met->lat[iy], &zt, ci, cw, 0);
10840 intpol_met_space_3d(met, met->h2o, met->pt[ix][iy], met->lon[ix],
10841 met->lat[iy], &h2ot, ci, cw, 0);
10842 met->tt[ix][iy] = (float) tt;
10843 met->zt[ix][iy] = (float) zt;
10844 met->h2ot[ix][iy] = (float) h2ot;
10845 }
10846}
10847
10848/*****************************************************************************/
10849
10851 const char *filename,
10852 const ctl_t *ctl,
10853 double *rt,
10854 double *rz,
10855 double *rlon,
10856 double *rlat,
10857 double *robs,
10858 int *nobs) {
10859
10860 /* Write info... */
10861 LOG(1, "Read observation data: %s", filename);
10862
10863 /* Read data... */
10864 if (ctl->obs_type == 0)
10865 read_obs_asc(filename, rt, rz, rlon, rlat, robs, nobs);
10866 else if (ctl->obs_type == 1)
10867 read_obs_nc(filename, rt, rz, rlon, rlat, robs, nobs);
10868 else
10869 ERRMSG("Set OBS_TYPE to 0 or 1!");
10870
10871 /* Check time... */
10872 for (int i = 1; i < *nobs; i++)
10873 if (rt[i] < rt[i - 1])
10874 ERRMSG("Time must be ascending!");
10875
10876 /* Write info... */
10877 int n = *nobs;
10878 double mini, maxi;
10879 LOG(2, "Number of observations: %d", *nobs);
10880 gsl_stats_minmax(&mini, &maxi, rt, 1, (size_t) n);
10881 LOG(2, "Time range: %.2f ... %.2f s", mini, maxi);
10882 gsl_stats_minmax(&mini, &maxi, rz, 1, (size_t) n);
10883 LOG(2, "Altitude range: %g ... %g km", mini, maxi);
10884 gsl_stats_minmax(&mini, &maxi, rlon, 1, (size_t) n);
10885 LOG(2, "Longitude range: %g ... %g deg", mini, maxi);
10886 gsl_stats_minmax(&mini, &maxi, rlat, 1, (size_t) n);
10887 LOG(2, "Latitude range: %g ... %g deg", mini, maxi);
10888 gsl_stats_minmax(&mini, &maxi, robs, 1, (size_t) n);
10889 LOG(2, "Observation range: %g ... %g", mini, maxi);
10890}
10891
10892/*****************************************************************************/
10893
10895 const char *filename,
10896 double *rt,
10897 double *rz,
10898 double *rlon,
10899 double *rlat,
10900 double *robs,
10901 int *nobs) {
10902
10903 /* Open observation data file... */
10904 FILE *in;
10905 if (!(in = fopen(filename, "r")))
10906 ERRMSG("Cannot open file!");
10907
10908 /* Read observations... */
10909 char line[LEN];
10910 while (fgets(line, LEN, in))
10911 if (sscanf(line, "%lg %lg %lg %lg %lg", &rt[*nobs], &rz[*nobs],
10912 &rlon[*nobs], &rlat[*nobs], &robs[*nobs]) == 5)
10913 if ((++(*nobs)) >= NOBS)
10914 ERRMSG("Too many observations!");
10915
10916 /* Close observation data file... */
10917 fclose(in);
10918}
10919
10920/*****************************************************************************/
10921
10923 const char *filename,
10924 double *rt,
10925 double *rz,
10926 double *rlon,
10927 double *rlat,
10928 double *robs,
10929 int *nobs) {
10930
10931 int ncid, varid;
10932
10933 /* Open netCDF file... */
10934 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
10935 ERRMSG("Cannot open file!");
10936
10937 /* Read the observations from the NetCDF file... */
10938 NC_INQ_DIM("nobs", nobs, 1, NOBS, 1);
10939 NC_GET_DOUBLE("time", rt, 1);
10940 NC_GET_DOUBLE("alt", rz, 1);
10941 NC_GET_DOUBLE("lon", rlon, 1);
10942 NC_GET_DOUBLE("lat", rlat, 1);
10943 NC_GET_DOUBLE("obs", robs, 1);
10944
10945 /* Close file... */
10946 NC(nc_close(ncid));
10947}
10948
10949/*****************************************************************************/
10950
10952 const char *filename,
10953 int argc,
10954 char *argv[],
10955 const char *varname,
10956 const int arridx,
10957 const char *defvalue,
10958 char *value) {
10959
10960 FILE *in = NULL;
10961
10962 char fullname1[LEN], fullname2[LEN], rval[LEN];
10963
10964 int contain = 0, i;
10965
10966 /* Open file... */
10967 if (filename[strlen(filename) - 1] != '-')
10968 if (!(in = fopen(filename, "r")))
10969 ERRMSG("Cannot open file!");
10970
10971 /* Set full variable name... */
10972 if (arridx >= 0) {
10973 sprintf(fullname1, "%s[%d]", varname, arridx);
10974 sprintf(fullname2, "%s[*]", varname);
10975 } else {
10976 sprintf(fullname1, "%s", varname);
10977 sprintf(fullname2, "%s", varname);
10978 }
10979
10980 /* Read data... */
10981 if (in != NULL) {
10982 char dummy[LEN], line[LEN], rvarname[LEN];
10983 while (fgets(line, LEN, in)) {
10984 if (sscanf(line, "%4999s %4999s %4999s", rvarname, dummy, rval) == 3)
10985 if (strcasecmp(rvarname, fullname1) == 0 ||
10986 strcasecmp(rvarname, fullname2) == 0) {
10987 contain = 1;
10988 break;
10989 }
10990 }
10991 }
10992 for (i = 1; i < argc - 1; i++)
10993 if (strcasecmp(argv[i], fullname1) == 0 ||
10994 strcasecmp(argv[i], fullname2) == 0) {
10995 sprintf(rval, "%s", argv[i + 1]);
10996 contain = 1;
10997 break;
10998 }
10999
11000 /* Close file... */
11001 if (in != NULL)
11002 fclose(in);
11003
11004 /* Check for missing variables... */
11005 if (!contain) {
11006 if (strlen(defvalue) > 0)
11007 sprintf(rval, "%s", defvalue);
11008 else
11009 ERRMSG("Missing variable %s!\n", fullname1);
11010 }
11011
11012 /* Write info... */
11013 LOG(1, "%s = %s", fullname1, rval);
11014
11015 /* Return values... */
11016 if (value != NULL)
11017 sprintf(value, "%s", rval);
11018 return atof(rval);
11019}
11020
11021/*****************************************************************************/
11022
11023double sedi(
11024 const double p,
11025 const double T,
11026 const double rp,
11027 const double rhop) {
11028
11029 /* Convert particle radius from microns to m... */
11030 const double rp_help = rp * 1e-6;
11031
11032 /* Density of dry air [kg / m^3]... */
11033 const double rho = RHO(p, T);
11034
11035 /* Dynamic viscosity of air [kg / (m s)]... */
11036 const double eta = 1.8325e-5 * (416.16 / (T + 120.)) * pow(T / 296.16, 1.5);
11037
11038 /* Thermal velocity of an air molecule [m / s]... */
11039 const double v = sqrt(8. * KB * T / (M_PI * 4.8096e-26));
11040
11041 /* Mean free path of an air molecule [m]... */
11042 const double lambda = 2. * eta / (rho * v);
11043
11044 /* Knudsen number for air (dimensionless)... */
11045 const double K = lambda / rp_help;
11046
11047 /* Cunningham slip-flow correction (dimensionless)... */
11048 const double G = 1. + K * (1.249 + 0.42 * exp(-0.87 / K));
11049
11050 /* Sedimentation velocity [m / s]... */
11051 return 2. * SQR(rp_help) * (rhop - rho) * G0 / (9. * eta) * G;
11052}
11053
11054/*****************************************************************************/
11055
11057 const double *x,
11058 const double *y,
11059 const int n,
11060 const double *x2,
11061 double *y2,
11062 const int n2,
11063 const int method) {
11064
11065 /* Cubic spline interpolation... */
11066 if (method == 1) {
11067
11068 /* Allocate... */
11069 gsl_interp_accel *acc = gsl_interp_accel_alloc();
11070 gsl_spline *s = gsl_spline_alloc(gsl_interp_cspline, (size_t) n);
11071
11072 /* Interpolate profile... */
11073 gsl_spline_init(s, x, y, (size_t) n);
11074 for (int i = 0; i < n2; i++)
11075 if (x2[i] <= x[0])
11076 y2[i] = y[0];
11077 else if (x2[i] >= x[n - 1])
11078 y2[i] = y[n - 1];
11079 else
11080 y2[i] = gsl_spline_eval(s, x2[i], acc);
11081
11082 /* Free... */
11083 gsl_spline_free(s);
11084 gsl_interp_accel_free(acc);
11085 }
11086
11087 /* Linear interpolation... */
11088 else {
11089 for (int i = 0; i < n2; i++)
11090 if (x2[i] <= x[0])
11091 y2[i] = y[0];
11092 else if (x2[i] >= x[n - 1])
11093 y2[i] = y[n - 1];
11094 else {
11095 const int idx = locate_irr(x, n, x2[i]);
11096 y2[i] = LIN(x[idx], y[idx], x[idx + 1], y[idx + 1], x2[i]);
11097 }
11098 }
11099}
11100
11101/*****************************************************************************/
11102
11104 const float *data,
11105 const int n) {
11106
11107 if (n <= 0)
11108 return 0;
11109
11110 float mean = 0, var = 0;
11111
11112 for (int i = 0; i < n; ++i) {
11113 mean += data[i];
11114 var += SQR(data[i]);
11115 }
11116
11117 var = var / (float) n - SQR(mean / (float) n);
11118
11119 return (var > 0 ? sqrtf(var) : 0);
11120}
11121
11122/*****************************************************************************/
11123
11125 const int year,
11126 const int mon,
11127 const int day,
11128 const int hour,
11129 const int min,
11130 const int sec,
11131 const double remain,
11132 double *jsec) {
11133
11134 struct tm t0, t1;
11135
11136 t0.tm_year = 100;
11137 t0.tm_mon = 0;
11138 t0.tm_mday = 1;
11139 t0.tm_hour = 0;
11140 t0.tm_min = 0;
11141 t0.tm_sec = 0;
11142
11143 t1.tm_year = year - 1900;
11144 t1.tm_mon = mon - 1;
11145 t1.tm_mday = day;
11146 t1.tm_hour = hour;
11147 t1.tm_min = min;
11148 t1.tm_sec = sec;
11149
11150 *jsec = (double) timegm(&t1) - (double) timegm(&t0) + remain;
11151}
11152
11153/*****************************************************************************/
11154
11156 const char *name,
11157 const char *group,
11158 const int output) {
11159
11160 static char names[NTIMER][100], groups[NTIMER][100];
11161
11162 static double rt_name[NTIMER], rt_group[NTIMER],
11163 rt_min[NTIMER], rt_max[NTIMER], dt, t0, t1;
11164
11165 static int iname = -1, igroup = -1, nname, ngroup, ct_name[NTIMER];
11166
11167 /* Get time... */
11168 t1 = omp_get_wtime();
11169 dt = t1 - t0;
11170
11171 /* Add elapsed time to current timers... */
11172 if (iname >= 0) {
11173 rt_name[iname] += dt;
11174 rt_min[iname] = (ct_name[iname] <= 0 ? dt : MIN(rt_min[iname], dt));
11175 rt_max[iname] = (ct_name[iname] <= 0 ? dt : MAX(rt_max[iname], dt));
11176 ct_name[iname]++;
11177 }
11178 if (igroup >= 0)
11179 rt_group[igroup] += t1 - t0;
11180
11181 /* Report timers... */
11182 if (output) {
11183 for (int i = 0; i < nname; i++)
11184 LOG(1, "TIMER_%s = %.3f s (min= %g s, mean= %g s,"
11185 " max= %g s, n= %d)", names[i], rt_name[i], rt_min[i],
11186 rt_name[i] / ct_name[i], rt_max[i], ct_name[i]);
11187 for (int i = 0; i < ngroup; i++)
11188 LOG(1, "TIMER_GROUP_%s = %.3f s", groups[i], rt_group[i]);
11189 double total = 0.0;
11190 for (int i = 0; i < nname; i++)
11191 total += rt_name[i];
11192 LOG(1, "TIMER_TOTAL = %.3f s", total);
11193 }
11194
11195 /* Identify IDs of next timer... */
11196 for (iname = 0; iname < nname; iname++)
11197 if (strcasecmp(name, names[iname]) == 0)
11198 break;
11199 for (igroup = 0; igroup < ngroup; igroup++)
11200 if (strcasecmp(group, groups[igroup]) == 0)
11201 break;
11202
11203 /* Check whether this is a new timer... */
11204 if (iname >= nname) {
11205 sprintf(names[iname], "%s", name);
11206 if ((++nname) >= NTIMER)
11207 ERRMSG("Too many timers!");
11208 }
11209
11210 /* Check whether this is a new group... */
11211 if (igroup >= ngroup) {
11212 sprintf(groups[igroup], "%s", group);
11213 if ((++ngroup) >= NTIMER)
11214 ERRMSG("Too many groups!");
11215 }
11216
11217 /* Save starting time... */
11218 t0 = t1;
11219}
11220
11221/*****************************************************************************/
11222
11224 const char *filename,
11225 const int offset) {
11226
11227 char tstr[10];
11228
11229 double t;
11230
11231 /* Get time from filename... */
11232 int len = (int) strlen(filename);
11233 sprintf(tstr, "%.4s", &filename[len - offset]);
11234 int year = atoi(tstr);
11235 sprintf(tstr, "%.2s", &filename[len - offset + 5]);
11236 int mon = atoi(tstr);
11237 sprintf(tstr, "%.2s", &filename[len - offset + 8]);
11238 int day = atoi(tstr);
11239 sprintf(tstr, "%.2s", &filename[len - offset + 11]);
11240 int hour = atoi(tstr);
11241 sprintf(tstr, "%.2s", &filename[len - offset + 14]);
11242 int min = atoi(tstr);
11243
11244 /* Check time... */
11245 if (year < 1900 || year > 2100 || mon < 1 || mon > 12 || day < 1
11246 || day > 31 || hour < 0 || hour > 23 || min < 0 || min > 59)
11247 ERRMSG("Cannot read time from filename!");
11248
11249 /* Convert time to Julian seconds... */
11250 time2jsec(year, mon, day, hour, min, 0, 0.0, &t);
11251
11252 /* Return time... */
11253 return t;
11254}
11255
11256/*****************************************************************************/
11257
11259 const clim_t *clim,
11260 const atm_t *atm,
11261 const int ip) {
11262
11263 /* Get tropopause pressure... */
11264 const double pt = clim_tropo(clim, atm->time[ip], atm->lat[ip]);
11265
11266 /* Get pressure range... */
11267 const double p1 = pt * 0.866877899;
11268 const double p0 = pt / 0.866877899;
11269
11270 /* Get weighting factor... */
11271 if (atm->p[ip] > p0)
11272 return 1;
11273 else if (atm->p[ip] < p1)
11274 return 0;
11275 else
11276 return LIN(p0, 1.0, p1, 0.0, atm->p[ip]);
11277}
11278
11279/*****************************************************************************/
11280
11282 const char *filename,
11283 const ctl_t *ctl,
11284 const atm_t *atm,
11285 const double t) {
11286
11287 FILE *out;
11288
11289 /* Set time interval for output... */
11290 const double t0 = t - 0.5 * ctl->dt_mod;
11291 const double t1 = t + 0.5 * ctl->dt_mod;
11292
11293 /* Check if gnuplot output is requested... */
11294 if (ctl->atm_gpfile[0] != '-') {
11295
11296 /* Create gnuplot pipe... */
11297 if (!(out = popen("gnuplot", "w")))
11298 ERRMSG("Cannot create pipe to gnuplot!");
11299
11300 /* Set plot filename... */
11301 fprintf(out, "set out \"%s.png\"\n", filename);
11302
11303 /* Set time string... */
11304 double r;
11305 int year, mon, day, hour, min, sec;
11306 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
11307 fprintf(out, "timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
11308 year, mon, day, hour, min);
11309
11310 /* Dump gnuplot file to pipe... */
11311 FILE *in;
11312 if (!(in = fopen(ctl->atm_gpfile, "r")))
11313 ERRMSG("Cannot open file!");
11314 char line[LEN];
11315 while (fgets(line, LEN, in))
11316 fprintf(out, "%s", line);
11317 fclose(in);
11318 }
11319
11320 else {
11321
11322 /* Create file... */
11323 if (!(out = fopen(filename, "w")))
11324 ERRMSG("Cannot create file!");
11325 }
11326
11327 /* Write header... */
11328 fprintf(out,
11329 "# $1 = time [s]\n"
11330 "# $2 = altitude [km]\n"
11331 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
11332 for (int iq = 0; iq < ctl->nq; iq++)
11333 fprintf(out, "# $%i = %s [%s]\n", iq + 5, ctl->qnt_name[iq],
11334 ctl->qnt_unit[iq]);
11335 fprintf(out, "\n");
11336
11337 /* Write data... */
11338 for (int ip = 0; ip < atm->np; ip += ctl->atm_stride) {
11339
11340 /* Check time... */
11341 if (ctl->atm_filter == 2 && (atm->time[ip] < t0 || atm->time[ip] > t1))
11342 continue;
11343
11344 /* Write output... */
11345 fprintf(out, "%.2f %g %g %g", atm->time[ip], Z(atm->p[ip]),
11346 atm->lon[ip], atm->lat[ip]);
11347 for (int iq = 0; iq < ctl->nq; iq++) {
11348 fprintf(out, " ");
11349 if (ctl->atm_filter == 1 && (atm->time[ip] < t0 || atm->time[ip] > t1))
11350 fprintf(out, ctl->qnt_format[iq], NAN);
11351 else
11352 fprintf(out, ctl->qnt_format[iq], atm->q[iq][ip]);
11353 }
11354 fprintf(out, "\n");
11355 }
11356
11357 /* Close file... */
11358 fclose(out);
11359}
11360
11361/*****************************************************************************/
11362
11364 const char *filename,
11365 const ctl_t *ctl,
11366 const atm_t *atm) {
11367
11368 FILE *out;
11369
11370 /* Create file... */
11371 if (!(out = fopen(filename, "w")))
11372 ERRMSG("Cannot create file!");
11373
11374 /* Write version of binary data... */
11375 int version = 100;
11376 FWRITE(&version, int,
11377 1,
11378 out);
11379
11380 /* Write data... */
11381 FWRITE(&atm->np, int,
11382 1,
11383 out);
11384 FWRITE(atm->time, double,
11385 (size_t) atm->np,
11386 out);
11387 FWRITE(atm->p, double,
11388 (size_t) atm->np,
11389 out);
11390 FWRITE(atm->lon, double,
11391 (size_t) atm->np,
11392 out);
11393 FWRITE(atm->lat, double,
11394 (size_t) atm->np,
11395 out);
11396 for (int iq = 0; iq < ctl->nq; iq++)
11397 FWRITE(atm->q[iq], double,
11398 (size_t) atm->np,
11399 out);
11400
11401 /* Write final flag... */
11402 int final = 999;
11403 FWRITE(&final, int,
11404 1,
11405 out);
11406
11407 /* Close file... */
11408 fclose(out);
11409}
11410
11411/*****************************************************************************/
11412
11414 const char *filename,
11415 const ctl_t *ctl,
11416 const atm_t *atm) {
11417
11418 int tid, pid, ncid, varid;
11419 size_t start[2], count[2];
11420
11421 /* Create file... */
11422 NC(nc_create(filename, NC_NETCDF4, &ncid));
11423
11424 /* Define dimensions... */
11425 NC(nc_def_dim(ncid, "time", 1, &tid));
11426 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
11427
11428 /* Define variables and their attributes... */
11429 int dim_ids[2] = { tid, pid };
11430 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
11431 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
11432 NC_DEF_VAR("LAT", NC_DOUBLE, 1, &pid, "Latitude", "deg",
11433 ctl->atm_nc_level, 0);
11434 NC_DEF_VAR("LON", NC_DOUBLE, 1, &pid, "Longitude", "deg",
11435 ctl->atm_nc_level, 0);
11436 NC_DEF_VAR("PRESS", NC_DOUBLE, 1, &pid, "Pressure", "hPa",
11437 ctl->atm_nc_level, 0);
11438 NC_DEF_VAR("ZETA", NC_DOUBLE, 1, &pid, "Zeta", "K", ctl->atm_nc_level, 0);
11439 for (int iq = 0; iq < ctl->nq; iq++)
11440 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
11441 ctl->qnt_name[iq], ctl->qnt_unit[iq],
11442 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
11443
11444 /* Define global attributes... */
11445 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
11446 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
11447
11448 /* End definitions... */
11449 NC(nc_enddef(ncid));
11450
11451 /* Write data... */
11452 NC_PUT_DOUBLE("time", atm->time, 0);
11453 NC_PUT_DOUBLE("LAT", atm->lat, 0);
11454 NC_PUT_DOUBLE("LON", atm->lon, 0);
11455 NC_PUT_DOUBLE("PRESS", atm->p, 0);
11456 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 0);
11457 for (int iq = 0; iq < ctl->nq; iq++)
11458 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
11459
11460 /* Close file... */
11461 NC(nc_close(ncid));
11462}
11463
11464/*****************************************************************************/
11465
11467 const char *dirname,
11468 const ctl_t *ctl,
11469 const atm_t *atm,
11470 const double t) {
11471
11472 /* Global Counter... */
11473 static size_t out_cnt = 0;
11474
11475 double r, r_start, r_stop;
11476 int year, mon, day, hour, min, sec;
11477 int year_start, mon_start, day_start, hour_start, min_start, sec_start;
11478 int year_stop, mon_stop, day_stop, hour_stop, min_stop, sec_stop;
11479 char filename_out[2 * LEN] = "traj_fix_3d_YYYYMMDDHH_YYYYMMDDHH.nc";
11480
11481 int ncid, varid, tid, pid, cid;
11482 int dim_ids[2];
11483
11484 /* time, nparc */
11485 size_t start[2];
11486 size_t count[2];
11487
11488 /* Determine start and stop times of calculation... */
11489 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
11490 jsec2time(ctl->t_start, &year_start, &mon_start, &day_start, &hour_start,
11491 &min_start, &sec_start, &r_start);
11492 jsec2time(ctl->t_stop, &year_stop, &mon_stop, &day_stop, &hour_stop,
11493 &min_stop, &sec_stop, &r_stop);
11494
11495 sprintf(filename_out,
11496 "%s/traj_fix_3d_%02d%02d%02d%02d_%02d%02d%02d%02d.nc", dirname,
11497 year_start % 100, mon_start, day_start, hour_start,
11498 year_stop % 100, mon_stop, day_stop, hour_stop);
11499 LOG(1, "Write traj file: %s", filename_out);
11500
11501 /* Define hyperslap for the traj_file... */
11502 start[0] = out_cnt;
11503 start[1] = 0;
11504 count[0] = 1;
11505 count[1] = (size_t) atm->np;
11506
11507 /* Create the file at the first timestep... */
11508 if (out_cnt == 0) {
11509
11510 /* Create file... */
11511 NC(nc_create(filename_out, NC_NETCDF4, &ncid));
11512
11513 /* Define dimensions... */
11514 NC(nc_def_dim(ncid, "time", NC_UNLIMITED, &tid));
11515 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
11516 NC(nc_def_dim(ncid, "TMDT", 7, &cid));
11517 dim_ids[0] = tid;
11518 dim_ids[1] = pid;
11519
11520 /* Define variables and their attributes... */
11521 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
11522 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
11523 NC_DEF_VAR("LAT", NC_DOUBLE, 2, dim_ids, "Latitude", "deg",
11524 ctl->atm_nc_level, 0);
11525 NC_DEF_VAR("LON", NC_DOUBLE, 2, dim_ids, "Longitude", "deg",
11526 ctl->atm_nc_level, 0);
11527 NC_DEF_VAR("PRESS", NC_DOUBLE, 2, dim_ids, "Pressure", "hPa",
11528 ctl->atm_nc_level, 0);
11529 NC_DEF_VAR("ZETA", NC_DOUBLE, 2, dim_ids, "Zeta", "K",
11530 ctl->atm_nc_level, 0);
11531 for (int iq = 0; iq < ctl->nq; iq++)
11532 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
11533 ctl->qnt_name[iq], ctl->qnt_unit[iq],
11534 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
11535
11536 /* Define global attributes... */
11537 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
11538 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
11539
11540 /* End definitions... */
11541 NC(nc_enddef(ncid));
11542 NC(nc_close(ncid));
11543 }
11544
11545 /* Increment global counter to change hyperslap... */
11546 out_cnt++;
11547
11548 /* Open file... */
11549 NC(nc_open(filename_out, NC_WRITE, &ncid));
11550
11551 /* Write data... */
11552 NC_PUT_DOUBLE("time", atm->time, 1);
11553 NC_PUT_DOUBLE("LAT", atm->lat, 1);
11554 NC_PUT_DOUBLE("LON", atm->lon, 1);
11555 NC_PUT_DOUBLE("PRESS", atm->p, 1);
11556 if (ctl->advect_vert_coord == 1) {
11557 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta], 1);
11558 } else if (ctl->qnt_zeta >= 0) {
11559 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 1);
11560 }
11561 for (int iq = 0; iq < ctl->nq; iq++)
11562 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 1);
11563
11564 /* Close file... */
11565 NC(nc_close(ncid));
11566
11567 /* At the last time step create the init_fix_YYYYMMDDHH file... */
11568 if ((year == year_stop) && (mon == mon_stop)
11569 && (day == day_stop) && (hour == hour_stop)) {
11570
11571 /* Set filename... */
11572 char filename_init[2 * LEN] = "./init_fix_YYYYMMDDHH.nc";
11573 sprintf(filename_init, "%s/init_fix_%02d%02d%02d%02d.nc",
11574 dirname, year_stop % 100, mon_stop, day_stop, hour_stop);
11575 LOG(1, "Write init file: %s", filename_init);
11576
11577 /* Create file... */
11578 NC(nc_create(filename_init, NC_NETCDF4, &ncid));
11579
11580 /* Define dimensions... */
11581 NC(nc_def_dim(ncid, "time", 1, &tid));
11582 NC(nc_def_dim(ncid, "NPARTS", (size_t) atm->np, &pid));
11583 dim_ids[0] = tid;
11584 dim_ids[1] = pid;
11585
11586 /* Define variables and their attributes... */
11587 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "Time",
11588 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
11589 NC_DEF_VAR("LAT", NC_DOUBLE, 1, &pid, "Latitude", "deg",
11590 ctl->atm_nc_level, 0);
11591 NC_DEF_VAR("LON", NC_DOUBLE, 1, &pid, "Longitude", "deg",
11592 ctl->atm_nc_level, 0);
11593 NC_DEF_VAR("PRESS", NC_DOUBLE, 1, &pid, "Pressure", "hPa",
11594 ctl->atm_nc_level, 0);
11595 NC_DEF_VAR("ZETA", NC_DOUBLE, 1, &pid, "Zeta", "K", ctl->atm_nc_level, 0);
11596 for (int iq = 0; iq < ctl->nq; iq++)
11597 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 2, dim_ids,
11598 ctl->qnt_name[iq], ctl->qnt_unit[iq],
11599 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
11600
11601 /* Define global attributes... */
11602 NC_PUT_ATT_GLOBAL("exp_VERTCOOR_name", "zeta");
11603 NC_PUT_ATT_GLOBAL("model", "MPTRAC");
11604
11605 /* End definitions... */
11606 NC(nc_enddef(ncid));
11607
11608 /* Write data... */
11609 NC_PUT_DOUBLE("time", atm->time, 0);
11610 NC_PUT_DOUBLE("LAT", atm->lat, 0);
11611 NC_PUT_DOUBLE("LON", atm->lon, 0);
11612 NC_PUT_DOUBLE("PRESS", atm->p, 0);
11613 NC_PUT_DOUBLE("ZETA", atm->q[ctl->qnt_zeta_d], 0);
11614 for (int iq = 0; iq < ctl->nq; iq++)
11615 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
11616
11617 /* Close file... */
11618 NC(nc_close(ncid));
11619 }
11620}
11621
11622/*****************************************************************************/
11623
11625 const char *filename,
11626 const ctl_t *ctl,
11627 const atm_t *atm) {
11628
11629 int ncid, obsid, varid;
11630
11631 size_t start[2], count[2];
11632
11633 /* Create file... */
11634 NC(nc_create(filename, NC_NETCDF4, &ncid));
11635
11636 /* Define dimensions... */
11637 NC(nc_def_dim(ncid, "obs", (size_t) atm->np, &obsid));
11638
11639 /* Define variables and their attributes... */
11640 NC_DEF_VAR("time", NC_DOUBLE, 1, &obsid, "time",
11641 "seconds since 2000-01-01 00:00:00 UTC", ctl->atm_nc_level, 0);
11642 NC_DEF_VAR("press", NC_DOUBLE, 1, &obsid, "pressure", "hPa",
11643 ctl->atm_nc_level, 0);
11644 NC_DEF_VAR("lon", NC_DOUBLE, 1, &obsid, "longitude", "degrees_east",
11645 ctl->atm_nc_level, 0);
11646 NC_DEF_VAR("lat", NC_DOUBLE, 1, &obsid, "latitude", "degrees_north",
11647 ctl->atm_nc_level, 0);
11648 for (int iq = 0; iq < ctl->nq; iq++)
11649 NC_DEF_VAR(ctl->qnt_name[iq], NC_DOUBLE, 1, &obsid,
11650 ctl->qnt_longname[iq], ctl->qnt_unit[iq],
11651 ctl->atm_nc_level, ctl->atm_nc_quant[iq]);
11652
11653 /* Define global attributes... */
11654 NC_PUT_ATT_GLOBAL("featureType", "point");
11655
11656 /* End definitions... */
11657 NC(nc_enddef(ncid));
11658
11659 /* Write data... */
11660 NC_PUT_DOUBLE("time", atm->time, 0);
11661 NC_PUT_DOUBLE("press", atm->p, 0);
11662 NC_PUT_DOUBLE("lon", atm->lon, 0);
11663 NC_PUT_DOUBLE("lat", atm->lat, 0);
11664 for (int iq = 0; iq < ctl->nq; iq++)
11665 NC_PUT_DOUBLE(ctl->qnt_name[iq], atm->q[iq], 0);
11666
11667 /* Close file... */
11668 NC(nc_close(ncid));
11669}
11670
11671/*****************************************************************************/
11672
11674 const char *filename,
11675 const ctl_t *ctl,
11676 const atm_t *atm,
11677 const double t) {
11678
11679 static FILE *out;
11680
11681 static double *modmean, *obsmean, *obsstd, *rt, *rz, *rlon, *rlat, *robs,
11682 *area, dlon, dlat, dz, x[NCSI], y[NCSI], obsstdn[NCSI], kz[EP], kw[EP];
11683
11684 static int *obscount, nobs, nk;
11685
11686 static int ct[NENS], cx[NENS], cy[NENS], cz[NENS], n[NENS];
11687
11688 const int ensemble = (ctl->nens > 0);
11689
11690 /* Set timer */
11691 SELECT_TIMER("WRITE_CSI", "OUTPUT", NVTX_WRITE);
11692
11693 /* Check quantities... */
11694 if (ctl->qnt_m < 0)
11695 ERRMSG("Need quantity mass!");
11696 if (ensemble) {
11697 if (ctl->qnt_ens < 0)
11698 ERRMSG("Missing ensemble IDs!");
11699 if (ctl->nens > NENS)
11700 ERRMSG("Too many ensembles!");
11701 }
11702
11703 /* Init... */
11704 if (t == ctl->t_start) {
11705
11706 /* Allocate.. */
11707 ALLOC(area, double,
11708 ctl->csi_ny);
11709 ALLOC(rt, double,
11710 NOBS);
11711 ALLOC(rz, double,
11712 NOBS);
11713 ALLOC(rlon, double,
11714 NOBS);
11715 ALLOC(rlat, double,
11716 NOBS);
11717 ALLOC(robs, double,
11718 NOBS);
11719
11720 /* Read observation data... */
11721 read_obs(ctl->csi_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
11722
11723 /* Read kernel data... */
11724 if (ctl->csi_kernel[0] != '-')
11725 read_kernel(ctl->csi_kernel, kz, kw, &nk);
11726
11727 /* Create new file... */
11728 LOG(1, "Write CSI%s data: %s", ensemble ? " ensemble" : "", filename);
11729 if (!(out = fopen(filename, "w")))
11730 ERRMSG("Cannot create file!");
11731
11732 /* Write header... */
11733 fprintf(out,
11734 "# $1 = time [s]\n"
11735 "# $2 = ensemble ID\n"
11736 "# $3 = number of hits (cx)\n"
11737 "# $4 = number of misses (cy)\n"
11738 "# $5 = number of false alarms (cz)\n"
11739 "# $6 = number of observations (cx + cy)\n"
11740 "# $7 = number of forecasts (cx + cz)\n"
11741 "# $8 = bias (%%)\n"
11742 "# $9 = POD (%%)\n"
11743 "# $10 = FAR (%%)\n"
11744 "# $11 = CSI (%%)\n"
11745 "# $12 = hits by random chance\n"
11746 "# $13 = ETS (%%)\n"
11747 "# $14 = Pearson R\n"
11748 "# $15 = Spearman R\n"
11749 "# $16 = mean error [kg/m²]\n"
11750 "# $17 = RMSE [kg/m²]\n"
11751 "# $18 = MAE [kg/m²]\n"
11752 "# $19 = log-likelihood\n" "# $20 = number of points\n\n");
11753
11754 /* Set grid box size... */
11755 dz = (ctl->csi_z1 - ctl->csi_z0) / ctl->csi_nz;
11756 dlon = (ctl->csi_lon1 - ctl->csi_lon0) / ctl->csi_nx;
11757 dlat = (ctl->csi_lat1 - ctl->csi_lat0) / ctl->csi_ny;
11758
11759 /* Set horizontal coordinates... */
11760 for (int iy = 0; iy < ctl->csi_ny; iy++) {
11761 const double lat = ctl->csi_lat0 + dlat * (iy + 0.5);
11762 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.0) * cos(DEG2RAD(lat));
11763 }
11764 }
11765
11766 /* Set time interval... */
11767 const double t0 = t - 0.5 * ctl->dt_mod;
11768 const double t1 = t + 0.5 * ctl->dt_mod;
11769
11770 /* Allocate... */
11771 int grid_size = ctl->csi_nx * ctl->csi_ny * ctl->csi_nz;
11772 ALLOC(modmean, double,
11773 (ensemble ? ctl->nens : 1) * grid_size);
11774 ALLOC(obsmean, double,
11775 grid_size);
11776 ALLOC(obscount, int,
11777 grid_size);
11778 ALLOC(obsstd, double,
11779 grid_size);
11780
11781 /* Init... */
11782 for (int i = 0; i < (ensemble ? ctl->nens : 1); i++)
11783 ct[i] = cx[i] = cy[i] = cz[i] = n[i] = 0;
11784
11785 /* Loop over observations... */
11786 for (int i = 0; i < nobs; i++) {
11787 if (rt[i] < t0 || rt[i] >= t1 || !isfinite(robs[i]))
11788 continue;
11789
11790 /* Calculate indices... */
11791 const int ix = (int) ((rlon[i] - ctl->csi_lon0) / dlon);
11792 const int iy = (int) ((rlat[i] - ctl->csi_lat0) / dlat);
11793 const int iz = (int) ((rz[i] - ctl->csi_z0) / dz);
11794 if (ix < 0 || ix >= ctl->csi_nx || iy < 0 || iy >= ctl->csi_ny || iz < 0
11795 || iz >= ctl->csi_nz)
11796 continue;
11797
11798 /* Get mean observation index... */
11799 const int idx = ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
11800 obsmean[idx] += robs[i];
11801 obsstd[idx] += SQR(robs[i]);
11802 obscount[idx]++;
11803 }
11804
11805 /* Analyze model data... */
11806 for (int ip = 0; ip < atm->np; ip++) {
11807
11808 /* Check time... */
11809 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11810 continue;
11811
11812 /* Get ensemble ID... */
11813 int ens_id = ensemble ? (int) atm->q[ctl->qnt_ens][ip] : 0;
11814 if (ens_id < 0 || ens_id >= (ensemble ? ctl->nens : 1))
11815 ERRMSG("Ensemble ID out of range!");
11816
11817 /* Get indices... */
11818 const int ix = (int) ((atm->lon[ip] - ctl->csi_lon0) / dlon);
11819 const int iy = (int) ((atm->lat[ip] - ctl->csi_lat0) / dlat);
11820 const int iz = (int) ((Z(atm->p[ip]) - ctl->csi_z0) / dz);
11821 if (ix < 0 || ix >= ctl->csi_nx || iy < 0 || iy >= ctl->csi_ny || iz < 0
11822 || iz >= ctl->csi_nz)
11823 continue;
11824
11825 /* Get total mass in grid cell... */
11826 const int idx =
11827 ens_id * grid_size + ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
11828 modmean[idx] +=
11829 kernel_weight(kz, kw, nk, atm->p[ip]) * atm->q[ctl->qnt_m][ip];
11830 }
11831 for (int e = 0; e < (ensemble ? ctl->nens : 1); e++) {
11832 /* Analyze all grid cells... */
11833 for (int ix = 0; ix < ctl->csi_nx; ix++)
11834 for (int iy = 0; iy < ctl->csi_ny; iy++)
11835 for (int iz = 0; iz < ctl->csi_nz; iz++) {
11836
11837 /* Calculate mean observation index... */
11838 const int idx = ARRAY_3D(ix, iy, ctl->csi_ny, iz, ctl->csi_nz);
11839 if (e == 0)
11840 if (obscount[idx]) {
11841 obsmean[idx] /= obscount[idx];
11842 obsstd[idx] =
11843 sqrt(obsstd[idx] / obscount[idx] - SQR(obsmean[idx]));
11844 }
11845
11846 /* Calculate model mean per ensemble... */
11847 const int midx = e * grid_size + idx;
11848 if (modmean[midx] > 0)
11849 modmean[midx] /= (1e6 * area[iy]);
11850
11851 /* Check number of observations... */
11852 if (obscount[idx]) {
11853
11854 /* Calculate CSI... */
11855 ct[e]++;
11856 if (obsmean[idx] >= ctl->csi_obsmin
11857 && modmean[midx] >= ctl->csi_modmin)
11858 cx[e]++;
11859 else if (obsmean[idx] >= ctl->csi_obsmin)
11860 cy[e]++;
11861 else if (modmean[midx] >= ctl->csi_modmin)
11862 cz[e]++;
11863
11864 /* Save data for other verification statistics... */
11865 if (obsmean[idx] >= ctl->csi_obsmin
11866 || modmean[midx] >= ctl->csi_modmin) {
11867 x[n[e]] = modmean[midx];
11868 y[n[e]] = obsmean[idx];
11869 if (modmean[midx] >= ctl->csi_modmin)
11870 obsstdn[n[e]] = obsstd[idx];
11871 if ((++n[e]) >= NCSI)
11872 ERRMSG("Too many points for statistics!");
11873 }
11874 }
11875 }
11876 /* Write output... */
11877 if (fmod(t, ctl->csi_dt_out) == 0) {
11878
11879 if (n[e] == 0)
11880 continue;
11881
11882 /* Calculate verification statistics
11883 (https://www.cawcr.gov.au/projects/verification/) ... */
11884 static double work[2 * NCSI], work2[2 * NCSI];
11885 const int n_obs = cx[e] + cy[e];
11886 const int n_for = cx[e] + cz[e];
11887 const double cx_rd = (ct[e] > 0) ? (1. * n_obs * n_for) / ct[e] : NAN;
11888 const double bias = (n_obs > 0) ? 100. * n_for / n_obs : NAN;
11889 const double pod = (n_obs > 0) ? 100. * cx[e] / n_obs : NAN;
11890 const double far = (n_for > 0) ? 100. * cz[e] / n_for : NAN;
11891 const double csi =
11892 (cx[e] + cy[e] + cz[e] >
11893 0) ? 100. * cx[e] / (cx[e] + cy[e] + cz[e]) : NAN;
11894 const double ets =
11895 (cx[e] + cy[e] + cz[e] - cx_rd >
11896 0) ? 100. * (cx[e] - cx_rd) / (cx[e] + cy[e] + cz[e] - cx_rd) : NAN;
11897 const double rho_p = gsl_stats_correlation(x, 1, y, 1, (size_t) n[e]);
11898 const double rho_s =
11899 gsl_stats_spearman(x, 1, y, 1, (size_t) n[e], work);
11900 for (int i = 0; i < n[e]; i++) {
11901 work[i] = x[i] - y[i];
11902 work2[i] = (obsstdn[i] != 0) ? work[i] / obsstdn[i] : 0;
11903 }
11904 const double mean = gsl_stats_mean(work, 1, (size_t) n[e]);
11905 const double rmse =
11906 gsl_stats_sd_with_fixed_mean(work, 1, (size_t) n[e], 0.0);
11907 const double absdev = gsl_stats_absdev_m(work, 1, (size_t) n[e], 0.0);
11908 const double loglikelihood =
11909 gsl_stats_tss_m(work2, 1, (size_t) n[e], 0.0) * -0.5;
11910
11911 /* Write... */
11912 fprintf(out,
11913 "%.2f %d %d %d %d %d %d %g %g %g %g %g %g %g %g %g %g %g %g %d\n",
11914 t, ensemble ? e : -999, cx[e], cy[e], cz[e], n_obs, n_for, bias,
11915 pod, far, csi, cx_rd, ets, rho_p, rho_s, mean, rmse, absdev,
11916 loglikelihood, n[e]);
11917
11918 /* Set counters to zero... */
11919 for (int i = 0; i < n[e]; i++)
11920 work[i] = work2[i] = x[i] = y[i] = obsstdn[i] = 0;
11921 ct[e] = cx[e] = cy[e] = cz[e] = n[e] = 0;
11922 }
11923 }
11924 /* Free... */
11925 free(modmean);
11926 free(obsmean);
11927 free(obscount);
11928 free(obsstd);
11929
11930 /* Finalize... */
11931 if (t == ctl->t_stop) {
11932
11933 /* Close output file... */
11934 fclose(out);
11935
11936 /* Free... */
11937 free(area);
11938 free(rt);
11939 free(rz);
11940 free(rlon);
11941 free(rlat);
11942 free(robs);
11943 }
11944}
11945
11946/*****************************************************************************/
11947
11949 const char *filename,
11950 const ctl_t *ctl,
11951 const atm_t *atm,
11952 const double t) {
11953
11954 static FILE *out;
11955
11956 static double dummy, lat, lon, qm[NQ][NENS], qs[NQ][NENS], xm[NENS][3],
11957 x[3], zm[NENS];
11958
11959 static int n[NENS];
11960
11961 /* Set timer... */
11962 SELECT_TIMER("WRITE_ENS", "OUTPUT", NVTX_WRITE);
11963
11964 /* Check quantities... */
11965 if (ctl->qnt_ens < 0)
11966 ERRMSG("Missing ensemble IDs!");
11967
11968 /* Set time interval... */
11969 const double t0 = t - 0.5 * ctl->dt_mod;
11970 const double t1 = t + 0.5 * ctl->dt_mod;
11971
11972 /* Init... */
11973 for (int i = 0; i < NENS; i++) {
11974 for (int iq = 0; iq < ctl->nq; iq++)
11975 qm[iq][i] = qs[iq][i] = 0;
11976 xm[i][0] = xm[i][1] = xm[i][2] = zm[i] = 0;
11977 n[i] = 0;
11978 }
11979
11980 /* Loop over air parcels... */
11981 for (int ip = 0; ip < atm->np; ip++) {
11982
11983 /* Check time... */
11984 if (atm->time[ip] < t0 || atm->time[ip] > t1)
11985 continue;
11986
11987 /* Check ensemble ID... */
11988 if (atm->q[ctl->qnt_ens][ip] < 0 || atm->q[ctl->qnt_ens][ip] >= NENS)
11989 ERRMSG("Ensemble ID is out of range!");
11990
11991 /* Get means... */
11992 geo2cart(0, atm->lon[ip], atm->lat[ip], x);
11993 for (int iq = 0; iq < ctl->nq; iq++) {
11994 qm[iq][ctl->qnt_ens] += atm->q[iq][ip];
11995 qs[iq][ctl->qnt_ens] += SQR(atm->q[iq][ip]);
11996 }
11997 xm[ctl->qnt_ens][0] += x[0];
11998 xm[ctl->qnt_ens][1] += x[1];
11999 xm[ctl->qnt_ens][2] += x[2];
12000 zm[ctl->qnt_ens] += Z(atm->p[ip]);
12001 n[ctl->qnt_ens]++;
12002 }
12003
12004 /* Create file... */
12005 LOG(1, "Write ensemble data: %s", filename);
12006 if (!(out = fopen(filename, "w")))
12007 ERRMSG("Cannot create file!");
12008
12009 /* Write header... */
12010 fprintf(out,
12011 "# $1 = time [s]\n"
12012 "# $2 = altitude [km]\n"
12013 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
12014 for (int iq = 0; iq < ctl->nq; iq++)
12015 fprintf(out, "# $%d = %s (mean) [%s]\n", 5 + iq,
12016 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
12017 for (int iq = 0; iq < ctl->nq; iq++)
12018 fprintf(out, "# $%d = %s (sigma) [%s]\n", 5 + ctl->nq + iq,
12019 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
12020 fprintf(out, "# $%d = number of members\n\n", 5 + 2 * ctl->nq);
12021
12022 /* Write data... */
12023 for (int i = 0; i < NENS; i++)
12024 if (n[i] > 0) {
12025 cart2geo(xm[i], &dummy, &lon, &lat);
12026 fprintf(out, "%.2f %g %g %g", t, zm[i] / n[i], lon, lat);
12027 for (int iq = 0; iq < ctl->nq; iq++) {
12028 fprintf(out, " ");
12029 fprintf(out, ctl->qnt_format[iq], qm[iq][i] / n[i]);
12030 }
12031 for (int iq = 0; iq < ctl->nq; iq++) {
12032 fprintf(out, " ");
12033 double var = qs[iq][i] / n[i] - SQR(qm[iq][i] / n[i]);
12034 fprintf(out, ctl->qnt_format[iq], (var > 0 ? sqrt(var) : 0));
12035 }
12036 fprintf(out, " %d\n", n[i]);
12037 }
12038
12039 /* Close file... */
12040 fclose(out);
12041}
12042
12043/*****************************************************************************/
12044
12046 const char *filename,
12047 const ctl_t *ctl,
12048 met_t *met0,
12049 met_t *met1,
12050 const atm_t *atm,
12051 const double t) {
12052
12053 static double kz[EP], kw[EP];
12054
12055 static int nk;
12056
12057 double *cd, *mean[NQ], *sigma[NQ], *vmr_impl, *z, *lon, *lat, *area, *press;
12058
12059 int *ixs, *iys, *izs, *np;
12060
12061 /* Set timer... */
12062 SELECT_TIMER("WRITE_GRID", "OUTPUT", NVTX_WRITE);
12063
12064 /* Write info... */
12065 LOG(1, "Write grid data: %s", filename);
12066
12067 /* Init... */
12068 if (t == ctl->t_start) {
12069
12070 /* Read kernel data... */
12071 if (ctl->grid_kernel[0] != '-')
12072 read_kernel(ctl->grid_kernel, kz, kw, &nk);
12073 }
12074
12075 /* Allocate... */
12076 ALLOC(cd, double,
12077 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12078 for (int iq = 0; iq < ctl->nq; iq++) {
12079 ALLOC(mean[iq], double,
12080 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12081 ALLOC(sigma[iq], double,
12082 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12083 }
12084 ALLOC(vmr_impl, double,
12085 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12086 ALLOC(z, double,
12087 ctl->grid_nz);
12088 ALLOC(lon, double,
12089 ctl->grid_nx);
12090 ALLOC(lat, double,
12091 ctl->grid_ny);
12092 ALLOC(area, double,
12093 ctl->grid_ny);
12094 ALLOC(press, double,
12095 ctl->grid_nz);
12096 ALLOC(np, int,
12097 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12098 ALLOC(ixs, int,
12099 atm->np);
12100 ALLOC(iys, int,
12101 atm->np);
12102 ALLOC(izs, int,
12103 atm->np);
12104
12105 /* Set grid box size... */
12106 const double dz = (ctl->grid_z1 - ctl->grid_z0) / ctl->grid_nz;
12107 const double dlon = (ctl->grid_lon1 - ctl->grid_lon0) / ctl->grid_nx;
12108 const double dlat = (ctl->grid_lat1 - ctl->grid_lat0) / ctl->grid_ny;
12109
12110 /* Set vertical coordinates... */
12111#pragma omp parallel for default(shared)
12112 for (int iz = 0; iz < ctl->grid_nz; iz++) {
12113 z[iz] = ctl->grid_z0 + dz * (iz + 0.5);
12114 press[iz] = P(z[iz]);
12115 }
12116
12117 /* Set horizontal coordinates... */
12118 for (int ix = 0; ix < ctl->grid_nx; ix++)
12119 lon[ix] = ctl->grid_lon0 + dlon * (ix + 0.5);
12120#pragma omp parallel for default(shared)
12121 for (int iy = 0; iy < ctl->grid_ny; iy++) {
12122 lat[iy] = ctl->grid_lat0 + dlat * (iy + 0.5);
12123 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
12124 }
12125
12126 /* Set time interval for output... */
12127 const double t0 = t - 0.5 * ctl->dt_mod;
12128 const double t1 = t + 0.5 * ctl->dt_mod;
12129
12130 /* Get grid box indices... */
12131#pragma omp parallel for default(shared)
12132 for (int ip = 0; ip < atm->np; ip++) {
12133 ixs[ip] = (int) ((atm->lon[ip] - ctl->grid_lon0) / dlon);
12134 iys[ip] = (int) ((atm->lat[ip] - ctl->grid_lat0) / dlat);
12135 izs[ip] = (int) ((Z(atm->p[ip]) - ctl->grid_z0) / dz);
12136 if (atm->time[ip] < t0 || atm->time[ip] > t1
12137 || ixs[ip] < 0 || ixs[ip] >= ctl->grid_nx
12138 || iys[ip] < 0 || iys[ip] >= ctl->grid_ny
12139 || izs[ip] < 0 || izs[ip] >= ctl->grid_nz)
12140 izs[ip] = -1;
12141 }
12142
12143 /* Average data... */
12144 for (int ip = 0; ip < atm->np; ip++)
12145 if (izs[ip] >= 0) {
12146 const int idx =
12147 ARRAY_3D(ixs[ip], iys[ip], ctl->grid_ny, izs[ip], ctl->grid_nz);
12148 const double kernel = kernel_weight(kz, kw, nk, atm->p[ip]);
12149 np[idx]++;
12150 for (int iq = 0; iq < ctl->nq; iq++) {
12151 mean[iq][idx] += kernel * atm->q[iq][ip];
12152 sigma[iq][idx] += SQR(kernel * atm->q[iq][ip]);
12153 }
12154 }
12155
12156 /* Calculate column density and volume mixing ratio... */
12157#pragma omp parallel for default(shared)
12158 for (int ix = 0; ix < ctl->grid_nx; ix++)
12159 for (int iy = 0; iy < ctl->grid_ny; iy++)
12160 for (int iz = 0; iz < ctl->grid_nz; iz++) {
12161
12162 /* Get grid index... */
12163 const int idx = ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz);
12164
12165 /* Calculate column density... */
12166 cd[idx] = NAN;
12167 if (ctl->qnt_m >= 0)
12168 cd[idx] = mean[ctl->qnt_m][idx] / (1e6 * area[iy]);
12169
12170 /* Calculate volume mixing ratio (implicit)... */
12171 vmr_impl[idx] = NAN;
12172 if (ctl->qnt_m >= 0 && ctl->molmass > 0 && met0 != NULL
12173 && met1 != NULL) {
12174 vmr_impl[idx] = 0;
12175 if (mean[ctl->qnt_m][idx] > 0) {
12176
12177 /* Get temperature... */
12178 double temp;
12180 intpol_met_time_3d(met0, met0->t, met1, met1->t, t, press[iz],
12181 lon[ix], lat[iy], &temp, ci, cw, 1);
12182
12183 /* Calculate volume mixing ratio... */
12184 vmr_impl[idx] =
12185 MA / ctl->molmass * cd[idx] / (RHO(press[iz], temp) * dz * 1e3);
12186 }
12187 }
12188
12189 /* Calculate mean... */
12190 if (np[idx] > 0)
12191 for (int iq = 0; iq < ctl->nq; iq++) {
12192 mean[iq][idx] /= np[idx];
12193 const double var = sigma[iq][idx] / np[idx] - SQR(mean[iq][idx]);
12194 sigma[iq][idx] = (var > 0 ? sqrt(var) : 0);
12195 } else
12196 for (int iq = 0; iq < ctl->nq; iq++) {
12197 mean[iq][idx] = NAN;
12198 sigma[iq][idx] = NAN;
12199 }
12200 }
12201
12202 /* Write ASCII data... */
12203 if (ctl->grid_type == 0)
12204 write_grid_asc(filename, ctl, cd, mean, sigma, vmr_impl,
12205 t, z, lon, lat, area, dz, np);
12206
12207 /* Write netCDF data... */
12208 else if (ctl->grid_type == 1)
12209 write_grid_nc(filename, ctl, cd, mean, sigma, vmr_impl,
12210 t, z, lon, lat, area, dz, np);
12211
12212 /* Error message... */
12213 else
12214 ERRMSG("Grid data format GRID_TYPE unknown!");
12215
12216 /* Free... */
12217 free(cd);
12218 for (int iq = 0; iq < ctl->nq; iq++) {
12219 free(mean[iq]);
12220 free(sigma[iq]);
12221 }
12222 free(vmr_impl);
12223 free(z);
12224 free(lon);
12225 free(lat);
12226 free(area);
12227 free(press);
12228 free(np);
12229 free(ixs);
12230 free(iys);
12231 free(izs);
12232}
12233
12234/*****************************************************************************/
12235
12237 const char *filename,
12238 const ctl_t *ctl,
12239 const double *cd,
12240 double *mean[NQ],
12241 double *sigma[NQ],
12242 const double *vmr_impl,
12243 const double t,
12244 const double *z,
12245 const double *lon,
12246 const double *lat,
12247 const double *area,
12248 const double dz,
12249 const int *np) {
12250
12251 FILE *out;
12252
12253 /* Check if gnuplot output is requested... */
12254 if (ctl->grid_gpfile[0] != '-') {
12255
12256 /* Create gnuplot pipe... */
12257 if (!(out = popen("gnuplot", "w")))
12258 ERRMSG("Cannot create pipe to gnuplot!");
12259
12260 /* Set plot filename... */
12261 fprintf(out, "set out \"%s.png\"\n", filename);
12262
12263 /* Set time string... */
12264 double r;
12265 int year, mon, day, hour, min, sec;
12266 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
12267 fprintf(out, "timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
12268 year, mon, day, hour, min);
12269
12270 /* Dump gnuplot file to pipe... */
12271 FILE *in;
12272 char line[LEN];
12273 if (!(in = fopen(ctl->grid_gpfile, "r")))
12274 ERRMSG("Cannot open file!");
12275 while (fgets(line, LEN, in))
12276 fprintf(out, "%s", line);
12277 fclose(in);
12278 }
12279
12280 else {
12281
12282 /* Create file... */
12283 if (!(out = fopen(filename, "w")))
12284 ERRMSG("Cannot create file!");
12285 }
12286
12287 /* Write header... */
12288 fprintf(out,
12289 "# $1 = time [s]\n"
12290 "# $2 = altitude [km]\n"
12291 "# $3 = longitude [deg]\n"
12292 "# $4 = latitude [deg]\n"
12293 "# $5 = surface area [km^2]\n"
12294 "# $6 = layer depth [km]\n"
12295 "# $7 = column density (implicit) [kg/m^2]\n"
12296 "# $8 = volume mixing ratio (implicit) [ppv]\n"
12297 "# $9 = number of particles [1]\n");
12298 for (int iq = 0; iq < ctl->nq; iq++)
12299 fprintf(out, "# $%i = %s (mean) [%s]\n", 10 + iq, ctl->qnt_name[iq],
12300 ctl->qnt_unit[iq]);
12301 if (ctl->grid_stddev)
12302 for (int iq = 0; iq < ctl->nq; iq++)
12303 fprintf(out, "# $%i = %s (stddev) [%s]\n", 10 + ctl->nq + iq,
12304 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
12305 fprintf(out, "\n");
12306
12307 /* Write data... */
12308 for (int ix = 0; ix < ctl->grid_nx; ix++) {
12309 if (ix > 0 && ctl->grid_ny > 1 && !ctl->grid_sparse)
12310 fprintf(out, "\n");
12311 for (int iy = 0; iy < ctl->grid_ny; iy++) {
12312 if (iy > 0 && ctl->grid_nz > 1 && !ctl->grid_sparse)
12313 fprintf(out, "\n");
12314 for (int iz = 0; iz < ctl->grid_nz; iz++) {
12315 int idx = ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz);
12316 if (!ctl->grid_sparse || vmr_impl[idx] > 0) {
12317 fprintf(out, "%.2f %g %g %g %g %g %g %g %d", t, z[iz], lon[ix],
12318 lat[iy], area[iy], dz, cd[idx], vmr_impl[idx], np[idx]);
12319 for (int iq = 0; iq < ctl->nq; iq++) {
12320 fprintf(out, " ");
12321 fprintf(out, ctl->qnt_format[iq], mean[iq][idx]);
12322 }
12323 if (ctl->grid_stddev)
12324 for (int iq = 0; iq < ctl->nq; iq++) {
12325 fprintf(out, " ");
12326 fprintf(out, ctl->qnt_format[iq], sigma[iq][idx]);
12327 }
12328 fprintf(out, "\n");
12329 }
12330 }
12331 }
12332 }
12333
12334 /* Close file... */
12335 fclose(out);
12336}
12337
12338/*****************************************************************************/
12339
12341 const char *filename,
12342 const ctl_t *ctl,
12343 const double *cd,
12344 double *mean[NQ],
12345 double *sigma[NQ],
12346 const double *vmr_impl,
12347 const double t,
12348 const double *z,
12349 const double *lon,
12350 const double *lat,
12351 const double *area,
12352 const double dz,
12353 const int *np) {
12354
12355 char longname[2 * LEN], varname[2 * LEN];
12356
12357 double *help;
12358
12359 int *help2, ncid, dimid[10], varid;
12360
12361 size_t start[2], count[2];
12362
12363 /* Allocate... */
12364 ALLOC(help, double,
12365 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12366 ALLOC(help2, int,
12367 ctl->grid_nx * ctl->grid_ny * ctl->grid_nz);
12368
12369 /* Create file... */
12370 NC(nc_create(filename, NC_NETCDF4, &ncid));
12371
12372 /* Define dimensions... */
12373 NC(nc_def_dim(ncid, "time", 1, &dimid[0]));
12374 NC(nc_def_dim(ncid, "z", (size_t) ctl->grid_nz, &dimid[1]));
12375 NC(nc_def_dim(ncid, "lat", (size_t) ctl->grid_ny, &dimid[2]));
12376 NC(nc_def_dim(ncid, "lon", (size_t) ctl->grid_nx, &dimid[3]));
12377 NC(nc_def_dim(ncid, "dz", 1, &dimid[4]));
12378
12379 /* Define variables and their attributes... */
12380 NC_DEF_VAR("time", NC_DOUBLE, 1, &dimid[0], "time",
12381 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
12382 NC_DEF_VAR("z", NC_DOUBLE, 1, &dimid[1], "altitude", "km", 0, 0);
12383 NC_DEF_VAR("lat", NC_DOUBLE, 1, &dimid[2], "latitude", "degrees_north", 0,
12384 0);
12385 NC_DEF_VAR("lon", NC_DOUBLE, 1, &dimid[3], "longitude", "degrees_east", 0,
12386 0);
12387 NC_DEF_VAR("dz", NC_DOUBLE, 1, &dimid[1], "layer depth", "km", 0, 0);
12388 NC_DEF_VAR("area", NC_DOUBLE, 1, &dimid[2], "surface area", "km**2", 0, 0);
12389
12390 NC_DEF_VAR("cd", NC_FLOAT, 4, dimid, "column density", "kg m**-2",
12391 ctl->grid_nc_level, 0);
12392 NC_DEF_VAR("vmr_impl", NC_FLOAT, 4, dimid,
12393 "volume mixing ratio (implicit)", "ppv", ctl->grid_nc_level, 0);
12394 NC_DEF_VAR("np", NC_INT, 4, dimid, "number of particles", "1", 0, 0);
12395 for (int iq = 0; iq < ctl->nq; iq++) {
12396 sprintf(varname, "%s_mean", ctl->qnt_name[iq]);
12397 sprintf(longname, "%s (mean)", ctl->qnt_longname[iq]);
12398 NC_DEF_VAR(varname, NC_DOUBLE, 4, dimid, longname, ctl->qnt_unit[iq],
12399 ctl->grid_nc_level, ctl->grid_nc_quant[iq]);
12400 if (ctl->grid_stddev) {
12401 sprintf(varname, "%s_stddev", ctl->qnt_name[iq]);
12402 sprintf(longname, "%s (stddev)", ctl->qnt_longname[iq]);
12403 NC_DEF_VAR(varname, NC_DOUBLE, 4, dimid, longname, ctl->qnt_unit[iq],
12404 ctl->grid_nc_level, ctl->grid_nc_quant[iq]);
12405 }
12406 }
12407 /* End definitions... */
12408 NC(nc_enddef(ncid));
12409
12410 /* Write data... */
12411 NC_PUT_DOUBLE("time", &t, 0);
12412 NC_PUT_DOUBLE("lon", lon, 0);
12413 NC_PUT_DOUBLE("lat", lat, 0);
12414 NC_PUT_DOUBLE("z", z, 0);
12415 NC_PUT_DOUBLE("area", area, 0);
12416 NC_PUT_DOUBLE("dz", &dz, 0);
12417
12418 for (int ix = 0; ix < ctl->grid_nx; ix++)
12419 for (int iy = 0; iy < ctl->grid_ny; iy++)
12420 for (int iz = 0; iz < ctl->grid_nz; iz++)
12421 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
12422 cd[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
12423 NC_PUT_DOUBLE("cd", help, 0);
12424
12425 for (int ix = 0; ix < ctl->grid_nx; ix++)
12426 for (int iy = 0; iy < ctl->grid_ny; iy++)
12427 for (int iz = 0; iz < ctl->grid_nz; iz++)
12428 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
12429 vmr_impl[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
12430 NC_PUT_DOUBLE("vmr_impl", help, 0);
12431
12432 for (int ix = 0; ix < ctl->grid_nx; ix++)
12433 for (int iy = 0; iy < ctl->grid_ny; iy++)
12434 for (int iz = 0; iz < ctl->grid_nz; iz++)
12435 help2[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
12436 np[ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
12437 NC_PUT_INT("np", help2, 0);
12438
12439 for (int iq = 0; iq < ctl->nq; iq++) {
12440 sprintf(varname, "%s_mean", ctl->qnt_name[iq]);
12441 for (int ix = 0; ix < ctl->grid_nx; ix++)
12442 for (int iy = 0; iy < ctl->grid_ny; iy++)
12443 for (int iz = 0; iz < ctl->grid_nz; iz++)
12444 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
12445 mean[iq][ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
12446 NC_PUT_DOUBLE(varname, help, 0);
12447 }
12448
12449 if (ctl->grid_stddev)
12450 for (int iq = 0; iq < ctl->nq; iq++) {
12451 sprintf(varname, "%s_stddev", ctl->qnt_name[iq]);
12452 for (int ix = 0; ix < ctl->grid_nx; ix++)
12453 for (int iy = 0; iy < ctl->grid_ny; iy++)
12454 for (int iz = 0; iz < ctl->grid_nz; iz++)
12455 help[ARRAY_3D(iz, iy, ctl->grid_ny, ix, ctl->grid_nx)] =
12456 sigma[iq][ARRAY_3D(ix, iy, ctl->grid_ny, iz, ctl->grid_nz)];
12457 NC_PUT_DOUBLE(varname, help, 0);
12458 }
12459
12460 /* Close file... */
12461 NC(nc_close(ncid));
12462
12463 /* Free... */
12464 free(help);
12465 free(help2);
12466}
12467
12468/*****************************************************************************/
12469
12471 const char *filename,
12472 const ctl_t *ctl,
12473 met_t *met) {
12474
12475 /* Create file... */
12476 FILE *out;
12477 if (!(out = fopen(filename, "w")))
12478 ERRMSG("Cannot create file!");
12479
12480 /* Write type of binary data... */
12481 FWRITE(&ctl->met_type, int,
12482 1,
12483 out);
12484
12485 /* Write version of binary data... */
12486 int version = 103;
12487 FWRITE(&version, int,
12488 1,
12489 out);
12490
12491 /* Write grid data... */
12492 FWRITE(&met->time, double,
12493 1,
12494 out);
12495 FWRITE(&met->nx, int,
12496 1,
12497 out);
12498 FWRITE(&met->ny, int,
12499 1,
12500 out);
12501 FWRITE(&met->np, int,
12502 1,
12503 out);
12504 FWRITE(met->lon, double,
12505 (size_t) met->nx,
12506 out);
12507 FWRITE(met->lat, double,
12508 (size_t) met->ny,
12509 out);
12510 FWRITE(met->p, double,
12511 (size_t) met->np,
12512 out);
12513
12514 /* Write surface data... */
12515 write_met_bin_2d(out, met, met->ps, "PS");
12516 write_met_bin_2d(out, met, met->ts, "TS");
12517 write_met_bin_2d(out, met, met->zs, "ZS");
12518 write_met_bin_2d(out, met, met->us, "US");
12519 write_met_bin_2d(out, met, met->vs, "VS");
12520 write_met_bin_2d(out, met, met->ess, "ESS");
12521 write_met_bin_2d(out, met, met->nss, "NSS");
12522 write_met_bin_2d(out, met, met->shf, "SHF");
12523 write_met_bin_2d(out, met, met->lsm, "LSM");
12524 write_met_bin_2d(out, met, met->sst, "SST");
12525 write_met_bin_2d(out, met, met->pbl, "PBL");
12526 write_met_bin_2d(out, met, met->pt, "PT");
12527 write_met_bin_2d(out, met, met->tt, "TT");
12528 write_met_bin_2d(out, met, met->zt, "ZT");
12529 write_met_bin_2d(out, met, met->h2ot, "H2OT");
12530 write_met_bin_2d(out, met, met->pct, "PCT");
12531 write_met_bin_2d(out, met, met->pcb, "PCB");
12532 write_met_bin_2d(out, met, met->cl, "CL");
12533 write_met_bin_2d(out, met, met->plcl, "PLCL");
12534 write_met_bin_2d(out, met, met->plfc, "PLFC");
12535 write_met_bin_2d(out, met, met->pel, "PEL");
12536 write_met_bin_2d(out, met, met->cape, "CAPE");
12537 write_met_bin_2d(out, met, met->cin, "CIN");
12538 write_met_bin_2d(out, met, met->o3c, "O3C");
12539
12540 /* Write level data... */
12541 write_met_bin_3d(out, ctl, met, met->z, "Z",
12542 ctl->met_comp_prec[0], ctl->met_comp_tol[0]);
12543 write_met_bin_3d(out, ctl, met, met->t, "T",
12544 ctl->met_comp_prec[1], ctl->met_comp_tol[1]);
12545 write_met_bin_3d(out, ctl, met, met->u, "U",
12546 ctl->met_comp_prec[2], ctl->met_comp_tol[2]);
12547 write_met_bin_3d(out, ctl, met, met->v, "V",
12548 ctl->met_comp_prec[3], ctl->met_comp_tol[3]);
12549 write_met_bin_3d(out, ctl, met, met->w, "W",
12550 ctl->met_comp_prec[4], ctl->met_comp_tol[4]);
12551 write_met_bin_3d(out, ctl, met, met->pv, "PV",
12552 ctl->met_comp_prec[5], ctl->met_comp_tol[5]);
12553 write_met_bin_3d(out, ctl, met, met->h2o, "H2O",
12554 ctl->met_comp_prec[6], ctl->met_comp_tol[6]);
12555 write_met_bin_3d(out, ctl, met, met->o3, "O3",
12556 ctl->met_comp_prec[7], ctl->met_comp_tol[7]);
12557 write_met_bin_3d(out, ctl, met, met->lwc, "LWC",
12558 ctl->met_comp_prec[8], ctl->met_comp_tol[8]);
12559 write_met_bin_3d(out, ctl, met, met->rwc, "RWC",
12560 ctl->met_comp_prec[9], ctl->met_comp_tol[9]);
12561 write_met_bin_3d(out, ctl, met, met->iwc, "IWC",
12562 ctl->met_comp_prec[10], ctl->met_comp_tol[10]);
12563 write_met_bin_3d(out, ctl, met, met->swc, "SWC",
12564 ctl->met_comp_prec[11], ctl->met_comp_tol[11]);
12565 write_met_bin_3d(out, ctl, met, met->cc, "CC",
12566 ctl->met_comp_prec[12], ctl->met_comp_tol[12]);
12567 if (METVAR != 13)
12568 ERRMSG("Number of meteo variables doesn't match!");
12569
12570 /* Write final flag... */
12571 int final = 999;
12572 FWRITE(&final, int,
12573 1,
12574 out);
12575
12576 /* Close file... */
12577 fclose(out);
12578}
12579
12580/*****************************************************************************/
12581
12583 FILE *out,
12584 met_t *met,
12585 float var[EX][EY],
12586 const char *varname) {
12587
12588 float *help;
12589
12590 /* Allocate... */
12591 ALLOC(help, float,
12592 EX * EY);
12593
12594 /* Copy data... */
12595 for (int ix = 0; ix < met->nx; ix++)
12596 for (int iy = 0; iy < met->ny; iy++)
12597 help[ARRAY_2D(ix, iy, met->ny)] = var[ix][iy];
12598
12599 /* Write uncompressed data... */
12600 LOG(2, "Write 2-D variable: %s (uncompressed)", varname);
12601 FWRITE(help, float,
12602 (size_t) (met->nx * met->ny),
12603 out);
12604
12605 /* Free... */
12606 free(help);
12607}
12608
12609/*****************************************************************************/
12610
12612 FILE *out,
12613 const ctl_t *ctl,
12614 met_t *met,
12615 float var[EX][EY][EP],
12616 const char *varname,
12617 const int precision,
12618 const double tolerance) {
12619
12620 float *help;
12621
12622 /* Allocate... */
12623 ALLOC(help, float,
12624 EX * EY * EP);
12625
12626 /* Copy data... */
12627#pragma omp parallel for default(shared) collapse(2)
12628 for (int ix = 0; ix < met->nx; ix++)
12629 for (int iy = 0; iy < met->ny; iy++)
12630 for (int ip = 0; ip < met->np; ip++)
12631 help[ARRAY_3D(ix, iy, met->ny, ip, met->np)] = var[ix][iy][ip];
12632
12633 /* Write uncompressed data... */
12634 if (ctl->met_type == 1) {
12635 LOG(2, "Write 3-D variable: %s (uncompressed)", varname);
12636 FWRITE(help, float,
12637 (size_t) (met->nx * met->ny * met->np),
12638 out);
12639 }
12640
12641 /* Write packed data... */
12642 else if (ctl->met_type == 2)
12643 compress_pck(varname, help, (size_t) (met->ny * met->nx),
12644 (size_t) met->np, 0, out);
12645
12646 /* Write ZFP data... */
12647#ifdef ZFP
12648 else if (ctl->met_type == 3) {
12649 FWRITE(&precision, int,
12650 1,
12651 out);
12652 FWRITE(&tolerance, double,
12653 1,
12654 out);
12655 compress_zfp(varname, help, met->np, met->ny, met->nx, precision,
12656 tolerance, 0, out);
12657 }
12658#endif
12659
12660 /* Write zstd data... */
12661#ifdef ZSTD
12662 else if (ctl->met_type == 4)
12663 compress_zstd(varname, help, (size_t) (met->np * met->ny * met->nx), 0,
12664 ctl->met_zstd_level, out);
12665#endif
12666
12667 /* Write cmultiscale data... */
12668#ifdef CMS
12669 else if (ctl->met_type == 5) {
12670 compress_cms(ctl, varname, help, (size_t) met->nx, (size_t) met->ny,
12671 (size_t) met->np, met->p, 0, out);
12672 }
12673#endif
12674
12675 /* Write SZ3 data... */
12676#ifdef SZ3
12677 else if (ctl->met_type == 7) {
12678 FWRITE(&precision, int,
12679 1,
12680 out);
12681 FWRITE(&tolerance, double,
12682 1,
12683 out);
12684 compress_sz3(varname, help, met->np, met->ny, met->nx, precision,
12685 tolerance, 0, out);
12686 }
12687#endif
12688
12689 /* Unknown method... */
12690 else {
12691 ERRMSG("MET_TYPE not supported!");
12692 LOG(3, "%d %g", precision, tolerance);
12693 }
12694
12695 /* Free... */
12696 free(help);
12697}
12698
12699/*****************************************************************************/
12700
12702 const char *filename,
12703 const ctl_t *ctl,
12704 met_t *met) {
12705
12706 /* Create file... */
12707 int ncid, varid;
12708 size_t start[4], count[4];
12709 NC(nc_create(filename, NC_NETCDF4, &ncid));
12710
12711 /* Define dimensions... */
12712 int tid, lonid, latid, levid;
12713 NC(nc_def_dim(ncid, "time", 1, &tid));
12714 NC(nc_def_dim(ncid, "lon", (size_t) met->nx, &lonid));
12715 NC(nc_def_dim(ncid, "lat", (size_t) met->ny, &latid));
12716 NC(nc_def_dim(ncid, "lev", (size_t) met->np, &levid));
12717
12718 /* Define grid... */
12719 NC_DEF_VAR("time", NC_DOUBLE, 1, &tid, "time",
12720 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
12721 NC_DEF_VAR("lon", NC_DOUBLE, 1, &lonid, "longitude", "degrees_east", 0, 0);
12722 NC_DEF_VAR("lat", NC_DOUBLE, 1, &latid, "latitude", "degrees_north", 0, 0);
12723 NC_DEF_VAR("lev", NC_DOUBLE, 1, &levid, "pressure", "Pa", 0, 0);
12724
12725 /* Define surface variables... */
12726 int dimid2[2] = { latid, lonid };
12727 NC_DEF_VAR("sp", NC_FLOAT, 2, dimid2, "Surface pressure", "Pa",
12728 ctl->met_nc_level, 0);
12729 NC_DEF_VAR("z", NC_FLOAT, 2, dimid2, "Geopotential", "m**2 s**-2",
12730 ctl->met_nc_level, 0);
12731 NC_DEF_VAR("t2m", NC_FLOAT, 2, dimid2, "2 metre temperature", "K",
12732 ctl->met_nc_level, 0);
12733 NC_DEF_VAR("u10m", NC_FLOAT, 2, dimid2, "10 metre U wind component",
12734 "m s**-1", ctl->met_nc_level, 0);
12735 NC_DEF_VAR("v10m", NC_FLOAT, 2, dimid2, "10 metre V wind component",
12736 "m s**-1", ctl->met_nc_level, 0);
12737 NC_DEF_VAR("iews", NC_FLOAT, 2, dimid2,
12738 "Instantaneous eastward turbulent surface stress", "N m**-2",
12739 ctl->met_nc_level, 0);
12740 NC_DEF_VAR("inss", NC_FLOAT, 2, dimid2,
12741 "Instantaneous northward turbulent surface stress", "N m**-2",
12742 ctl->met_nc_level, 0);
12743 NC_DEF_VAR("ishf", NC_FLOAT, 2, dimid2,
12744 "Instantaneous surface sensible heat flux", "W m**-1",
12745 ctl->met_nc_level, 0);
12746 NC_DEF_VAR("lsm", NC_FLOAT, 2, dimid2, "Land/sea mask", "-",
12747 ctl->met_nc_level, 0);
12748 NC_DEF_VAR("sstk", NC_FLOAT, 2, dimid2, "Sea surface temperature", "K",
12749 ctl->met_nc_level, 0);
12750 NC_DEF_VAR("blp", NC_FLOAT, 2, dimid2, "Boundary layer pressure", "Pa",
12751 ctl->met_nc_level, 0);
12752 NC_DEF_VAR("pt", NC_FLOAT, 2, dimid2, "Tropopause pressure", "Pa",
12753 ctl->met_nc_level, 0);
12754 NC_DEF_VAR("tt", NC_FLOAT, 2, dimid2, "Tropopause temperature", "K",
12755 ctl->met_nc_level, 0);
12756 NC_DEF_VAR("zt", NC_FLOAT, 2, dimid2, "Tropopause height", "m",
12757 ctl->met_nc_level, 0);
12758 NC_DEF_VAR("h2ot", NC_FLOAT, 2, dimid2, "Tropopause water vapor", "ppv",
12759 ctl->met_nc_level, 0);
12760 NC_DEF_VAR("pct", NC_FLOAT, 2, dimid2, "Cloud top pressure", "Pa",
12761 ctl->met_nc_level, 0);
12762 NC_DEF_VAR("pcb", NC_FLOAT, 2, dimid2, "Cloud bottom pressure", "Pa",
12763 ctl->met_nc_level, 0);
12764 NC_DEF_VAR("cl", NC_FLOAT, 2, dimid2, "Total column cloud water",
12765 "kg m**2", ctl->met_nc_level, 0);
12766 NC_DEF_VAR("plcl", NC_FLOAT, 2, dimid2,
12767 "Pressure at lifted condensation level (LCL)", "Pa",
12768 ctl->met_nc_level, 0);
12769 NC_DEF_VAR("plfc", NC_FLOAT, 2, dimid2,
12770 "Pressure at level of free convection (LFC)", "Pa",
12771 ctl->met_nc_level, 0);
12772 NC_DEF_VAR("pel", NC_FLOAT, 2, dimid2,
12773 "Pressure at equilibrium level (EL)", "Pa", ctl->met_nc_level,
12774 0);
12775 NC_DEF_VAR("cape", NC_FLOAT, 2, dimid2,
12776 "Convective available potential energy", "J kg**-1",
12777 ctl->met_nc_level, 0);
12778 NC_DEF_VAR("cin", NC_FLOAT, 2, dimid2, "Convective inhibition",
12779 "J kg**-1", ctl->met_nc_level, 0);
12780 NC_DEF_VAR("o3c", NC_FLOAT, 2, dimid2, "Total column ozone", "DU",
12781 ctl->met_nc_level, 0);
12782
12783 /* Define level data... */
12784 int dimid3[3] = { levid, latid, lonid };
12785 NC_DEF_VAR("t", NC_FLOAT, 3, dimid3, "Temperature", "K",
12786 ctl->met_nc_level, ctl->met_nc_quant);
12787 NC_DEF_VAR("u", NC_FLOAT, 3, dimid3, "U velocity", "m s**-1",
12788 ctl->met_nc_level, ctl->met_nc_quant);
12789 NC_DEF_VAR("v", NC_FLOAT, 3, dimid3, "V velocity", "m s**-1",
12790 ctl->met_nc_level, ctl->met_nc_quant);
12791 NC_DEF_VAR("w", NC_FLOAT, 3, dimid3, "Vertical velocity", "Pa s**-1",
12792 ctl->met_nc_level, ctl->met_nc_quant);
12793 NC_DEF_VAR("q", NC_FLOAT, 3, dimid3, "Specific humidity", "kg kg**-1",
12794 ctl->met_nc_level, ctl->met_nc_quant);
12795 NC_DEF_VAR("o3", NC_FLOAT, 3, dimid3, "Ozone mass mixing ratio",
12796 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
12797 NC_DEF_VAR("clwc", NC_FLOAT, 3, dimid3, "Cloud liquid water content",
12798 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
12799 NC_DEF_VAR("crwc", NC_FLOAT, 3, dimid3, "Cloud rain water content",
12800 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
12801 NC_DEF_VAR("ciwc", NC_FLOAT, 3, dimid3, "Cloud ice water content",
12802 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
12803 NC_DEF_VAR("cswc", NC_FLOAT, 3, dimid3, "Cloud snow water content",
12804 "kg kg**-1", ctl->met_nc_level, ctl->met_nc_quant);
12805 NC_DEF_VAR("cc", NC_FLOAT, 3, dimid3, "Cloud cover", "-",
12806 ctl->met_nc_level, ctl->met_nc_quant);
12807
12808 /* End definitions... */
12809 NC(nc_enddef(ncid));
12810
12811 /* Write grid data... */
12812 NC_PUT_DOUBLE("time", &met->time, 0);
12813 NC_PUT_DOUBLE("lon", met->lon, 0);
12814 NC_PUT_DOUBLE("lat", met->lat, 0);
12815 double phelp[EP];
12816 for (int ip = 0; ip < met->np; ip++)
12817 phelp[ip] = 100. * met->p[ip];
12818 NC_PUT_DOUBLE("lev", phelp, 0);
12819
12820 /* Write surface data... */
12821 write_met_nc_2d(ncid, "sp", met, met->ps, 100.0f);
12822 write_met_nc_2d(ncid, "z", met, met->zs, (float) (1000. * G0));
12823 write_met_nc_2d(ncid, "t2m", met, met->ts, 1.0f);
12824 write_met_nc_2d(ncid, "u10m", met, met->us, 1.0f);
12825 write_met_nc_2d(ncid, "v10m", met, met->vs, 1.0f);
12826 write_met_nc_2d(ncid, "iews", met, met->ess, 1.0f);
12827 write_met_nc_2d(ncid, "inss", met, met->nss, 1.0f);
12828 write_met_nc_2d(ncid, "ishf", met, met->shf, 1.0f);
12829 write_met_nc_2d(ncid, "lsm", met, met->lsm, 1.0f);
12830 write_met_nc_2d(ncid, "sstk", met, met->sst, 1.0f);
12831 write_met_nc_2d(ncid, "blp", met, met->pbl, 100.0f);
12832 write_met_nc_2d(ncid, "pt", met, met->pt, 100.0f);
12833 write_met_nc_2d(ncid, "tt", met, met->tt, 1.0f);
12834 write_met_nc_2d(ncid, "zt", met, met->zt, 1000.0f);
12835 write_met_nc_2d(ncid, "h2ot", met, met->h2ot, 1.0f);
12836 write_met_nc_2d(ncid, "pct", met, met->pct, 100.0f);
12837 write_met_nc_2d(ncid, "pcb", met, met->pcb, 100.0f);
12838 write_met_nc_2d(ncid, "cl", met, met->cl, 1.0f);
12839 write_met_nc_2d(ncid, "plcl", met, met->plcl, 100.0f);
12840 write_met_nc_2d(ncid, "plfc", met, met->plfc, 100.0f);
12841 write_met_nc_2d(ncid, "pel", met, met->pel, 100.0f);
12842 write_met_nc_2d(ncid, "cape", met, met->cape, 1.0f);
12843 write_met_nc_2d(ncid, "cin", met, met->cin, 1.0f);
12844 write_met_nc_2d(ncid, "o3c", met, met->o3c, 1.0f);
12845
12846 /* Write level data... */
12847 write_met_nc_3d(ncid, "t", met, met->t, 1.0f);
12848 write_met_nc_3d(ncid, "u", met, met->u, 1.0f);
12849 write_met_nc_3d(ncid, "v", met, met->v, 1.0f);
12850 write_met_nc_3d(ncid, "w", met, met->w, 100.0f);
12851 write_met_nc_3d(ncid, "q", met, met->h2o, (float) (MH2O / MA));
12852 write_met_nc_3d(ncid, "o3", met, met->o3, (float) (MO3 / MA));
12853 write_met_nc_3d(ncid, "clwc", met, met->lwc, 1.0f);
12854 write_met_nc_3d(ncid, "crwc", met, met->rwc, 1.0f);
12855 write_met_nc_3d(ncid, "ciwc", met, met->iwc, 1.0f);
12856 write_met_nc_3d(ncid, "cswc", met, met->swc, 1.0f);
12857 write_met_nc_3d(ncid, "cc", met, met->cc, 1.0f);
12858
12859 /* Close file... */
12860 NC(nc_close(ncid));
12861}
12862
12863/*****************************************************************************/
12864
12866 const int ncid,
12867 const char *varname,
12868 met_t *met,
12869 float var[EX][EY],
12870 const float scl) {
12871
12872 int varid;
12873 size_t start[4], count[4];
12874
12875 /* Allocate... */
12876 float *help;
12877 ALLOC(help, float,
12878 EX * EY);
12879
12880 /* Copy data... */
12881 for (int ix = 0; ix < met->nx; ix++)
12882 for (int iy = 0; iy < met->ny; iy++)
12883 help[ARRAY_2D(iy, ix, met->nx)] = scl * var[ix][iy];
12884
12885 /* Write data... */
12886 NC_PUT_FLOAT(varname, help, 0);
12887
12888 /* Free... */
12889 free(help);
12890}
12891
12892/*****************************************************************************/
12893
12895 const int ncid,
12896 const char *varname,
12897 met_t *met,
12898 float var[EX][EY][EP],
12899 const float scl) {
12900
12901 int varid;
12902 size_t start[4], count[4];
12903
12904 /* Allocate... */
12905 float *help;
12906 ALLOC(help, float,
12907 EX * EY * EP);
12908
12909 /* Copy data... */
12910 for (int ix = 0; ix < met->nx; ix++)
12911 for (int iy = 0; iy < met->ny; iy++)
12912 for (int ip = 0; ip < met->np; ip++)
12913 help[ARRAY_3D(ip, iy, met->ny, ix, met->nx)] = scl * var[ix][iy][ip];
12914
12915 /* Write data... */
12916 NC_PUT_FLOAT(varname, help, 0);
12917
12918 /* Free... */
12919 free(help);
12920}
12921
12922/*****************************************************************************/
12923
12925 const char *filename,
12926 const ctl_t *ctl,
12927 met_t *met0,
12928 met_t *met1,
12929 const atm_t *atm,
12930 const double t) {
12931
12932 static FILE *out;
12933
12934 static double *mass, *obsmean, *rt, *rz, *rlon, *rlat, *robs, *area,
12935 dz, dlon, dlat, *lon, *lat, *z, *press, temp, vmr, h2o, o3;
12936
12937 static int nobs, *obscount, ip, okay;
12938
12939 /* Set timer... */
12940 SELECT_TIMER("WRITE_PROF", "OUTPUT", NVTX_WRITE);
12941
12942 /* Init... */
12943 if (t == ctl->t_start) {
12944
12945 /* Check quantity index for mass... */
12946 if (ctl->qnt_m < 0)
12947 ERRMSG("Need quantity mass!");
12948
12949 /* Check molar mass... */
12950 if (ctl->molmass <= 0)
12951 ERRMSG("Specify molar mass!");
12952
12953 /* Allocate... */
12954 ALLOC(lon, double,
12955 ctl->prof_nx);
12956 ALLOC(lat, double,
12957 ctl->prof_ny);
12958 ALLOC(area, double,
12959 ctl->prof_ny);
12960 ALLOC(z, double,
12961 ctl->prof_nz);
12962 ALLOC(press, double,
12963 ctl->prof_nz);
12964 ALLOC(rt, double,
12965 NOBS);
12966 ALLOC(rz, double,
12967 NOBS);
12968 ALLOC(rlon, double,
12969 NOBS);
12970 ALLOC(rlat, double,
12971 NOBS);
12972 ALLOC(robs, double,
12973 NOBS);
12974
12975 /* Read observation data... */
12976 read_obs(ctl->prof_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
12977
12978 /* Create new output file... */
12979 LOG(1, "Write profile data: %s", filename);
12980 if (!(out = fopen(filename, "w")))
12981 ERRMSG("Cannot create file!");
12982
12983 /* Write header... */
12984 fprintf(out,
12985 "# $1 = time [s]\n"
12986 "# $2 = altitude [km]\n"
12987 "# $3 = longitude [deg]\n"
12988 "# $4 = latitude [deg]\n"
12989 "# $5 = pressure [hPa]\n"
12990 "# $6 = temperature [K]\n"
12991 "# $7 = volume mixing ratio [ppv]\n"
12992 "# $8 = H2O volume mixing ratio [ppv]\n"
12993 "# $9 = O3 volume mixing ratio [ppv]\n"
12994 "# $10 = observed BT index [K]\n"
12995 "# $11 = number of observations\n");
12996
12997 /* Set grid box size... */
12998 dz = (ctl->prof_z1 - ctl->prof_z0) / ctl->prof_nz;
12999 dlon = (ctl->prof_lon1 - ctl->prof_lon0) / ctl->prof_nx;
13000 dlat = (ctl->prof_lat1 - ctl->prof_lat0) / ctl->prof_ny;
13001
13002 /* Set vertical coordinates... */
13003 for (int iz = 0; iz < ctl->prof_nz; iz++) {
13004 z[iz] = ctl->prof_z0 + dz * (iz + 0.5);
13005 press[iz] = P(z[iz]);
13006 }
13007
13008 /* Set horizontal coordinates... */
13009 for (int ix = 0; ix < ctl->prof_nx; ix++)
13010 lon[ix] = ctl->prof_lon0 + dlon * (ix + 0.5);
13011 for (int iy = 0; iy < ctl->prof_ny; iy++) {
13012 lat[iy] = ctl->prof_lat0 + dlat * (iy + 0.5);
13013 area[iy] = dlat * dlon * SQR(RE * M_PI / 180.) * cos(DEG2RAD(lat[iy]));
13014 }
13015 }
13016
13017 /* Set time interval... */
13018 const double t0 = t - 0.5 * ctl->dt_mod;
13019 const double t1 = t + 0.5 * ctl->dt_mod;
13020
13021 /* Allocate... */
13022 ALLOC(mass, double,
13023 ctl->prof_nx * ctl->prof_ny * ctl->prof_nz);
13024 ALLOC(obsmean, double,
13025 ctl->prof_nx * ctl->prof_ny);
13026 ALLOC(obscount, int,
13027 ctl->prof_nx * ctl->prof_ny);
13028
13029 /* Loop over observations... */
13030 for (int i = 0; i < nobs; i++) {
13031
13032 /* Check time... */
13033 if (rt[i] < t0)
13034 continue;
13035 else if (rt[i] >= t1)
13036 break;
13037
13038 /* Check observation data... */
13039 if (!isfinite(robs[i]))
13040 continue;
13041
13042 /* Calculate indices... */
13043 const int ix = (int) ((rlon[i] - ctl->prof_lon0) / dlon);
13044 const int iy = (int) ((rlat[i] - ctl->prof_lat0) / dlat);
13045
13046 /* Check indices... */
13047 if (ix < 0 || ix >= ctl->prof_nx || iy < 0 || iy >= ctl->prof_ny)
13048 continue;
13049
13050 /* Get mean observation index... */
13051 const int idx = ARRAY_2D(ix, iy, ctl->prof_ny);
13052 obsmean[idx] += robs[i];
13053 obscount[idx]++;
13054 }
13055
13056 /* Analyze model data... */
13057 for (ip = 0; ip < atm->np; ip++) {
13058
13059 /* Check time... */
13060 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13061 continue;
13062
13063 /* Get indices... */
13064 const int ix = (int) ((atm->lon[ip] - ctl->prof_lon0) / dlon);
13065 const int iy = (int) ((atm->lat[ip] - ctl->prof_lat0) / dlat);
13066 const int iz = (int) ((Z(atm->p[ip]) - ctl->prof_z0) / dz);
13067
13068 /* Check indices... */
13069 if (ix < 0 || ix >= ctl->prof_nx ||
13070 iy < 0 || iy >= ctl->prof_ny || iz < 0 || iz >= ctl->prof_nz)
13071 continue;
13072
13073 /* Get total mass in grid cell... */
13074 const int idx = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
13075 mass[idx] += atm->q[ctl->qnt_m][ip];
13076 }
13077
13078 /* Extract profiles... */
13079 for (int ix = 0; ix < ctl->prof_nx; ix++)
13080 for (int iy = 0; iy < ctl->prof_ny; iy++) {
13081 int idx2 = ARRAY_2D(ix, iy, ctl->prof_ny);
13082 if (obscount[idx2] > 0) {
13083
13084 /* Check profile... */
13085 okay = 0;
13086 for (int iz = 0; iz < ctl->prof_nz; iz++) {
13087 int idx3 = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
13088 if (mass[idx3] > 0) {
13089 okay = 1;
13090 break;
13091 }
13092 }
13093 if (!okay)
13094 continue;
13095
13096 /* Write output... */
13097 fprintf(out, "\n");
13098
13099 /* Loop over altitudes... */
13100 for (int iz = 0; iz < ctl->prof_nz; iz++) {
13101
13102 /* Get temperature, water vapor, and ozone... */
13104 intpol_met_time_3d(met0, met0->t, met1, met1->t, t, press[iz],
13105 lon[ix], lat[iy], &temp, ci, cw, 1);
13106 intpol_met_time_3d(met0, met0->h2o, met1, met1->h2o, t, press[iz],
13107 lon[ix], lat[iy], &h2o, ci, cw, 0);
13108 intpol_met_time_3d(met0, met0->o3, met1, met1->o3, t, press[iz],
13109 lon[ix], lat[iy], &o3, ci, cw, 0);
13110
13111 /* Calculate volume mixing ratio... */
13112 const int idx3 = ARRAY_3D(ix, iy, ctl->prof_ny, iz, ctl->prof_nz);
13113 vmr = MA / ctl->molmass * mass[idx3]
13114 / (RHO(press[iz], temp) * area[iy] * dz * 1e9);
13115
13116 /* Write output... */
13117 fprintf(out, "%.2f %g %g %g %g %g %g %g %g %g %d\n",
13118 t, z[iz], lon[ix], lat[iy], press[iz], temp, vmr, h2o, o3,
13119 obsmean[idx2] / obscount[idx2], obscount[idx2]);
13120 }
13121 }
13122 }
13123
13124 /* Free... */
13125 free(mass);
13126 free(obsmean);
13127 free(obscount);
13128
13129 /* Finalize... */
13130 if (t == ctl->t_stop) {
13131
13132 /* Close output file... */
13133 fclose(out);
13134
13135 /* Free... */
13136 free(lon);
13137 free(lat);
13138 free(area);
13139 free(z);
13140 free(press);
13141 free(rt);
13142 free(rz);
13143 free(rlon);
13144 free(rlat);
13145 free(robs);
13146 }
13147}
13148
13149/*****************************************************************************/
13150
13152 const char *filename,
13153 const ctl_t *ctl,
13154 met_t *met0,
13155 met_t *met1,
13156 const atm_t *atm,
13157 const double t) {
13158
13159 static FILE *out;
13160
13161 static double area, dlat, rmax2, *rt, *rz, *rlon, *rlat, *robs, kz[EP],
13162 kw[EP];
13163
13164 static int nobs, nk;
13165
13166 /* Set timer... */
13167 SELECT_TIMER("WRITE_SAMPLE", "OUTPUT", NVTX_WRITE);
13168
13169 /* Init... */
13170 if (t == ctl->t_start) {
13171
13172 /* Allocate... */
13173 ALLOC(rt, double,
13174 NOBS);
13175 ALLOC(rz, double,
13176 NOBS);
13177 ALLOC(rlon, double,
13178 NOBS);
13179 ALLOC(rlat, double,
13180 NOBS);
13181 ALLOC(robs, double,
13182 NOBS);
13183
13184 /* Read observation data... */
13185 read_obs(ctl->sample_obsfile, ctl, rt, rz, rlon, rlat, robs, &nobs);
13186
13187 /* Read kernel data... */
13188 if (ctl->sample_kernel[0] != '-')
13189 read_kernel(ctl->sample_kernel, kz, kw, &nk);
13190
13191 /* Create output file... */
13192 LOG(1, "Write sample data: %s", filename);
13193 if (!(out = fopen(filename, "w")))
13194 ERRMSG("Cannot create file!");
13195
13196 /* Write header... */
13197 fprintf(out,
13198 "# $1 = time [s]\n"
13199 "# $2 = altitude [km]\n"
13200 "# $3 = longitude [deg]\n"
13201 "# $4 = latitude [deg]\n"
13202 "# $5 = surface area [km^2]\n"
13203 "# $6 = layer depth [km]\n"
13204 "# $7 = number of particles [1]\n"
13205 "# $8 = column density [kg/m^2]\n"
13206 "# $9 = volume mixing ratio [ppv]\n"
13207 "# $10 = observed BT index [K]\n\n");
13208
13209 /* Set latitude range, squared radius, and area... */
13210 dlat = DY2DEG(ctl->sample_dx);
13211 rmax2 = SQR(ctl->sample_dx);
13212 area = M_PI * rmax2;
13213 }
13214
13215 /* Set time interval for output... */
13216 const double t0 = t - 0.5 * ctl->dt_mod;
13217 const double t1 = t + 0.5 * ctl->dt_mod;
13218
13219 /* Loop over observations... */
13220 for (int i = 0; i < nobs; i++) {
13221
13222 /* Check time... */
13223 if (rt[i] < t0)
13224 continue;
13225 else if (rt[i] >= t1)
13226 break;
13227
13228 /* Calculate Cartesian coordinates... */
13229 double x0[3];
13230 geo2cart(0, rlon[i], rlat[i], x0);
13231
13232 /* Set pressure range... */
13233 const double rp = P(rz[i]);
13234 const double ptop = P(rz[i] + ctl->sample_dz);
13235 const double pbot = P(rz[i] - ctl->sample_dz);
13236
13237 /* Init... */
13238 double mass = 0;
13239 int np = 0;
13240
13241 /* Loop over air parcels... */
13242 //#pragma omp parallel for default(shared) reduction(+:mass,np)
13243 for (int ip = 0; ip < atm->np; ip++) {
13244
13245 /* Check time... */
13246 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13247 continue;
13248
13249 /* Check latitude... */
13250 if (fabs(rlat[i] - atm->lat[ip]) > dlat)
13251 continue;
13252
13253 /* Check horizontal distance... */
13254 double x1[3];
13255 geo2cart(0, atm->lon[ip], atm->lat[ip], x1);
13256 if (DIST2(x0, x1) > rmax2)
13257 continue;
13258
13259 /* Check pressure... */
13260 if (ctl->sample_dz > 0)
13261 if (atm->p[ip] > pbot || atm->p[ip] < ptop)
13262 continue;
13263
13264 /* Add mass... */
13265 if (ctl->qnt_m >= 0)
13266 mass +=
13267 kernel_weight(kz, kw, nk, atm->p[ip]) * atm->q[ctl->qnt_m][ip];
13268 np++;
13269 }
13270
13271 /* Calculate column density... */
13272 const double cd = mass / (1e6 * area);
13273
13274 /* Calculate volume mixing ratio... */
13275 double vmr = 0;
13276 if (ctl->molmass > 0 && ctl->sample_dz > 0) {
13277 if (mass > 0) {
13278
13279 /* Get temperature... */
13280 double temp;
13282 intpol_met_time_3d(met0, met0->t, met1, met1->t, rt[i], rp,
13283 rlon[i], rlat[i], &temp, ci, cw, 1);
13284
13285 /* Calculate volume mixing ratio... */
13286 vmr = MA / ctl->molmass * cd / (RHO(rp, temp) * ctl->sample_dz * 1e3);
13287 }
13288 } else
13289 vmr = NAN;
13290
13291 /* Write output... */
13292 fprintf(out, "%.2f %g %g %g %g %g %d %g %g %g\n", rt[i], rz[i],
13293 rlon[i], rlat[i], area, ctl->sample_dz, np, cd, vmr, robs[i]);
13294 }
13295
13296 /* Finalize...... */
13297 if (t == ctl->t_stop) {
13298
13299 /* Close output file... */
13300 fclose(out);
13301
13302 /* Free... */
13303 free(rt);
13304 free(rz);
13305 free(rlon);
13306 free(rlat);
13307 free(robs);
13308 }
13309}
13310
13311/*****************************************************************************/
13312
13314 const char *filename,
13315 const ctl_t *ctl,
13316 atm_t *atm,
13317 const double t) {
13318
13319 static FILE *out;
13320
13321 static double rmax2, x0[3], x1[3];
13322
13323 /* Set timer... */
13324 SELECT_TIMER("WRITE_STATION", "OUTPUT", NVTX_WRITE);
13325
13326 /* Init... */
13327 if (t == ctl->t_start) {
13328
13329 /* Write info... */
13330 LOG(1, "Write station data: %s", filename);
13331
13332 /* Create new file... */
13333 if (!(out = fopen(filename, "w")))
13334 ERRMSG("Cannot create file!");
13335
13336 /* Write header... */
13337 fprintf(out,
13338 "# $1 = time [s]\n"
13339 "# $2 = altitude [km]\n"
13340 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
13341 for (int iq = 0; iq < ctl->nq; iq++)
13342 fprintf(out, "# $%i = %s [%s]\n", (iq + 5),
13343 ctl->qnt_name[iq], ctl->qnt_unit[iq]);
13344 fprintf(out, "\n");
13345
13346 /* Set geolocation and search radius... */
13347 geo2cart(0, ctl->stat_lon, ctl->stat_lat, x0);
13348 rmax2 = SQR(ctl->stat_r);
13349 }
13350
13351 /* Set time interval for output... */
13352 const double t0 = t - 0.5 * ctl->dt_mod;
13353 const double t1 = t + 0.5 * ctl->dt_mod;
13354
13355 /* Loop over air parcels... */
13356 for (int ip = 0; ip < atm->np; ip++) {
13357
13358 /* Check time... */
13359 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13360 continue;
13361
13362 /* Check time range for station output... */
13363 if (atm->time[ip] < ctl->stat_t0 || atm->time[ip] > ctl->stat_t1)
13364 continue;
13365
13366 /* Check station flag... */
13367 if (ctl->qnt_stat >= 0)
13368 if ((int) atm->q[ctl->qnt_stat][ip])
13369 continue;
13370
13371 /* Get Cartesian coordinates... */
13372 geo2cart(0, atm->lon[ip], atm->lat[ip], x1);
13373
13374 /* Check horizontal distance... */
13375 if (DIST2(x0, x1) > rmax2)
13376 continue;
13377
13378 /* Set station flag... */
13379 if (ctl->qnt_stat >= 0)
13380 atm->q[ctl->qnt_stat][ip] = 1;
13381
13382 /* Write data... */
13383 fprintf(out, "%.2f %g %g %g",
13384 atm->time[ip], Z(atm->p[ip]), atm->lon[ip], atm->lat[ip]);
13385 for (int iq = 0; iq < ctl->nq; iq++) {
13386 fprintf(out, " ");
13387 fprintf(out, ctl->qnt_format[iq], atm->q[iq][ip]);
13388 }
13389 fprintf(out, "\n");
13390 }
13391
13392 /* Close file... */
13393 if (t == ctl->t_stop)
13394 fclose(out);
13395}
13396
13397/*****************************************************************************/
13398
13400 const char *filename,
13401 const ctl_t *ctl,
13402 const atm_t *atm,
13403 const double t) {
13404
13405 FILE *out;
13406
13407 /* Set timer... */
13408 SELECT_TIMER("WRITE_VTK", "OUTPUT", NVTX_WRITE);
13409
13410 /* Write info... */
13411 LOG(1, "Write VTK data: %s", filename);
13412
13413 /* Set time interval for output... */
13414 const double t0 = t - 0.5 * ctl->dt_mod;
13415 const double t1 = t + 0.5 * ctl->dt_mod;
13416
13417 /* Create file... */
13418 if (!(out = fopen(filename, "w")))
13419 ERRMSG("Cannot create file!");
13420
13421 /* Count data points... */
13422 int np = 0;
13423 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
13424 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13425 continue;
13426 np++;
13427 }
13428
13429 /* Write header... */
13430 fprintf(out,
13431 "# vtk DataFile Version 3.0\n"
13432 "vtk output\n" "ASCII\n" "DATASET POLYDATA\n");
13433
13434 /* Write point coordinates... */
13435 fprintf(out, "POINTS %d float\n", np);
13436 if (ctl->vtk_sphere) {
13437 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
13438 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13439 continue;
13440 const double radius = (RE + Z(atm->p[ip]) * ctl->vtk_scale
13441 + ctl->vtk_offset) / RE;
13442 const double coslat = cos(DEG2RAD(atm->lat[ip]));
13443 const double x = radius * coslat * cos(DEG2RAD(atm->lon[ip]));
13444 const double y = radius * coslat * sin(DEG2RAD(atm->lon[ip]));
13445 const double z = radius * sin(DEG2RAD(atm->lat[ip]));
13446 fprintf(out, "%g %g %g\n", x, y, z);
13447 }
13448 } else
13449 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
13450 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13451 continue;
13452 fprintf(out, "%g %g %g\n", atm->lon[ip], atm->lat[ip],
13453 Z(atm->p[ip]) * ctl->vtk_scale + ctl->vtk_offset);
13454 }
13455
13456 /* Write point data... */
13457 fprintf(out, "POINT_DATA %d\n", np);
13458 for (int iq = 0; iq < ctl->nq; iq++) {
13459 fprintf(out, "SCALARS %s float 1\n" "LOOKUP_TABLE default\n",
13460 ctl->qnt_name[iq]);
13461 for (int ip = 0; ip < atm->np; ip += ctl->vtk_stride) {
13462 if (atm->time[ip] < t0 || atm->time[ip] > t1)
13463 continue;
13464 fprintf(out, "%g\n", atm->q[iq][ip]);
13465 }
13466 }
13467
13468 /* Close file... */
13469 fclose(out);
13470}
void read_met_geopot(const ctl_t *ctl, met_t *met)
Calculates geopotential heights from meteorological data.
Definition: mptrac.c:8122
void mptrac_alloc(ctl_t **ctl, cache_t **cache, clim_t **clim, met_t **met0, met_t **met1, atm_t **atm, dd_t **dd)
Allocates and initializes memory resources for MPTRAC.
Definition: mptrac.c:5156
void mptrac_write_atm(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to a file in various formats.
Definition: mptrac.c:6778
void day2doy(const int year, const int mon, const int day, int *doy)
Get day of year from date.
Definition: mptrac.c:1052
void read_met_extrapolate(met_t *met)
Extrapolates meteorological data.
Definition: mptrac.c:8082
void write_atm_clams_traj(const char *dirname, const ctl_t *ctl, const atm_t *atm, const double t)
Writes CLaMS trajectory data to a NetCDF file.
Definition: mptrac.c:11466
int read_met_nc_2d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const char *varname5, const char *varname6, const ctl_t *ctl, const met_t *met, dd_t *dd, float dest[EX][EY], const float scl, const int init)
Reads a 2-dimensional meteorological variable from a NetCDF file.
Definition: mptrac.c:8752
void write_met_nc_2d(const int ncid, const char *varname, met_t *met, float var[EX][EY], const float scl)
Writes a 2D meteorological variable to a NetCDF file.
Definition: mptrac.c:12865
void read_met_sample(const ctl_t *ctl, met_t *met)
Downsamples meteorological data based on specified parameters.
Definition: mptrac.c:10505
void write_met_bin_3d(FILE *out, const ctl_t *ctl, met_t *met, float var[EX][EY][EP], const char *varname, const int precision, const double tolerance)
Writes a 3-dimensional meteorological variable to a binary file.
Definition: mptrac.c:12611
void read_obs(const char *filename, const ctl_t *ctl, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a file and stores it in arrays.
Definition: mptrac.c:10850
void module_advect(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Advances particle positions using different advection schemes.
Definition: mptrac.c:2972
void module_timesteps(const ctl_t *ctl, cache_t *cache, met_t *met0, atm_t *atm, const double t)
Calculate time steps for air parcels based on specified conditions.
Definition: mptrac.c:4872
void module_meteo(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Update atmospheric properties using meteorological data.
Definition: mptrac.c:4189
void read_clim_photo(const char *filename, clim_photo_t *photo)
Reads photolysis rates from a NetCDF file and populates the given photolysis structure.
Definition: mptrac.c:7210
void read_met_cloud(met_t *met)
Calculates cloud-related variables for each grid point.
Definition: mptrac.c:7921
void module_decay(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, atm_t *atm)
Simulate exponential decay processes for atmospheric particles.
Definition: mptrac.c:3575
double sedi(const double p, const double T, const double rp, const double rhop)
Calculates the sedimentation velocity of a particle in air.
Definition: mptrac.c:11023
double cos_sza(const double sec, const double lon, const double lat)
Calculates the cosine of the solar zenith angle.
Definition: mptrac.c:1011
void intpol_met_space_2d(const met_t *met, float array[EX][EY], const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 2D space.
Definition: mptrac.c:2371
int read_met_nc_3d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const ctl_t *ctl, const met_t *met, dd_t *dd, float dest[EX][EY][EP], const float scl)
Reads a 3-dimensional meteorological variable from a NetCDF file.
Definition: mptrac.c:9014
int read_atm_nc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a generic netCDF file and populates the given atmospheric structure.
Definition: mptrac.c:7177
void read_met_pbl(const ctl_t *ctl, met_t *met)
Computes the planetary boundary layer (PBL) pressure based on meteorological data.
Definition: mptrac.c:10113
void read_met_detrend(const ctl_t *ctl, met_t *met)
Detrends meteorological data.
Definition: mptrac.c:7978
void read_met_tropo(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates the tropopause and related meteorological variables based on various methods and stores th...
Definition: mptrac.c:10678
void read_obs_asc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from an ASCII file.
Definition: mptrac.c:10894
void module_chem_init(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Initializes the chemistry modules by setting atmospheric composition.
Definition: mptrac.c:3420
int locate_reg(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a regular grid.
Definition: mptrac.c:2933
void get_tropo(const int met_tropo, ctl_t *ctl, clim_t *clim, met_t *met, const double *lons, const int nx, const double *lats, const int ny, double *pt, double *zt, double *tt, double *qt, double *o3t, double *ps, double *zs)
Calculate tropopause data.
Definition: mptrac.c:2071
void read_met_nc_levels(const int ncid, const ctl_t *ctl, met_t *met, dd_t *dd)
Reads and processes meteorological level data from NetCDF files with domain decomposition.
Definition: mptrac.c:8555
void read_met_monotonize(const ctl_t *ctl, met_t *met)
Makes zeta and pressure profiles monotone.
Definition: mptrac.c:9748
int read_clim_ts(const char *filename, clim_ts_t *ts)
Reads a climatological time series from a file and populates the given time series structure.
Definition: mptrac.c:7329
void read_met_periodic(met_t *met)
Applies periodic boundary conditions to meteorological data along longitudinal axis.
Definition: mptrac.c:10250
void mptrac_run_timestep(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t **met0, met_t **met1, atm_t *atm, double t, dd_t *dd)
Executes a single timestep of the MPTRAC model simulation.
Definition: mptrac.c:6518
void module_timesteps_init(ctl_t *ctl, const atm_t *atm)
Initialize start time and time interval for time-stepping.
Definition: mptrac.c:4919
void write_ens(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes ensemble data to a file.
Definition: mptrac.c:11948
void module_mixing(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const double t)
Update atmospheric properties through interparcel mixing.
Definition: mptrac.c:4296
double clim_zm(const clim_zm_t *zm, const double t, const double lat, const double p)
Interpolates monthly mean zonal mean climatological variables.
Definition: mptrac.c:405
void module_mixing_help(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const int *ixs, const int *iys, const int *izs, const int qnt_idx, const int use_ensemble)
Perform subgrid-scale interparcel mixing of a given quantity.
Definition: mptrac.c:4367
void read_clim_photo_help(const int ncid, const char *varname, const clim_photo_t *photo, double var[CP][CSZA][CO3])
Reads a 3D climatological photochemistry variable from a NetCDF file.
Definition: mptrac.c:7301
void read_met_ml2pl(const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname)
Interpolates meteorological data to specified pressure levels.
Definition: mptrac.c:9706
double clim_tropo(const clim_t *clim, const double t, const double lat)
Calculates the tropopause pressure based on climatological data.
Definition: mptrac.c:204
void read_obs_nc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a NetCDF file.
Definition: mptrac.c:10922
void read_met_bin_2d(FILE *in, const met_t *met, float var[EX][EY], const char *varname)
Reads a 2-dimensional meteorological variable from a binary file and stores it in the provided array.
Definition: mptrac.c:7671
int locate_irr(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a sorted array.
Definition: mptrac.c:2869
void module_isosurf_init(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initialize the isosurface module based on atmospheric data.
Definition: mptrac.c:4013
void level_definitions(ctl_t *ctl)
Defines pressure levels for meteorological data.
Definition: mptrac.c:2659
void write_grid_asc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to an ASCII file.
Definition: mptrac.c:12236
void mptrac_update_device(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates device memory for specified data structures.
Definition: mptrac.c:6666
void time2jsec(const int year, const int mon, const int day, const int hour, const int min, const int sec, const double remain, double *jsec)
Converts time components to seconds since January 1, 2000, 12:00:00 UTC.
Definition: mptrac.c:11124
void mptrac_init(ctl_t *ctl, cache_t *cache, clim_t *clim, atm_t *atm, const int ntask)
Initializes the MPTRAC model and its associated components.
Definition: mptrac.c:5364
void intpol_met_time_3d(const met_t *met0, float array0[EX][EY][EP], const met_t *met1, float array1[EX][EY][EP], const double ts, const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 3D space and time.
Definition: mptrac.c:2429
void fft_help(double *fcReal, double *fcImag, const int n)
Computes the Fast Fourier Transform (FFT) of a complex sequence.
Definition: mptrac.c:1923
void module_wet_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Perform wet deposition calculations for air parcels.
Definition: mptrac.c:5021
void compress_pck(const char *varname, float *array, const size_t nxy, const size_t nz, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats.
Definition: mptrac.c:680
double nat_temperature(const double p, const double h2o, const double hno3)
Calculates the nitric acid trihydrate (NAT) temperature.
Definition: mptrac.c:6973
void spline(const double *x, const double *y, const int n, const double *x2, double *y2, const int n2, const int method)
Performs spline interpolation or linear interpolation.
Definition: mptrac.c:11056
void module_chem_grid(const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double tt)
Computes gridded chemical tracer concentrations (volume mixing ratio) from individual air parcel mass...
Definition: mptrac.c:3258
double clim_photo(const double rate[CP][CSZA][CO3], const clim_photo_t *photo, const double p, const double sza, const double o3c)
Calculates the photolysis rate for a given set of atmospheric conditions.
Definition: mptrac.c:147
void read_clim_zm(const char *filename, const char *varname, clim_zm_t *zm)
Reads zonally averaged climatological data from a netCDF file and populates the given structure.
Definition: mptrac.c:7383
void read_met_nc_grid_dd_naive(dd_t *dd, const ctl_t *ctl, met_t *met, const int ncid)
Read meteorological grid data from a NetCDF file and set up subdomain decomposition with halos.
Definition: mptrac.c:9873
void module_sedi(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate sedimentation of particles in the atmosphere.
Definition: mptrac.c:4740
int read_met_nc(const char *filename, const ctl_t *ctl, met_t *met, dd_t *dd)
Reads meteorological data from a NetCDF file and processes it.
Definition: mptrac.c:9833
void timer(const char *name, const char *group, const int output)
Measures and reports elapsed time for named and grouped timers.
Definition: mptrac.c:11155
void write_atm_asc(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to an ASCII file or gnuplot.
Definition: mptrac.c:11281
void intpol_met_space_3d(const met_t *met, float array[EX][EY][EP], const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 3D space.
Definition: mptrac.c:2313
void module_convection(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Performs convective mixing of atmospheric particles.
Definition: mptrac.c:3462
void read_kernel(const char *filename, double kz[EP], double kw[EP], int *nk)
Reads kernel function data from a file and populates the provided arrays.
Definition: mptrac.c:7482
void module_bound_cond(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Apply boundary conditions to particles based on meteorological and climatological data.
Definition: mptrac.c:3162
double scan_ctl(const char *filename, int argc, char *argv[], const char *varname, const int arridx, const char *defvalue, char *value)
Scans a control file or command-line arguments for a specified variable.
Definition: mptrac.c:10951
void module_advect_init(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initializes the advection module by setting up pressure fields.
Definition: mptrac.c:3135
void mptrac_get_met(ctl_t *ctl, clim_t *clim, const double t, met_t **met0, met_t **met1, dd_t *dd)
Retrieves meteorological data for the specified time.
Definition: mptrac.c:5242
void module_sort_help(double *a, const int *p, const int np)
Reorder an array based on a given permutation.
Definition: mptrac.c:4834
float stddev(const float *data, const int n)
Calculates the standard deviation of a set of data.
Definition: mptrac.c:11103
void intpol_tropo_3d(const double time0, float array0[EX][EY], const double time1, float array1[EX][EY], const double lons[EX], const double lats[EY], const int nlon, const int nlat, const double time, const double lon, const double lat, const int method, double *var, double *sigma)
Interpolates tropopause data in 3D (latitude, longitude, and time).
Definition: mptrac.c:2491
void read_met_bin_3d(FILE *in, const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname, const float bound_min, const float bound_max)
Reads 3D meteorological data from a binary file, potentially using different compression methods.
Definition: mptrac.c:7700
int locate_irr_float(const float *xx, const int n, const double x, const int ig)
Locate the index of the interval containing a given value in an irregularly spaced array.
Definition: mptrac.c:2899
double time_from_filename(const char *filename, const int offset)
Extracts and converts a timestamp from a filename to Julian seconds.
Definition: mptrac.c:11223
void write_prof(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes profile data to a specified file.
Definition: mptrac.c:12924
void mptrac_read_clim(const ctl_t *ctl, clim_t *clim)
Reads various climatological data and populates the given climatology structure.
Definition: mptrac.c:5454
double tropo_weight(const clim_t *clim, const atm_t *atm, const int ip)
Computes a weighting factor based on tropopause pressure.
Definition: mptrac.c:11258
void write_met_nc(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a NetCDF file.
Definition: mptrac.c:12701
void module_rng_init(const int ntask)
Initialize random number generators for parallel tasks.
Definition: mptrac.c:4604
int mptrac_read_atm(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a specified file into the given atmospheric structure.
Definition: mptrac.c:5383
void mptrac_update_host(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates host memory for specified data structures.
Definition: mptrac.c:6722
void mptrac_write_output(const char *dirname, const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double t)
Writes various types of output data to files in a specified directory.
Definition: mptrac.c:6882
double clim_oh(const ctl_t *ctl, const clim_t *clim, const double t, const double lon, const double lat, const double p)
Calculates the hydroxyl radical (OH) concentration from climatology data, with an optional diurnal co...
Definition: mptrac.c:89
void read_met_ozone(met_t *met)
Calculates the total column ozone from meteorological ozone data.
Definition: mptrac.c:10476
void read_met_nc_surface(const int ncid, const ctl_t *ctl, met_t *met, dd_t *dd)
Reads and processes surface meteorological data from NetCDF files with domain decomposition.
Definition: mptrac.c:8417
void clim_tropo_init(clim_t *clim)
Initializes the tropopause data in the climatology structure.
Definition: mptrac.c:232
void module_rng(const ctl_t *ctl, double *rs, const size_t n, const int method)
Generate random numbers using various methods and distributions.
Definition: mptrac.c:4635
void get_met_help(const ctl_t *ctl, const double t, const int direct, const char *metbase, const double dt_met, char *filename)
Generates a formatted filename for meteorological data files based on the input parameters.
Definition: mptrac.c:1980
void write_station(const char *filename, const ctl_t *ctl, atm_t *atm, const double t)
Writes station data to a specified file.
Definition: mptrac.c:13313
void cart2geo(const double *x, double *z, double *lon, double *lat)
State variables of cuRAND random number generator.
Definition: mptrac.c:74
void doy2day(const int year, const int doy, int *mon, int *day)
Converts a given day of the year (DOY) to a date (month and day).
Definition: mptrac.c:1893
void intpol_met_4d_zeta(const met_t *met0, float heights0[EX][EY][EP], float array0[EX][EY][EP], const met_t *met1, float heights1[EX][EY][EP], float array1[EX][EY][EP], const double ts, const double height, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables to a given position and time.
Definition: mptrac.c:2141
void intpol_met_time_2d(const met_t *met0, float array0[EX][EY], const met_t *met1, float array1[EX][EY], const double ts, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 2D space and time.
Definition: mptrac.c:2458
void module_position(const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Update the positions and pressure levels of atmospheric particles.
Definition: mptrac.c:4553
void clim_oh_diurnal_correction(const ctl_t *ctl, clim_t *clim)
Applies a diurnal correction to the hydroxyl radical (OH) concentration in climatology data.
Definition: mptrac.c:115
void locate_vert(float profiles[EX][EY][EP], const int np, const int lon_ap_ind, const int lat_ap_ind, const double height_ap, int *ind)
Locate the four vertical indizes of a box for a given height value.
Definition: mptrac.c:2952
void write_met_bin_2d(FILE *out, met_t *met, float var[EX][EY], const char *varname)
Writes a 2-dimensional meteorological variable to a binary file.
Definition: mptrac.c:12582
void read_met_pv(met_t *met)
Calculates potential vorticity (PV) from meteorological data.
Definition: mptrac.c:10370
int read_atm_bin(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a binary file and populates the given atmospheric structure.
Definition: mptrac.c:7061
void get_met_replace(char *orig, char *search, char *repl)
Replaces occurrences of a substring in a string with another substring.
Definition: mptrac.c:2047
void module_diff_meso(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate mesoscale diffusion for atmospheric particles.
Definition: mptrac.c:3614
void module_sort(const ctl_t *ctl, met_t *met0, atm_t *atm)
Sort particles according to box index.
Definition: mptrac.c:4769
double clim_ts(const clim_ts_t *ts, const double t)
Interpolates a time series of climatological variables.
Definition: mptrac.c:387
void jsec2time(const double jsec, int *year, int *mon, int *day, int *hour, int *min, int *sec, double *remain)
Converts Julian seconds to calendar date and time components.
Definition: mptrac.c:2582
int read_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Reads meteorological data from a binary file.
Definition: mptrac.c:7523
void write_atm_clams(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file in the CLaMS format.
Definition: mptrac.c:11413
void module_diff_turb(const ctl_t *ctl, cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Applies turbulent diffusion processes to atmospheric particles.
Definition: mptrac.c:3816
int read_atm_clams(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads atmospheric data from a CLAMS NetCDF file.
Definition: mptrac.c:7117
int mptrac_read_met(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met, dd_t *dd)
Reads meteorological data from a file, supporting multiple formats and MPI broadcasting.
Definition: mptrac.c:6409
void write_vtk(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes VTK (Visualization Toolkit) data to a specified file.
Definition: mptrac.c:13399
void module_tracer_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Simulate chemical reactions involving long-lived atmospheric tracers.
Definition: mptrac.c:4950
void mptrac_read_ctl(const char *filename, int argc, char *argv[], ctl_t *ctl)
Reads control parameters from a configuration file and populates the given structure.
Definition: mptrac.c:5514
void mptrac_free(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm, dd_t *dd)
Frees memory resources allocated for MPTRAC.
Definition: mptrac.c:5209
void read_met_polar_winds(met_t *met)
Applies a fix for polar winds in meteorological data.
Definition: mptrac.c:10311
void module_h2o2_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform chemical reactions involving H2O2 within cloud particles.
Definition: mptrac.c:3931
void write_grid_nc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to a NetCDF file.
Definition: mptrac.c:12340
double pbl_weight(const ctl_t *ctl, const atm_t *atm, const int ip, const double pbl, const double ps)
Computes a weighting factor based on planetary boundary layer pressure.
Definition: mptrac.c:6997
void module_diff_pbl(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Computes particle diffusion within the planetary boundary layer (PBL).
Definition: mptrac.c:3691
void write_met_nc_3d(const int ncid, const char *varname, met_t *met, float var[EX][EY][EP], const float scl)
Writes a 3D meteorological variable to a NetCDF file.
Definition: mptrac.c:12894
void module_isosurf(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Apply the isosurface module to adjust atmospheric properties.
Definition: mptrac.c:4083
void module_oh_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform hydroxyl chemistry calculations for atmospheric particles.
Definition: mptrac.c:4469
void geo2cart(const double z, const double lon, const double lat, double *x)
Converts geographic coordinates (longitude, latitude, altitude) to Cartesian coordinates.
Definition: mptrac.c:1962
void read_met_nc_grid(const char *filename, const int ncid, const ctl_t *ctl, met_t *met, dd_t *dd)
Reads meteorological grid data from NetCDF files with domain decomposition.
Definition: mptrac.c:8250
double kernel_weight(const double kz[EP], const double kw[EP], const int nk, const double p)
Calculates the kernel weight based on altitude and given kernel data.
Definition: mptrac.c:2615
int read_atm_asc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from an ASCII file and populates the given atmospheric structure.
Definition: mptrac.c:7019
void intpol_check_lon_lat(const double *lons, const int nlon, const double *lats, const int nlat, const double lon, const double lat, double *lon2, double *lat2)
Adjusts longitude and latitude to ensure they fall within valid bounds.
Definition: mptrac.c:2114
void write_sample(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes sample data to a specified file.
Definition: mptrac.c:13151
void write_grid(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes grid data to a file in ASCII or netCDF format.
Definition: mptrac.c:12045
void module_dry_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate dry deposition of atmospheric particles.
Definition: mptrac.c:3868
void write_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data in binary format to a specified file.
Definition: mptrac.c:12470
void write_atm_bin(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a binary file.
Definition: mptrac.c:11363
void read_met_cape(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates Convective Available Potential Energy (CAPE) for each grid point.
Definition: mptrac.c:7806
void mptrac_write_met(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a file, supporting multiple formats and compression options.
Definition: mptrac.c:6838
double lapse_rate(const double t, const double h2o)
Calculates the moist adiabatic lapse rate in Kelvin per kilometer.
Definition: mptrac.c:2641
void write_csi(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes Critical Success Index (CSI) data to a file.
Definition: mptrac.c:11673
void write_atm_nc(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file.
Definition: mptrac.c:11624
MPTRAC library declarations.
#define NN(x0, y0, x1, y1, x)
Perform nearest-neighbor interpolation.
Definition: mptrac.h:1386
int dd_init(ctl_t *ctl, dd_t *dd, atm_t *atm)
Initializes domain decomposition for parallel processing.
void compress_zstd(const char *varname, float *array, const size_t n, const int decompress, const int level, FILE *inout)
Compresses or decompresses a float array using Zstandard (ZSTD).
#define LEN
Maximum length of ASCII data lines.
Definition: mptrac.h:298
#define RE
Mean radius of Earth [km].
Definition: mptrac.h:264
#define TVIRT(t, h2o)
Compute virtual temperature.
Definition: mptrac.h:1858
#define DD_NPOLE
Constant indicating the North pole [-].
Definition: mptrac.h:378
void read_met_grib_surface(codes_handle **handles, const int num_messages, const ctl_t *ctl, met_t *met)
Reads surface meteorological data from a grib file and stores it in the meteorological data structure...
#define ARRAY_3D(ix, iy, ny, iz, nz)
Compute the linear index of a 3D array element.
Definition: mptrac.h:458
#define PARTICLE_LOOP(ip0, ip1, check_dt,...)
Loop over particle indices with OpenACC acceleration.
Definition: mptrac.h:1413
#define MA
Molar mass of dry air [g/mol].
Definition: mptrac.h:239
#define AVO
Avogadro constant [1/mol].
Definition: mptrac.h:199
#define KB
Boltzmann constant [kg m^2/(K s^2)].
Definition: mptrac.h:234
#define MH2O
Molar mass of water vapor [g/mol].
Definition: mptrac.h:244
#define METVAR
Number of 3-D meteorological variables.
Definition: mptrac.h:303
#define NENS
Maximum number of data points for ensemble analysis.
Definition: mptrac.h:323
#define FWRITE(ptr, type, size, out)
Write data from memory to a file stream.
Definition: mptrac.h:818
#define PW(p, h2o)
Calculate partial water vapor pressure.
Definition: mptrac.h:1518
#define H0
Scale height [km].
Definition: mptrac.h:219
#define NC_PUT_ATT_GLOBAL(attname, text)
Add a global text attribute to a NetCDF file.
Definition: mptrac.h:1366
#define MOLEC_DENS(p, t)
Calculate the density of a gas molecule.
Definition: mptrac.h:1153
void dd_sort(const ctl_t *ctl, met_t *met0, atm_t *atm, dd_t *dd, int *nparticles, int *rank)
Sort particles according to box index and target rank for neighbours.
#define DD_SPOLE
Constant indicating the South pole [-].
Definition: mptrac.h:383
#define LAPSE(p1, t1, p2, t2)
Calculate lapse rate.
Definition: mptrac.h:991
#define NC(cmd)
Execute a NetCDF command and check for errors.
Definition: mptrac.h:1167
#define ECC_READ_3D(variable, level, target, scaling_factor, found_flag)
Writes 3D data from a grib message into the meteo struct.
Definition: mptrac.h:755
void compress_cms(const ctl_t *ctl, const char *varname, float *array, const size_t nx, const size_t ny, const size_t np, const double *plev, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using a custom multiscale compression algorithm.
#define DOTP(a, b)
Calculate the dot product of two vectors.
Definition: mptrac.h:699
#define RA
Specific gas constant of dry air [J/(kg K)].
Definition: mptrac.h:259
#define KARMAN
Karman's constant.
Definition: mptrac.h:229
#define INTPOL_INIT
Initialize arrays for interpolation.
Definition: mptrac.h:833
#define MIN(a, b)
Macro to determine the minimum of two values.
Definition: mptrac.h:1138
#define ERRMSG(...)
Print an error message with contextual information and terminate the program.
Definition: mptrac.h:2043
#define NC_PUT_INT(varname, ptr, hyperslab)
Write integer data to a NetCDF variable.
Definition: mptrac.h:1327
void compress_zfp(const char *varname, float *array, const int nx, const int ny, const int nz, const int precision, const double tolerance, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using the ZFP library.
#define EY
Maximum number of latitudes for meteo data.
Definition: mptrac.h:293
void dd_particles2atm(atm_t *atm, particle_t *particles, ctl_t *ctl, int *nparticles, cache_t *cache)
Converts particle data to atmospheric data.
#define SH(h2o)
Compute specific humidity from water vapor volume mixing ratio.
Definition: mptrac.h:1683
#define INTPOL_3D(var, init)
Perform 3D interpolation for a meteorological variable.
Definition: mptrac.h:864
#define NOBS
Maximum number of observation data points.
Definition: mptrac.h:328
#define NTHREADS
Maximum number of OpenMP threads.
Definition: mptrac.h:333
#define ARRAY_2D(ix, iy, ny)
Macro for computing the linear index of a 2D array element.
Definition: mptrac.h:439
#define Z(p)
Convert pressure to altitude.
Definition: mptrac.h:1880
#define codes_handle
Placeholder when ECCODES is not available.
Definition: mptrac.h:190
#define P(z)
Compute pressure at given altitude.
Definition: mptrac.h:1443
#define LV
Latent heat of vaporization of water [J/kg].
Definition: mptrac.h:224
#define G0
Standard gravity [m/s^2].
Definition: mptrac.h:214
#define CP
Maximum number of pressure levels for climatological data.
Definition: mptrac.h:348
#define NQ
Maximum number of quantities per data point.
Definition: mptrac.h:313
#define FREAD(ptr, type, size, in)
Read data from a file stream and store it in memory.
Definition: mptrac.h:798
#define DX2DEG(dx, lat)
Convert a distance in kilometers to degrees longitude at a given latitude.
Definition: mptrac.h:614
#define DEG2DY(dlat)
Convert a latitude difference to a distance in the y-direction (north-south).
Definition: mptrac.h:550
#define EX
Maximum number of longitudes for meteo data.
Definition: mptrac.h:288
#define EPS
Ratio of the specific gas constant of dry air and water vapor [1].
Definition: mptrac.h:209
#define PSICE(t)
Compute saturation pressure over ice (WMO, 2018).
Definition: mptrac.h:1491
#define THETA(p, t)
Compute potential temperature.
Definition: mptrac.h:1783
#define RI
Ideal gas constant [J/(mol K)].
Definition: mptrac.h:269
int dd_is_periodic_longitude(met_t *met, int nx_glob)
Check whether the longitude grid is periodic (global coverage).
int read_met_grib(const char *filename, const ctl_t *ctl, met_t *met)
Reads meteorological data from a grib file and processes it.
#define SET_QNT(qnt, name, longname, unit)
Set atmospheric quantity index.
Definition: mptrac.h:1662
#define TICE(p, h2o)
Calculate frost point temperature (WMO, 2018).
Definition: mptrac.h:1759
#define TOK(line, tok, format, var)
Get string tokens.
Definition: mptrac.h:1833
void dd_get_rect_neighbour(const ctl_t ctl, dd_t *dd)
Determines rectangular neighbouring ranks for MPI processes.
#define ZDIFF(lnp0, t0, h2o0, lnp1, t1, h2o1)
Calculate geopotential height difference.
Definition: mptrac.h:1911
#define THETAVIRT(p, t, h2o)
Compute virtual potential temperature.
Definition: mptrac.h:1812
#define DZ2DP(dz, p)
Convert a change in altitude to a change in pressure.
Definition: mptrac.h:651
void dd_atm2particles(atm_t *atm, particle_t *particles, ctl_t *ctl, int *nparticles, cache_t *cache, int rank)
Extracts particles from an atmospheric state and prepares them for inter-domain transfer.
#define WARN(...)
Print a warning message with contextual information.
Definition: mptrac.h:2010
#define ZETA(ps, p, t)
Computes the value of the zeta vertical coordinate.
Definition: mptrac.h:1930
#define RHICE(p, t, h2o)
Compute relative humidity over ice.
Definition: mptrac.h:1595
#define INTPOL_TIME_ALL(time, p, lon, lat)
Interpolate multiple meteorological variables in time.
Definition: mptrac.h:937
#define ALLOC(ptr, type, n)
Allocate memory for a pointer with error handling.
Definition: mptrac.h:416
void read_met_grib_levels(codes_handle **handles, const int num_messages, const ctl_t *ctl, met_t *met)
Reads meteorological variables at different vertical levels from a grib file.
#define SET_ATM(qnt, val)
Set atmospheric quantity value.
Definition: mptrac.h:1639
#define CTS
Maximum number of data points of climatological time series.
Definition: mptrac.h:363
#define ECC_READ_2D(variable, target, scaling_factor, found_flag)
Writes 2-D data from a grib message into the meteo struct.
Definition: mptrac.h:732
int dd_calc_subdomain_from_coords(double lon, double lat, met_t *met, ctl_t *ctl, int mpi_size, int nx_glob, int ny_glob)
Computes the destination subdomain (MPI rank) for a particle based on its geographic coordinates.
#define DEG2RAD(deg)
Converts degrees to radians.
Definition: mptrac.h:567
void broadcast_large_data(void *data, size_t N)
Broadcasts large data across all processes in an MPI communicator.
#define MO3
Molar mass of ozone [g/mol].
Definition: mptrac.h:249
#define SQR(x)
Compute the square of a value.
Definition: mptrac.h:1696
#define RAD2DEG(rad)
Converts radians to degrees.
Definition: mptrac.h:1535
#define NP
Maximum number of atmospheric data points.
Definition: mptrac.h:308
#define NTIMER
Maximum number of timers.
Definition: mptrac.h:2087
#define SELECT_TIMER(id, group, color)
Select and start a timer with specific attributes.
Definition: mptrac.h:2123
#define INTPOL_2D(var, init)
Perform 2D interpolation for a meteorological variable.
Definition: mptrac.h:847
void dd_communicate_particles(particle_t *particles, int *nparticles, MPI_Datatype MPI_Particle, int *neighbours, int nneighbours, ctl_t ctl)
Communicates particles between MPI processes.
#define RH(p, t, h2o)
Compute relative humidity over water.
Definition: mptrac.h:1565
#define NC_PUT_FLOAT(varname, ptr, hyperslab)
Write a float array to a NetCDF file.
Definition: mptrac.h:1304
#define CY
Maximum number of latitudes for climatological data.
Definition: mptrac.h:338
void module_dd(ctl_t *ctl, atm_t *atm, cache_t *cache, dd_t *dd, met_t **met)
Manages domain decomposition and particle communication in parallel processing.
void dd_sort_help(double *a, dd_t *dd, const int np)
Reorder an array according to a permutation vector.
#define LOG(level,...)
Print a log message with a specified logging level.
Definition: mptrac.h:1973
#define NC_DEF_VAR(varname, type, ndims, dims, long_name, units, level, quant)
Define a NetCDF variable with attributes.
Definition: mptrac.h:1196
#define TDEW(p, h2o)
Calculate dew point temperature.
Definition: mptrac.h:1734
#define ARRHENIUS(a, b, t)
Calculate the Arrhenius rate constant.
Definition: mptrac.h:483
void dd_assign_rect_subdomains_atm(atm_t *atm, ctl_t *ctl, dd_t *dd, int init)
Assign atmospheric particles to rectangular subdomains.
#define NCSI
Maximum number of data points for CSI calculation.
Definition: mptrac.h:318
#define NC_GET_DOUBLE(varname, ptr, force)
Retrieve a double-precision variable from a NetCDF file.
Definition: mptrac.h:1226
#define MPI_Datatype
Placeholder when MPI is not available.
Definition: mptrac.h:145
#define EP
Maximum number of pressure levels for meteo data.
Definition: mptrac.h:283
#define PSAT(t)
Compute saturation pressure over water.
Definition: mptrac.h:1467
#define DD_NPART
Maximum number of particles to send and recieve in domain decomposition.
Definition: mptrac.h:368
#define RHO(p, t)
Compute density of air.
Definition: mptrac.h:1620
void module_kpp_chem(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
KPP chemistry module.
#define CO3
Maximum number of total column ozone data for climatological data.
Definition: mptrac.h:343
void read_met_grib_grid(codes_handle **handles, int count_handles, met_t *met)
Reads global meteorological information from a grib file.
void compress_sz3(const char *varname, float *array, const int nx, const int ny, const int nz, const int precision, const double tolerance, const int decompress, FILE *inout)
Compresses or decompresses a 3-D float array using the SZ3 library.
void dd_register_MPI_type_particle(MPI_Datatype *MPI_Particle)
Registers a custom MPI datatype for particle structures.
#define NC_PUT_DOUBLE(varname, ptr, hyperslab)
Write double precision data to a NetCDF variable.
Definition: mptrac.h:1280
#define ECC(cmd)
Execute an ECCODES command and check for errors.
Definition: mptrac.h:713
#define LIN(x0, y0, x1, y1, x)
Linear interpolation.
Definition: mptrac.h:1010
#define DIST2(a, b)
Calculate the squared Euclidean distance between two points in Cartesian coordinates.
Definition: mptrac.h:683
#define NC_INQ_DIM(dimname, ptr, min, max, check)
Inquire the length of a dimension in a NetCDF file.
Definition: mptrac.h:1256
#define DEG2DX(dlon, lat)
Convert a longitude difference to a distance in the x-direction (east-west) at a specific latitude.
Definition: mptrac.h:529
#define CPD
Specific heat of dry air at constant pressure [J/(kg K)].
Definition: mptrac.h:204
#define CSZA
Maximum number of solar zenith angles for climatological data.
Definition: mptrac.h:353
#define DY2DEG(dy)
Convert a distance in kilometers to degrees latitude.
Definition: mptrac.h:632
#define MAX(a, b)
Macro to determine the maximum of two values.
Definition: mptrac.h:1037
#define DD_NNMAX
Maximum number of neighbours to communicate with in domain decomposition.
Definition: mptrac.h:373
#define FMOD(x, y)
Calculate the floating-point remainder of dividing x by y.
Definition: mptrac.h:780
Air parcel data.
Definition: mptrac.h:3297
double time[NP]
Time [s].
Definition: mptrac.h:3303
double lat[NP]
Latitude [deg].
Definition: mptrac.h:3312
double lon[NP]
Longitude [deg].
Definition: mptrac.h:3309
int np
Number of air parcels.
Definition: mptrac.h:3300
double q[NQ][NP]
Quantity data (for various, user-defined attributes).
Definition: mptrac.h:3315
double p[NP]
Pressure [hPa].
Definition: mptrac.h:3306
Cache data structure.
Definition: mptrac.h:3352
double dt[NP]
Timesteps [s].
Definition: mptrac.h:3373
double iso_ts[NP]
Isosurface balloon time [s].
Definition: mptrac.h:3361
int iso_n
Isosurface balloon number of data points.
Definition: mptrac.h:3364
double iso_ps[NP]
Isosurface balloon pressure [hPa].
Definition: mptrac.h:3358
double rs[3 *NP+1]
Random numbers.
Definition: mptrac.h:3370
float uvwp[NP][3]
Wind perturbations [m/s].
Definition: mptrac.h:3367
double iso_var[NP]
Isosurface variables.
Definition: mptrac.h:3355
Climatological data in the form of photolysis rates.
Definition: mptrac.h:3384
int nsza
Number of solar zenith angles.
Definition: mptrac.h:3390
double sza[CSZA]
Solar zenith angle [rad].
Definition: mptrac.h:3399
double o3_1[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O1d + O2) [1/s].
Definition: mptrac.h:3420
double p[CP]
Pressure [hPa].
Definition: mptrac.h:3396
double ccl2f2[CP][CSZA][CO3]
CCl2F2 photolysis rate [1/s].
Definition: mptrac.h:3414
double o2[CP][CSZA][CO3]
O2 photolysis rate [1/s].
Definition: mptrac.h:3417
double ccl3f[CP][CSZA][CO3]
CCl3F photolysis rate [1/s].
Definition: mptrac.h:3411
double n2o[CP][CSZA][CO3]
N2O photolysis rate [1/s].
Definition: mptrac.h:3405
double h2o2[CP][CSZA][CO3]
H2O2 photolysis rate [1/s].
Definition: mptrac.h:3426
double h2o[CP][CSZA][CO3]
H2O photolysis rate [1/s].
Definition: mptrac.h:3429
double ccl4[CP][CSZA][CO3]
CCl4 photolysis rate [1/s].
Definition: mptrac.h:3408
double o3_2[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O3p + O2) [1/s].
Definition: mptrac.h:3423
double o3c[CO3]
Total column ozone [DU].
Definition: mptrac.h:3402
int np
Number of pressure levels.
Definition: mptrac.h:3387
int no3c
Number of total ozone columns.
Definition: mptrac.h:3393
Climatological data.
Definition: mptrac.h:3492
clim_ts_t ccl2f2
CFC-12 time series.
Definition: mptrac.h:3534
clim_photo_t photo
Photolysis rates.
Definition: mptrac.h:3510
clim_zm_t ho2
HO2 zonal means.
Definition: mptrac.h:3522
clim_zm_t hno3
HNO3 zonal means.
Definition: mptrac.h:3513
int tropo_ntime
Number of tropopause timesteps.
Definition: mptrac.h:3495
clim_ts_t sf6
SF6 time series.
Definition: mptrac.h:3540
clim_ts_t ccl4
CFC-10 time series.
Definition: mptrac.h:3528
clim_ts_t ccl3f
CFC-11 time series.
Definition: mptrac.h:3531
clim_zm_t o1d
O(1D) zonal means.
Definition: mptrac.h:3525
double tropo_lat[73]
Tropopause latitudes [deg].
Definition: mptrac.h:3504
clim_zm_t h2o2
H2O2 zonal means.
Definition: mptrac.h:3519
int tropo_nlat
Number of tropopause latitudes.
Definition: mptrac.h:3498
clim_zm_t oh
OH zonal means.
Definition: mptrac.h:3516
double tropo[12][73]
Tropopause pressure values [hPa].
Definition: mptrac.h:3507
double tropo_time[12]
Tropopause time steps [s].
Definition: mptrac.h:3501
clim_ts_t n2o
N2O time series.
Definition: mptrac.h:3537
Climatological data in the form of time series.
Definition: mptrac.h:3440
double vmr[CTS]
Volume mixing ratio [ppv].
Definition: mptrac.h:3449
double time[CTS]
Time [s].
Definition: mptrac.h:3446
int ntime
Number of timesteps.
Definition: mptrac.h:3443
Climatological data in the form of zonal means.
Definition: mptrac.h:3460
double time[CT]
Time [s].
Definition: mptrac.h:3472
int np
Number of pressure levels.
Definition: mptrac.h:3469
double p[CP]
Pressure [hPa].
Definition: mptrac.h:3478
double vmr[CT][CP][CY]
Volume mixing ratio [ppv].
Definition: mptrac.h:3481
int ntime
Number of timesteps.
Definition: mptrac.h:3463
int nlat
Number of latitudes.
Definition: mptrac.h:3466
double lat[CY]
Latitude [deg].
Definition: mptrac.h:3475
Control parameters.
Definition: mptrac.h:2264
double grid_z0
Lower altitude of gridded data [km].
Definition: mptrac.h:3158
int qnt_o3
Quantity array index for ozone volume mixing ratio.
Definition: mptrac.h:2376
double csi_lat1
Upper latitude of gridded CSI data [deg].
Definition: mptrac.h:3119
char csi_obsfile[LEN]
Observation data file for CSI analysis.
Definition: mptrac.h:3086
int qnt_Coh
Quantity array index for OH volume mixing ratio (chemistry code).
Definition: mptrac.h:2532
double wet_depo_ic_a
Coefficient A for wet deposition in cloud (exponential form).
Definition: mptrac.h:3007
int met_nc_scale
Check netCDF scaling factors (0=no, 1=yes).
Definition: mptrac.h:2610
int qnt_pel
Quantity array index for pressure at equilibrium level (EL).
Definition: mptrac.h:2409
int csi_nz
Number of altitudes of gridded CSI data.
Definition: mptrac.h:3095
double molmass
Molar mass [g/mol].
Definition: mptrac.h:2869
int qnt_p
Quantity array index for pressure.
Definition: mptrac.h:2355
int qnt_Cccl2f2
Quantity array index for CFC-12 volume mixing ratio (chemistry code).
Definition: mptrac.h:2556
int dd_halos_size
Domain decomposition size of halos given in grid-points.
Definition: mptrac.h:3285
char atm_gpfile[LEN]
Gnuplot file for atmospheric data.
Definition: mptrac.h:3047
int mixing_nx
Number of longitudes of mixing grid.
Definition: mptrac.h:2932
double chemgrid_z1
Upper altitude of chemistry grid [km].
Definition: mptrac.h:2956
char qnt_format[NQ][LEN]
Quantity output format.
Definition: mptrac.h:2283
int qnt_m
Quantity array index for mass.
Definition: mptrac.h:2295
int qnt_aoa
Quantity array index for age of air.
Definition: mptrac.h:2565
int qnt_rhop
Quantity array index for particle density.
Definition: mptrac.h:2304
int qnt_swc
Quantity array index for cloud snow water content.
Definition: mptrac.h:2388
double csi_obsmin
Minimum observation index to trigger detection.
Definition: mptrac.h:3089
int qnt_pcb
Quantity array index for cloud bottom pressure.
Definition: mptrac.h:2397
char clim_n2o_timeseries[LEN]
Filename of N2O time series.
Definition: mptrac.h:2908
double bound_dzs
Boundary conditions surface layer depth [km].
Definition: mptrac.h:2857
double csi_lon1
Upper longitude of gridded CSI data [deg].
Definition: mptrac.h:3110
int qnt_u
Quantity array index for zonal wind.
Definition: mptrac.h:2364
double stat_lon
Longitude of station [deg].
Definition: mptrac.h:3236
double mixing_trop
Interparcel exchange parameter for mixing in the troposphere.
Definition: mptrac.h:2917
double sort_dt
Time step for sorting of particle data [s].
Definition: mptrac.h:2768
double mixing_z1
Upper altitude of mixing grid [km].
Definition: mptrac.h:2929
double stat_r
Search radius around station [km].
Definition: mptrac.h:3242
double wet_depo_bc_a
Coefficient A for wet deposition below cloud (exponential form).
Definition: mptrac.h:3001
int met_zstd_level
ZSTD compression level (from -5 to 22).
Definition: mptrac.h:2619
int csi_ny
Number of latitudes of gridded CSI data.
Definition: mptrac.h:3113
int vtk_sphere
Spherical projection for VTK data (0=no, 1=yes).
Definition: mptrac.h:3266
double chemgrid_z0
Lower altitude of chemistry grid [km].
Definition: mptrac.h:2953
double met_pbl_min
Minimum depth of planetary boundary layer [km].
Definition: mptrac.h:2736
int qnt_iwc
Quantity array index for cloud ice water content.
Definition: mptrac.h:2385
double chemgrid_lat0
Lower latitude of chemistry grid [deg].
Definition: mptrac.h:2971
double conv_cape
CAPE threshold for convection module [J/kg].
Definition: mptrac.h:2821
int qnt_Co1d
Quantity array index for O(1D) volume mixing ratio (chemistry code).
Definition: mptrac.h:2544
double met_cms_eps_pv
cmultiscale compression epsilon for potential vorticity.
Definition: mptrac.h:2658
int qnt_pw
Quantity array index for partial water vapor pressure.
Definition: mptrac.h:2463
char prof_basename[LEN]
Basename for profile output file.
Definition: mptrac.h:3185
double grid_z1
Upper altitude of gridded data [km].
Definition: mptrac.h:3161
int direction
Direction flag (1=forward calculation, -1=backward calculation).
Definition: mptrac.h:2574
char balloon[LEN]
Balloon position filename.
Definition: mptrac.h:2775
int qnt_Cccl4
Quantity array index for CFC-10 volume mixing ratio (chemistry code).
Definition: mptrac.h:2550
int met_dp
Stride for pressure levels.
Definition: mptrac.h:2688
double met_dt_out
Time step for sampling of meteo data along trajectories [s].
Definition: mptrac.h:2755
int qnt_h2o2
Quantity array index for H2O2 volume mixing ratio (climatology).
Definition: mptrac.h:2427
int qnt_vh
Quantity array index for horizontal wind.
Definition: mptrac.h:2499
char species[LEN]
Species.
Definition: mptrac.h:2866
int csi_nx
Number of longitudes of gridded CSI data.
Definition: mptrac.h:3104
double csi_lat0
Lower latitude of gridded CSI data [deg].
Definition: mptrac.h:3116
double turb_dz_trop
Vertical turbulent diffusion coefficient (troposphere) [m^2/s].
Definition: mptrac.h:2803
int met_pbl
Planetary boundary layer data (0=file, 1=z2p, 2=Richardson, 3=theta).
Definition: mptrac.h:2733
double met_comp_tol[METVAR]
Compression tolerance for SZ3 or ZFP.
Definition: mptrac.h:2625
int qnt_lwc
Quantity array index for cloud liquid water content.
Definition: mptrac.h:2379
double turb_mesoz
Vertical scaling factor for mesoscale wind fluctuations.
Definition: mptrac.h:2812
int grid_nc_level
zlib compression level of netCDF grid data files (0=off).
Definition: mptrac.h:3146
int grid_nx
Number of longitudes of gridded data.
Definition: mptrac.h:3164
int atm_type
Type of atmospheric data files (0=ASCII, 1=binary, 2=netCDF, 3=CLaMS_traj, 4=CLaMS_pos).
Definition: mptrac.h:3060
double bound_mass
Boundary conditions mass per particle [kg].
Definition: mptrac.h:2830
double grid_lat0
Lower latitude of gridded data [deg].
Definition: mptrac.h:3176
int qnt_ts
Quantity array index for surface temperature.
Definition: mptrac.h:2310
int qnt_loss_rate
Quantity array index for total loss rate.
Definition: mptrac.h:2454
double met_cms_eps_h2o
cmultiscale compression epsilon for water vapor.
Definition: mptrac.h:2661
int qnt_plfc
Quantity array index for pressure at level of free convection (LCF).
Definition: mptrac.h:2406
double grid_lon0
Lower longitude of gridded data [deg].
Definition: mptrac.h:3167
int qnt_o1d
Quantity array index for O(1D) volume mixing ratio (climatology).
Definition: mptrac.h:2433
int met_tropo_spline
Tropopause interpolation method (0=linear, 1=spline).
Definition: mptrac.h:2752
char sample_kernel[LEN]
Kernel data file for sample output.
Definition: mptrac.h:3221
int qnt_tvirt
Quantity array index for virtual temperature.
Definition: mptrac.h:2493
double dt_met
Time step of meteo data [s].
Definition: mptrac.h:2593
char clim_ho2_filename[LEN]
Filename of HO2 climatology.
Definition: mptrac.h:2890
double chemgrid_lat1
Upper latitude of chemistry grid [deg].
Definition: mptrac.h:2974
int met_geopot_sy
Latitudinal smoothing of geopotential heights.
Definition: mptrac.h:2724
char grid_gpfile[LEN]
Gnuplot file for gridded data.
Definition: mptrac.h:3137
double met_cms_eps_u
cmultiscale compression epsilon for zonal wind.
Definition: mptrac.h:2649
double turb_dx_strat
Horizontal turbulent diffusion coefficient (stratosphere) [m^2/s].
Definition: mptrac.h:2797
int qnt_vmr
Quantity array index for volume mixing ratio.
Definition: mptrac.h:2298
int qnt_lsm
Quantity array index for land-sea mask.
Definition: mptrac.h:2331
int qnt_theta
Quantity array index for potential temperature.
Definition: mptrac.h:2475
double bound_lat1
Boundary conditions maximum longitude [deg].
Definition: mptrac.h:2845
double stat_t1
Stop time for station output [s].
Definition: mptrac.h:3248
char csi_kernel[LEN]
Kernel data file for CSI output.
Definition: mptrac.h:3080
double turb_dx_trop
Horizontal turbulent diffusion coefficient (troposphere) [m^2/s].
Definition: mptrac.h:2794
int grid_type
Type of grid data files (0=ASCII, 1=netCDF).
Definition: mptrac.h:3182
double csi_lon0
Lower longitude of gridded CSI data [deg].
Definition: mptrac.h:3107
int qnt_pbl
Quantity array index for boundary layer pressure.
Definition: mptrac.h:2337
double oh_chem[4]
Coefficients for OH reaction rate (A, E/R or k0, n, kinf, m).
Definition: mptrac.h:2980
int grid_stddev
Include standard deviations in grid output (0=no, 1=yes).
Definition: mptrac.h:3152
int qnt_psice
Quantity array index for saturation pressure over ice.
Definition: mptrac.h:2460
double chemgrid_lon0
Lower longitude of chemistry grid [deg].
Definition: mptrac.h:2962
int bound_pbl
Boundary conditions planetary boundary layer (0=no, 1=yes).
Definition: mptrac.h:2863
int qnt_mloss_wet
Quantity array index for total mass loss due to wet deposition.
Definition: mptrac.h:2445
int met_geopot_sx
Longitudinal smoothing of geopotential heights.
Definition: mptrac.h:2721
int met_sy
Smoothing for latitudes.
Definition: mptrac.h:2694
int qnt_ps
Quantity array index for surface pressure.
Definition: mptrac.h:2307
int rng_type
Random number generator (0=GSL, 1=Squares, 2=cuRAND).
Definition: mptrac.h:2785
char prof_obsfile[LEN]
Observation data file for profile output.
Definition: mptrac.h:3188
int isosurf
Isosurface parameter (0=none, 1=pressure, 2=density, 3=theta, 4=balloon).
Definition: mptrac.h:2772
double bound_p1
Boundary conditions top pressure [hPa].
Definition: mptrac.h:2851
int qnt_zs
Quantity array index for surface geopotential height.
Definition: mptrac.h:2313
int prof_nz
Number of altitudes of gridded profile data.
Definition: mptrac.h:3191
double csi_dt_out
Time step for CSI output [s].
Definition: mptrac.h:3083
int met_cape
Convective available potential energy data (0=file, 1=calculate).
Definition: mptrac.h:2730
double csi_modmin
Minimum column density to trigger detection [kg/m^2].
Definition: mptrac.h:3092
int met_sx
Smoothing for longitudes.
Definition: mptrac.h:2691
double chemgrid_lon1
Upper longitude of chemistry grid [deg].
Definition: mptrac.h:2965
double turb_mesox
Horizontal scaling factor for mesoscale wind fluctuations.
Definition: mptrac.h:2809
double met_cms_eps_iwc
cmultiscale compression epsilon for cloud ice water content.
Definition: mptrac.h:2673
double met_cms_eps_swc
cmultiscale compression epsilon for cloud snow water content.
Definition: mptrac.h:2676
char grid_kernel[LEN]
Kernel data file for grid output.
Definition: mptrac.h:3134
double met_cms_eps_v
cmultiscale compression epsilon for meridional wind.
Definition: mptrac.h:2652
double prof_z0
Lower altitude of gridded profile data [km].
Definition: mptrac.h:3194
int qnt_w
Quantity array index for vertical velocity.
Definition: mptrac.h:2370
double bound_vmr
Boundary conditions volume mixing ratio [ppv].
Definition: mptrac.h:2836
double met_tropo_pv
Dynamical tropopause potential vorticity threshold [PVU].
Definition: mptrac.h:2746
int prof_nx
Number of longitudes of gridded profile data.
Definition: mptrac.h:3200
int qnt_stat
Quantity array index for station flag.
Definition: mptrac.h:2292
int met_tropo
Tropopause definition (0=none, 1=clim, 2=cold point, 3=WMO_1st, 4=WMO_2nd, 5=dynamical).
Definition: mptrac.h:2743
int qnt_rp
Quantity array index for particle radius.
Definition: mptrac.h:2301
int met_mpi_share
Use MPI to share meteo (0=no, 1=yes).
Definition: mptrac.h:2761
double mixing_strat
Interparcel exchange parameter for mixing in the stratosphere.
Definition: mptrac.h:2920
int qnt_vz
Quantity array index for vertical velocity.
Definition: mptrac.h:2502
int qnt_ho2
Quantity array index for HO2 volume mixing ratio (climatology).
Definition: mptrac.h:2430
double csi_z1
Upper altitude of gridded CSI data [km].
Definition: mptrac.h:3101
double stat_t0
Start time for station output [s].
Definition: mptrac.h:3245
double oh_chem_beta
Beta parameter for diurnal variablity of OH.
Definition: mptrac.h:2983
int dd
Domain decomposition (0=no, 1=yes, with 2x2 if not specified).
Definition: mptrac.h:3273
char clim_o1d_filename[LEN]
Filename of O(1D) climatology.
Definition: mptrac.h:2893
int qnt_eta
Quantity array index for eta vertical coordinate.
Definition: mptrac.h:2487
char clim_photo[LEN]
Filename of photolysis rates climatology.
Definition: mptrac.h:2878
double wet_depo_so2_ph
pH value used to calculate effective Henry constant of SO2.
Definition: mptrac.h:3019
double mixing_z0
Lower altitude of mixing grid [km].
Definition: mptrac.h:2926
int qnt_mloss_decay
Quantity array index for total mass loss due to exponential decay.
Definition: mptrac.h:2451
int atm_type_out
Type of atmospheric data files for output (-1=same as ATM_TYPE, 0=ASCII, 1=binary,...
Definition: mptrac.h:3065
int met_cms_nd0x
cmultiscale number of cells of coarsest grid in x-direction.
Definition: mptrac.h:2634
int met_nlev
Number of meteo data model levels.
Definition: mptrac.h:2712
double dt_kpp
Time step for KPP chemistry [s].
Definition: mptrac.h:2992
char csi_basename[LEN]
Basename of CSI data files.
Definition: mptrac.h:3077
double dry_depo_dp
Dry deposition surface layer [hPa].
Definition: mptrac.h:3028
int qnt_shf
Quantity array index for surface sensible heat flux.
Definition: mptrac.h:2328
int qnt_vs
Quantity array index for surface meridional wind.
Definition: mptrac.h:2319
int qnt_Cco
Quantity array index for CO volume mixing ratio (chemistry code).
Definition: mptrac.h:2529
double vtk_dt_out
Time step for VTK data output [s].
Definition: mptrac.h:3254
double t_stop
Stop time of simulation [s].
Definition: mptrac.h:2580
double conv_dt
Time interval for convection module [s].
Definition: mptrac.h:2827
char sample_obsfile[LEN]
Observation data file for sample output.
Definition: mptrac.h:3224
int qnt_hno3
Quantity array index for HNO3 volume mixing ratio (climatology).
Definition: mptrac.h:2421
char grid_basename[LEN]
Basename of grid data files.
Definition: mptrac.h:3131
int met_clams
Read MPTRAC or CLaMS meteo data (0=MPTRAC, 1=CLaMS).
Definition: mptrac.h:2607
int met_comp_prec[METVAR]
Compression precision for SZ3 or ZFP.
Definition: mptrac.h:2622
int qnt_h2ot
Quantity array index for tropopause water vapor volume mixing ratio.
Definition: mptrac.h:2349
int qnt_rh
Quantity array index for relative humidity over water.
Definition: mptrac.h:2469
double met_cms_eps_cc
cmultiscale compression epsilon for cloud cover.
Definition: mptrac.h:2679
double bound_lat0
Boundary conditions minimum longitude [deg].
Definition: mptrac.h:2842
double met_pbl_max
Maximum depth of planetary boundary layer [km].
Definition: mptrac.h:2739
int met_dx
Stride for longitudes.
Definition: mptrac.h:2682
int qnt_destination
Quantity array index for destination subdomain in domain decomposition.
Definition: mptrac.h:2571
int mixing_ny
Number of latitudes of mixing grid.
Definition: mptrac.h:2941
int met_convention
Meteo data layout (0=[lev, lat, lon], 1=[lon, lat, lev]).
Definition: mptrac.h:2596
int qnt_zeta_d
Quantity array index for diagnosed zeta vertical coordinate.
Definition: mptrac.h:2481
char clim_h2o2_filename[LEN]
Filename of H2O2 climatology.
Definition: mptrac.h:2887
int tracer_chem
Switch for first order tracer chemistry module (0=off, 1=on).
Definition: mptrac.h:2995
double dt_mod
Time step of simulation [s].
Definition: mptrac.h:2583
int diffusion
Diffusion scheme (0=off, 1=fixed-K, 2=PBL).
Definition: mptrac.h:2788
int qnt_tnat
Quantity array index for T_NAT.
Definition: mptrac.h:2517
int qnt_eta_dot
Quantity array index for velocity of eta vertical coordinate.
Definition: mptrac.h:2490
int qnt_tice
Quantity array index for T_ice.
Definition: mptrac.h:2511
int qnt_zg
Quantity array index for geopotential height.
Definition: mptrac.h:2352
double vtk_offset
Vertical offset for VTK data [km].
Definition: mptrac.h:3263
int qnt_v
Quantity array index for meridional wind.
Definition: mptrac.h:2367
int qnt_mloss_dry
Quantity array index for total mass loss due to dry deposition.
Definition: mptrac.h:2448
double bound_vmr_trend
Boundary conditions volume mixing ratio trend [ppv/s].
Definition: mptrac.h:2839
int met_cache
Preload meteo data into disk cache (0=no, 1=yes).
Definition: mptrac.h:2758
int qnt_oh
Quantity array index for OH volume mixing ratio (climatology).
Definition: mptrac.h:2424
char qnt_unit[NQ][LEN]
Quantity units.
Definition: mptrac.h:2280
int qnt_Ch
Quantity array index for H volume mixing ratio (chemistry code).
Definition: mptrac.h:2535
int met_press_level_def
Use predefined pressure levels or not.
Definition: mptrac.h:2709
int oh_chem_reaction
Reaction type for OH chemistry (0=none, 2=bimolecular, 3=termolecular).
Definition: mptrac.h:2977
int qnt_h2o
Quantity array index for water vapor volume mixing ratio.
Definition: mptrac.h:2373
int prof_ny
Number of latitudes of gridded profile data.
Definition: mptrac.h:3209
int qnt_rhice
Quantity array index for relative humidity over ice.
Definition: mptrac.h:2472
int qnt_rho
Quantity array index for density of air.
Definition: mptrac.h:2361
double sample_dz
Layer depth for sample output [km].
Definition: mptrac.h:3230
double tdec_strat
Life time of particles in the stratosphere [s].
Definition: mptrac.h:2875
int obs_type
Type of observation data files (0=ASCII, 1=netCDF).
Definition: mptrac.h:3074
int grid_nc_quant[NQ]
Number of digits for quantization of netCDF grid data files (0=off).
Definition: mptrac.h:3149
double met_cms_eps_lwc
cmultiscale compression epsilon for cloud liquid water content.
Definition: mptrac.h:2667
int qnt_us
Quantity array index for surface zonal wind.
Definition: mptrac.h:2316
double met_cms_eps_z
cmultiscale compression epsilon for geopotential height.
Definition: mptrac.h:2643
double grid_lon1
Upper longitude of gridded data [deg].
Definition: mptrac.h:3170
int qnt_Cn2o
Quantity array index for N2O volume mixing ratio (chemistry code).
Definition: mptrac.h:2559
int qnt_Cccl3f
Quantity array index for CFC-11 volume mixing ratio (chemistry code).
Definition: mptrac.h:2553
char qnt_name[NQ][LEN]
Quantity names.
Definition: mptrac.h:2274
char atm_basename[LEN]
Basename of atmospheric data files.
Definition: mptrac.h:3044
double mixing_lat0
Lower latitude of mixing grid [deg].
Definition: mptrac.h:2944
int nens
Number of ensembles.
Definition: mptrac.h:3122
int qnt_pt
Quantity array index for tropopause pressure.
Definition: mptrac.h:2340
int qnt_cl
Quantity array index for total column cloud water.
Definition: mptrac.h:2400
int advect
Advection scheme (0=off, 1=Euler, 2=midpoint, 4=Runge-Kutta).
Definition: mptrac.h:2778
double prof_z1
Upper altitude of gridded profile data [km].
Definition: mptrac.h:3197
double met_lev_hyam[EP]
Meteo data model level a coefficients.
Definition: mptrac.h:2715
int qnt_t
Quantity array index for temperature.
Definition: mptrac.h:2358
int atm_filter
Time filter for atmospheric data output (0=none, 1=missval, 2=remove).
Definition: mptrac.h:3053
int kpp_chem
Switch for KPP chemistry module (0=off, 1=on).
Definition: mptrac.h:2989
int qnt_zeta
Quantity array index for zeta vertical coordinate.
Definition: mptrac.h:2478
double conv_pbl_trans
Depth of PBL transition layer (fraction of PBL depth).
Definition: mptrac.h:2818
char ens_basename[LEN]
Basename of ensemble data file.
Definition: mptrac.h:3125
double wet_depo_pre[2]
Coefficients for precipitation calculation.
Definition: mptrac.h:2998
int met_vert_coord
Vertical coordinate of input meteo data (0=plev, 1=mlev_p_file, 2=mlev_ab_file, 3=mlev_ab_full,...
Definition: mptrac.h:2600
double csi_z0
Lower altitude of gridded CSI data [km].
Definition: mptrac.h:3098
int qnt_lapse
Quantity array index for lapse rate.
Definition: mptrac.h:2496
double stat_lat
Latitude of station [deg].
Definition: mptrac.h:3239
int qnt_Cho2
Quantity array index for HO2 volume mixing ratio (chemistry code).
Definition: mptrac.h:2538
double wet_depo_bc_h[2]
Coefficients for wet deposition below cloud (Henry's law: Hb, Cb).
Definition: mptrac.h:3016
int grid_ny
Number of latitudes of gridded data.
Definition: mptrac.h:3173
int qnt_Csf6
Quantity array index for SF6 volume mixing ratio (chemistry code).
Definition: mptrac.h:2562
int qnt_Ch2o
Quantity array index for H2O volume mixing ratio (chemistry code).
Definition: mptrac.h:2523
double met_detrend
FWHM of horizontal Gaussian used for detrending [km].
Definition: mptrac.h:2700
int conv_mix_pbl
Vertical mixing in the PBL (0=off, 1=on).
Definition: mptrac.h:2815
char metbase[LEN]
Basename for meteo data.
Definition: mptrac.h:2590
double bound_dps
Boundary conditions surface layer depth [hPa].
Definition: mptrac.h:2854
int dd_nbr_neighbours
Domain decomposition number of neighbours to communicate with.
Definition: mptrac.h:3282
double met_cms_eps_t
cmultiscale compression epsilon for temperature.
Definition: mptrac.h:2646
int chemgrid_nz
Number of altitudes of chemistry grid.
Definition: mptrac.h:2950
int qnt_cape
Quantity array index for convective available potential energy (CAPE).
Definition: mptrac.h:2412
int qnt_zeta_dot
Quantity array index for velocity of zeta vertical coordinate.
Definition: mptrac.h:2484
double bound_mass_trend
Boundary conditions mass per particle trend [kg/s].
Definition: mptrac.h:2833
int met_cms_nd0y
cmultiscale number of cells of coarsest grid in y-direction.
Definition: mptrac.h:2637
int mixing_nz
Number of altitudes of mixing grid.
Definition: mptrac.h:2923
int qnt_o3c
Quantity array index for total column ozone.
Definition: mptrac.h:2418
double bound_p0
Boundary conditions bottom pressure [hPa].
Definition: mptrac.h:2848
double mixing_lon0
Lower longitude of mixing grid [deg].
Definition: mptrac.h:2935
char clim_ccl4_timeseries[LEN]
Filename of CFC-10 time series.
Definition: mptrac.h:2899
int qnt_Co3
Quantity array index for O3 volume mixing ratio (chemistry code).
Definition: mptrac.h:2526
int qnt_tsts
Quantity array index for T_STS.
Definition: mptrac.h:2514
int grid_nz
Number of altitudes of gridded data.
Definition: mptrac.h:3155
char clim_oh_filename[LEN]
Filename of OH climatology.
Definition: mptrac.h:2884
int qnt_nss
Quantity array index for northward turbulent surface stress.
Definition: mptrac.h:2325
double ens_dt_out
Time step for ensemble output [s].
Definition: mptrac.h:3128
char sample_basename[LEN]
Basename of sample data file.
Definition: mptrac.h:3218
int atm_stride
Particle index stride for atmospheric data files.
Definition: mptrac.h:3056
int met_relhum
Try to read relative humidity (0=no, 1=yes).
Definition: mptrac.h:2727
double mixing_lat1
Upper latitude of mixing grid [deg].
Definition: mptrac.h:2947
double atm_dt_out
Time step for atmospheric data output [s].
Definition: mptrac.h:3050
char clim_sf6_timeseries[LEN]
Filename of SF6 time series.
Definition: mptrac.h:2911
double prof_lat1
Upper latitude of gridded profile data [deg].
Definition: mptrac.h:3215
int met_cms_batch
cmultiscale batch size.
Definition: mptrac.h:2628
double psc_h2o
H2O volume mixing ratio for PSC analysis.
Definition: mptrac.h:3034
int met_sp
Smoothing for pressure levels.
Definition: mptrac.h:2697
double prof_lon0
Lower longitude of gridded profile data [deg].
Definition: mptrac.h:3203
int chemgrid_nx
Number of longitudes of chemistry grid.
Definition: mptrac.h:2959
int qnt_pct
Quantity array index for cloud top pressure.
Definition: mptrac.h:2394
int qnt_mloss_kpp
Quantity array index for total mass loss due to KPP chemistry.
Definition: mptrac.h:2442
int qnt_psat
Quantity array index for saturation pressure over water.
Definition: mptrac.h:2457
int qnt_subdomain
Quantity array index for current subdomain in domain decomposition.
Definition: mptrac.h:2568
double met_lev_hybm[EP]
Meteo data model level b coefficients.
Definition: mptrac.h:2718
double prof_lat0
Lower latitude of gridded profile data [deg].
Definition: mptrac.h:3212
int qnt_cin
Quantity array index for convective inhibition (CIN).
Definition: mptrac.h:2415
double psc_hno3
HNO3 volume mixing ratio for PSC analysis.
Definition: mptrac.h:3037
double prof_lon1
Upper longitude of gridded profile data [deg].
Definition: mptrac.h:3206
double met_cms_eps_rwc
cmultiscale compression epsilon for cloud rain water content.
Definition: mptrac.h:2670
int met_nc_quant
Number of digits for quantization of netCDF meteo files (0=off).
Definition: mptrac.h:2616
int h2o2_chem_reaction
Reaction type for H2O2 chemistry (0=none, 1=SO2).
Definition: mptrac.h:2986
int qnt_Co3p
Quantity array index for O(3P) volume mixing ratio (chemistry code).
Definition: mptrac.h:2547
int atm_nc_quant[NQ]
Number of digits for quantization of netCDF atmospheric data files (0=off).
Definition: mptrac.h:3071
double wet_depo_bc_ret_ratio
Coefficients for wet deposition below cloud: retention ratio.
Definition: mptrac.h:3025
int chemgrid_ny
Number of latitudes of chemistry grid.
Definition: mptrac.h:2968
char clim_ccl3f_timeseries[LEN]
Filename of CFC-11 time series.
Definition: mptrac.h:2902
double met_cms_eps_o3
cmultiscale compression epsilon for ozone.
Definition: mptrac.h:2664
int met_cms_zstd
cmultiscale ZSTD compression (0=off, 1=on).
Definition: mptrac.h:2631
int met_cms_maxlev
cmultiscale maximum refinement level.
Definition: mptrac.h:2640
int grid_sparse
Sparse output in grid data files (0=no, 1=yes).
Definition: mptrac.h:3143
char vtk_basename[LEN]
Basename of VTK data files.
Definition: mptrac.h:3251
double dry_depo_vdep
Dry deposition velocity [m/s].
Definition: mptrac.h:3031
int qnt_tt
Quantity array index for tropopause temperature.
Definition: mptrac.h:2343
int met_np
Number of target pressure levels.
Definition: mptrac.h:2703
int qnt_ens
Quantity array index for ensemble IDs.
Definition: mptrac.h:2289
int met_nc_level
zlib compression level of netCDF meteo files (0=off).
Definition: mptrac.h:2613
double mixing_dt
Time interval for mixing [s].
Definition: mptrac.h:2914
int qnt_mloss_h2o2
Quantity array index for total mass loss due to H2O2 chemistry.
Definition: mptrac.h:2439
double vtk_scale
Vertical scaling factor for VTK data.
Definition: mptrac.h:3260
char clim_ccl2f2_timeseries[LEN]
Filename of CFC-12 time series.
Definition: mptrac.h:2905
double met_cms_eps_w
cmultiscale compression epsilon for vertical velocity.
Definition: mptrac.h:2655
double wet_depo_ic_h[2]
Coefficients for wet deposition in cloud (Henry's law: Hb, Cb).
Definition: mptrac.h:3013
double turb_dx_pbl
Horizontal turbulent diffusion coefficient (PBL) [m^2/s].
Definition: mptrac.h:2791
double conv_cin
CIN threshold for convection module [J/kg].
Definition: mptrac.h:2824
int qnt_pv
Quantity array index for potential vorticity.
Definition: mptrac.h:2505
int advect_vert_coord
Vertical velocity of air parcels (0=omega_on_plev, 1=zetadot_on_mlev, 2=omega_on_mlev,...
Definition: mptrac.h:2782
int qnt_mloss_oh
Quantity array index for total mass loss due to OH chemistry.
Definition: mptrac.h:2436
int qnt_Ch2o2
Quantity array index for H2O2 volume mixing ratio (chemistry code).
Definition: mptrac.h:2541
int qnt_sst
Quantity array index for sea surface temperature.
Definition: mptrac.h:2334
double mixing_lon1
Upper longitude of mixing grid [deg].
Definition: mptrac.h:2938
int atm_nc_level
zlib compression level of netCDF atmospheric data files (0=off).
Definition: mptrac.h:3068
char clim_hno3_filename[LEN]
Filename of HNO3 climatology.
Definition: mptrac.h:2881
double wet_depo_ic_ret_ratio
Coefficients for wet deposition in cloud: retention ratio.
Definition: mptrac.h:3022
int qnt_sh
Quantity array index for specific humidity.
Definition: mptrac.h:2466
int qnt_ess
Quantity array index for eastward turbulent surface stress.
Definition: mptrac.h:2322
double wet_depo_ic_b
Coefficient B for wet deposition in cloud (exponential form).
Definition: mptrac.h:3010
double wet_depo_bc_b
Coefficient B for wet deposition below cloud (exponential form).
Definition: mptrac.h:3004
int met_dy
Stride for latitudes.
Definition: mptrac.h:2685
int qnt_Cx
Quantity array index for trace species x volume mixing ratio (chemistry code).
Definition: mptrac.h:2520
double turb_dz_strat
Vertical turbulent diffusion coefficient (stratosphere) [m^2/s].
Definition: mptrac.h:2806
double bound_zetas
Boundary conditions surface layer zeta [K].
Definition: mptrac.h:2860
int dd_subdomains_zonal
Domain decomposition zonal subdomain number.
Definition: mptrac.h:3276
int qnt_idx
Quantity array index for air parcel IDs.
Definition: mptrac.h:2286
double met_tropo_theta
Dynamical tropopause potential temperature threshold [K].
Definition: mptrac.h:2749
int qnt_rwc
Quantity array index for cloud rain water content.
Definition: mptrac.h:2382
double t_start
Start time of simulation [s].
Definition: mptrac.h:2577
char qnt_longname[NQ][LEN]
Quantity long names.
Definition: mptrac.h:2277
double met_p[EP]
Target pressure levels [hPa].
Definition: mptrac.h:2706
int nq
Number of quantities.
Definition: mptrac.h:2271
double tdec_trop
Life time of particles in the troposphere [s].
Definition: mptrac.h:2872
double sample_dx
Horizontal radius for sample output [km].
Definition: mptrac.h:3227
int vtk_stride
Particle index stride for VTK data.
Definition: mptrac.h:3257
char stat_basename[LEN]
Basename of station data file.
Definition: mptrac.h:3233
double turb_dz_pbl
Vertical turbulent diffusion coefficient (PBL) [m^2/s].
Definition: mptrac.h:2800
double grid_lat1
Upper latitude of gridded data [deg].
Definition: mptrac.h:3179
int dd_subdomains_meridional
Domain decomposition meridional subdomain number.
Definition: mptrac.h:3279
int qnt_zt
Quantity array index for tropopause geopotential height.
Definition: mptrac.h:2346
int met_type
Type of meteo data files (0=netCDF, 1=binary, 2=pck, 3=ZFP, 4=ZSTD, 5=cms, 6=grib,...
Definition: mptrac.h:2604
int qnt_cc
Quantity array index for cloud cover.
Definition: mptrac.h:2391
int qnt_plcl
Quantity array index for pressure at lifted condensation level (LCL).
Definition: mptrac.h:2403
double grid_dt_out
Time step for gridded data output [s].
Definition: mptrac.h:3140
int qnt_tdew
Quantity array index for dew point temperature.
Definition: mptrac.h:2508
Domain decomposition data structure.
Definition: mptrac.h:3725
size_t halo_bnd_count[4]
Hyperslab of boundary halos count.
Definition: mptrac.h:3771
int halo_offset_end
Hyperslab of boundary halos count.
Definition: mptrac.h:3777
int rank
Rank of node.
Definition: mptrac.h:3732
int neighbours[DD_NNMAX]
Rank of neighbouring nodes.
Definition: mptrac.h:3738
double subdomain_lon_min
Rectangular grid limit of subdomain.
Definition: mptrac.h:3753
size_t halo_bnd_start[4]
Hyperslab of boundary halos start.
Definition: mptrac.h:3768
double subdomain_lat_max
Rectangular grid limit of subdomain.
Definition: mptrac.h:3756
int init
Shows if domain decomposition was initialized.
Definition: mptrac.h:3784
double subdomain_lon_max
Rectangular grid limit of subdomain.
Definition: mptrac.h:3750
int halo_offset_start
Hyperslab of boundary halos count.
Definition: mptrac.h:3774
size_t subdomain_count[4]
Hyperslab start and count for subdomain.
Definition: mptrac.h:3765
size_t subdomain_start[4]
Hyperslab start and count for subdomain.
Definition: mptrac.h:3762
int size
Size of node.
Definition: mptrac.h:3735
double subdomain_lat_min
Rectangular grid limit of subdomain.
Definition: mptrac.h:3759
Meteo data structure.
Definition: mptrac.h:3551
float zt[EX][EY]
Tropopause geopotential height [km].
Definition: mptrac.h:3629
float sst[EX][EY]
Sea surface temperature [K].
Definition: mptrac.h:3617
float rwc[EX][EY][EP]
Cloud rain water content [kg/kg].
Definition: mptrac.h:3689
float o3c[EX][EY]
Total column ozone [DU].
Definition: mptrac.h:3659
float zeta_dotl[EX][EY][EP]
Vertical velocity on model levels [K/s].
Definition: mptrac.h:3716
float h2o[EX][EY][EP]
Water vapor volume mixing ratio [1].
Definition: mptrac.h:3680
float cape[EX][EY]
Convective available potential energy [J/kg].
Definition: mptrac.h:3653
float w[EX][EY][EP]
Vertical velocity [hPa/s].
Definition: mptrac.h:3674
float pct[EX][EY]
Cloud top pressure [hPa].
Definition: mptrac.h:3635
double hybrid[EP]
Model hybrid levels.
Definition: mptrac.h:3578
int nx
Number of longitudes.
Definition: mptrac.h:3557
int ny
Number of latitudes.
Definition: mptrac.h:3560
float shf[EX][EY]
Surface sensible heat flux [W/m^2].
Definition: mptrac.h:3611
float ps[EX][EY]
Surface pressure [hPa].
Definition: mptrac.h:3590
float lwc[EX][EY][EP]
Cloud liquid water content [kg/kg].
Definition: mptrac.h:3686
float us[EX][EY]
Surface zonal wind [m/s].
Definition: mptrac.h:3599
float wl[EX][EY][EP]
Vertical velocity on model levels [hPa/s].
Definition: mptrac.h:3710
float vl[EX][EY][EP]
Meridional wind on model levels [m/s].
Definition: mptrac.h:3707
float zs[EX][EY]
Surface geopotential height [km].
Definition: mptrac.h:3596
float o3[EX][EY][EP]
Ozone volume mixing ratio [1].
Definition: mptrac.h:3683
float cc[EX][EY][EP]
Cloud cover [1].
Definition: mptrac.h:3698
int np
Number of pressure levels.
Definition: mptrac.h:3563
float t[EX][EY][EP]
Temperature [K].
Definition: mptrac.h:3665
float ts[EX][EY]
Surface temperature [K].
Definition: mptrac.h:3593
float u[EX][EY][EP]
Zonal wind [m/s].
Definition: mptrac.h:3668
float ess[EX][EY]
Eastward turbulent surface stress [N/m^2].
Definition: mptrac.h:3605
float ul[EX][EY][EP]
Zonal wind on model levels [m/s].
Definition: mptrac.h:3704
float pcb[EX][EY]
Cloud bottom pressure [hPa].
Definition: mptrac.h:3638
float pel[EX][EY]
Pressure at equilibrium level (EL) [hPa].
Definition: mptrac.h:3650
float cin[EX][EY]
Convective inhibition [J/kg].
Definition: mptrac.h:3656
float plcl[EX][EY]
Pressure at lifted condensation level (LCL) [hPa].
Definition: mptrac.h:3644
double lon[EX]
Longitudes [deg].
Definition: mptrac.h:3569
float pt[EX][EY]
Tropopause pressure [hPa].
Definition: mptrac.h:3623
float tt[EX][EY]
Tropopause temperature [K].
Definition: mptrac.h:3626
float pbl[EX][EY]
Boundary layer pressure [hPa].
Definition: mptrac.h:3620
float vs[EX][EY]
Surface meridional wind [m/s].
Definition: mptrac.h:3602
float z[EX][EY][EP]
Geopotential height [km].
Definition: mptrac.h:3662
float v[EX][EY][EP]
Meridional wind [m/s].
Definition: mptrac.h:3671
int npl
Number of model levels.
Definition: mptrac.h:3566
float lsm[EX][EY]
Land-sea mask [1].
Definition: mptrac.h:3614
float iwc[EX][EY][EP]
Cloud ice water content [kg/kg].
Definition: mptrac.h:3692
float h2ot[EX][EY]
Tropopause water vapor volume mixing ratio [ppv].
Definition: mptrac.h:3632
float pv[EX][EY][EP]
Potential vorticity [PVU].
Definition: mptrac.h:3677
double eta[EP]
Model level eta values.
Definition: mptrac.h:3587
double time
Time [s].
Definition: mptrac.h:3554
float cl[EX][EY]
Total column cloud water [kg/m^2].
Definition: mptrac.h:3641
float nss[EX][EY]
Northward turbulent surface stress [N/m^2].
Definition: mptrac.h:3608
float pl[EX][EY][EP]
Pressure on model levels [hPa].
Definition: mptrac.h:3701
float plfc[EX][EY]
Pressure at level of free convection (LFC) [hPa].
Definition: mptrac.h:3647
double hyam[EP]
Model level a coefficients [Pa].
Definition: mptrac.h:3581
double lat[EY]
Latitudes [deg].
Definition: mptrac.h:3572
float swc[EX][EY][EP]
Cloud snow water content [kg/kg].
Definition: mptrac.h:3695
double hybm[EP]
Model level b coefficients.
Definition: mptrac.h:3584
float zetal[EX][EY][EP]
Zeta on model levels [K].
Definition: mptrac.h:3713
double p[EP]
Pressure levels [hPa].
Definition: mptrac.h:3575
Particle data.
Definition: mptrac.h:3326
double p
Pressure [hPa].
Definition: mptrac.h:3332
double lat
Latitude [deg].
Definition: mptrac.h:3338
double time
Time [s].
Definition: mptrac.h:3329
double lon
Longitude [deg].
Definition: mptrac.h:3335
double q[NQ]
Quantity data (for various, user-defined attributes).
Definition: mptrac.h:3341