35static uint64_t rng_ctr;
39static curandGenerator_t rng_curand;
49#define CHUNK_SIZE 2147483647
52 MPI_Bcast(&N, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD);
55 const size_t num_chunks = (N + CHUNK_SIZE - 1) / CHUNK_SIZE;
58 for (
size_t i = 0; i < num_chunks; i++) {
61 const size_t start = i * CHUNK_SIZE;
62 const size_t end = (start + CHUNK_SIZE > N) ? N : start + CHUNK_SIZE;
63 const size_t chunk_size = end - start;
66 MPI_Bcast((
char *) data + start, (
int) chunk_size, MPI_BYTE, 0,
80 const double radius =
NORM(x);
82 *lat =
RAD2DEG(asin(x[2] / radius));
83 *lon =
RAD2DEG(atan2(x[1], x[0]));
98 const double sza_thresh =
DEG2RAD(85.), cos_sza_thresh = cos(sza_thresh);
101 const double oh =
clim_zm(&clim->
oh, t, lat, p);
106 if (sza <= sza_thresh)
121 const double sza_thresh =
DEG2RAD(85.), cos_sza_thresh = cos(sza_thresh);
124 for (
int it = 0; it < clim->
oh.
ntime; it++)
125 for (
int iz = 0; iz < clim->
oh.
np; iz++)
126 for (
int iy = 0; iy < clim->
oh.
nlat; iy++) {
133 for (
double lon = -180; lon < 180; lon += 1.0) {
135 if (sza <= sza_thresh)
143 clim->
oh.
vmr[it][iz][iy] /= (sum / (double) n);
158 if (p < photo->p[photo->
np - 1])
159 p_help = photo->
p[photo->
np - 1];
160 else if (p > photo->
p[0])
161 p_help = photo->
p[0];
164 double sza_help = sza;
165 if (sza < photo->sza[0])
166 sza_help = photo->
sza[0];
167 else if (sza > photo->
sza[photo->
nsza - 1])
168 sza_help = photo->
sza[photo->
nsza - 1];
171 double o3c_help = o3c;
172 if (o3c < photo->o3c[0])
173 o3c_help = photo->
o3c[0];
174 else if (o3c > photo->
o3c[photo->
no3c - 1])
175 o3c_help = photo->
o3c[photo->
no3c - 1];
183 double aux00 =
LIN(photo->
p[ip], rate[ip][isza][io3c],
184 photo->
p[ip + 1], rate[ip + 1][isza][io3c], p_help);
185 double aux01 =
LIN(photo->
p[ip], rate[ip][isza][io3c + 1],
186 photo->
p[ip + 1], rate[ip + 1][isza][io3c + 1], p_help);
187 double aux10 =
LIN(photo->
p[ip], rate[ip][isza + 1][io3c],
188 photo->
p[ip + 1], rate[ip + 1][isza + 1][io3c], p_help);
189 double aux11 =
LIN(photo->
p[ip], rate[ip][isza + 1][io3c + 1],
190 photo->
p[ip + 1], rate[ip + 1][isza + 1][io3c + 1],
192 aux00 =
LIN(photo->
o3c[io3c], aux00, photo->
o3c[io3c + 1], aux01, o3c_help);
193 aux11 =
LIN(photo->
o3c[io3c], aux10, photo->
o3c[io3c + 1], aux11, o3c_help);
194 aux00 =
LIN(photo->
sza[isza], aux00, photo->
sza[isza + 1], aux11, sza_help);
195 return MAX(aux00, 0.0);
206 double sec =
FMOD(t, 365.25 * 86400.);
208 sec += 365.25 * 86400.;
216 clim->
tropo[isec][ilat],
218 clim->
tropo[isec][ilat + 1], lat);
220 clim->
tropo[isec + 1][ilat],
222 clim->
tropo[isec + 1][ilat + 1], lat);
232 LOG(1,
"Initialize tropopause data...");
236 double tropo_time[12] = {
237 1209600.00, 3888000.00, 6393600.00,
238 9072000.00, 11664000.00, 14342400.00,
239 16934400.00, 19612800.00, 22291200.00,
240 24883200.00, 27561600.00, 30153600.00
246 double tropo_lat[73] = {
247 -90, -87.5, -85, -82.5, -80, -77.5, -75, -72.5, -70, -67.5,
248 -65, -62.5, -60, -57.5, -55, -52.5, -50, -47.5, -45, -42.5,
249 -40, -37.5, -35, -32.5, -30, -27.5, -25, -22.5, -20, -17.5,
250 -15, -12.5, -10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10, 12.5,
251 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5,
252 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5,
253 75, 77.5, 80, 82.5, 85, 87.5, 90
258 double tropo[12][73] = {
259 {324.1, 325.6, 325, 324.3, 322.5, 319.7, 314, 307.2, 301.8, 299.6,
260 297.1, 292.2, 285.6, 276.1, 264, 248.9, 231.9, 213.5, 194.4,
261 175.3, 157, 140.4, 126.7, 116.3, 109.5, 105.4, 103, 101.4, 100.4,
262 99.69, 99.19, 98.84, 98.56, 98.39, 98.39, 98.42, 98.44, 98.54,
263 98.68, 98.81, 98.89, 98.96, 99.12, 99.65, 101.4, 105.4, 113.5, 128,
264 152.1, 184.7, 214, 234.1, 247.3, 255.8, 262.6, 267.7, 271.7, 275,
265 277.2, 279, 280.1, 280.4, 280.6, 280.1, 279.3, 278.3, 276.8, 275.8,
266 275.3, 275.6, 275.4, 274.1, 273.5},
267 {337.3, 338.7, 337.8, 336.4, 333, 328.8, 321.1, 312.6, 306.6, 303.7,
268 300.2, 293.8, 285.4, 273.8, 259.6, 242.7, 224.4, 205.2, 186, 167.5,
269 150.3, 135, 122.8, 113.9, 108.2, 104.7, 102.5, 101.1, 100.2, 99.42,
270 98.88, 98.52, 98.25, 98.09, 98.07, 98.1, 98.12, 98.2, 98.25, 98.27,
271 98.26, 98.27, 98.36, 98.79, 100.2, 104.2, 113.7, 131.2, 159.5, 193,
272 220.4, 238.1, 250.2, 258.1, 264.7, 269.7, 273.7, 277.3, 280.2, 282.8,
273 284.9, 286.5, 288.1, 288.8, 289, 288.5, 287.2, 286.3, 286.1, 287.2,
274 287.5, 286.2, 285.8},
275 {335, 336, 335.7, 335.1, 332.3, 328.1, 320.6, 311.8, 305.1, 301.9,
276 297.6, 290, 280.4, 268.3, 254.6, 239.6, 223.9, 207.9, 192.2, 176.9,
277 161.7, 146.4, 132.2, 120.6, 112.3, 107.2, 104.3, 102.4, 101.3,
278 100.4, 99.86, 99.47, 99.16, 98.97, 98.94, 98.97, 99, 99.09, 99.2,
279 99.31, 99.35, 99.41, 99.51, 99.86, 101.1, 104.9, 114.3, 131, 156.8,
280 186.3, 209.3, 224.6, 236.8, 246.3, 254.9, 262.3, 268.8, 274.8,
281 279.9, 284.6, 288.6, 291.6, 294.9, 297.5, 299.8, 301.8, 303.1,
282 304.3, 304.9, 306, 306.6, 306.2, 306},
283 {306.2, 306.7, 305.7, 307.1, 307.3, 306.4, 301.8, 296.2, 292.4,
284 290.3, 287.1, 280.9, 273.4, 264.3, 254.1, 242.8, 231, 219, 207.2,
285 195.5, 183.3, 169.7, 154.7, 138.7, 124.1, 113.6, 107.8, 104.7,
286 102.8, 101.7, 100.9, 100.4, 100, 99.79, 99.7, 99.66, 99.68, 99.79,
287 99.94, 100.2, 100.5, 100.9, 101.4, 102.1, 103.4, 107, 115.2, 129.1,
288 148.7, 171, 190.8, 205.6, 218.4, 229.4, 239.6, 248.6, 256.5,
289 263.7, 270.3, 276.6, 282.6, 288.1, 294.5, 300.4, 306.3, 311.4,
290 315.1, 318.3, 320.3, 322.2, 322.8, 321.5, 321.1},
291 {266.5, 264.9, 260.8, 261, 262, 263, 261.3, 259.7, 259.2, 259.8,
292 260.1, 258.6, 256.7, 253.6, 249.5, 243.9, 237.4, 230, 222.1, 213.9,
293 205, 194.4, 180.4, 161.8, 140.7, 122.9, 112.1, 106.7, 104.1, 102.7,
294 101.8, 101.4, 101.1, 101, 101, 101, 101.1, 101.2, 101.5, 101.9,
295 102.4, 103, 103.8, 104.9, 106.8, 110.1, 115.6, 124, 135.2, 148.9,
296 165.2, 181.3, 198, 211.8, 223.5, 233.8, 242.9, 251.5, 259, 266.2,
297 273.1, 279.2, 286.2, 292.8, 299.6, 306, 311.1, 315.5, 318.8, 322.6,
298 325.3, 325.8, 325.8},
299 {220.1, 218.1, 210.8, 207.2, 207.6, 210.5, 211.4, 213.5, 217.3,
300 222.4, 227.9, 232.8, 237.4, 240.8, 242.8, 243, 241.5, 238.6, 234.2,
301 228.5, 221, 210.7, 195.1, 172.9, 147.8, 127.6, 115.6, 109.9, 107.1,
302 105.7, 105, 104.8, 104.8, 104.9, 105, 105.1, 105.3, 105.5, 105.8,
303 106.4, 107, 107.6, 108.1, 108.8, 110, 111.8, 114.2, 117.4, 121.6,
304 127.9, 137.3, 151.2, 169.5, 189, 205.8, 218.9, 229.1, 237.8, 245,
305 251.5, 257.1, 262.3, 268.2, 274, 280.4, 286.7, 292.4, 297.9, 302.9,
306 308.5, 312.2, 313.1, 313.3},
307 {187.4, 184.5, 173.3, 166.1, 165.4, 167.8, 169.6, 173.6, 179.6,
308 187.9, 198.9, 210, 220.5, 229.2, 235.7, 239.9, 241.8, 241.6, 239.6,
309 235.8, 229.4, 218.6, 200.9, 175.9, 149.4, 129.4, 118.3, 113.1,
310 110.8, 109.7, 109.3, 109.4, 109.7, 110, 110.2, 110.4, 110.5, 110.7,
311 111, 111.4, 111.8, 112.1, 112.3, 112.7, 113.2, 113.9, 115, 116.4,
312 117.9, 120.4, 124.1, 130.9, 142.2, 159.6, 179.6, 198.5, 212.9,
313 224.2, 232.7, 239.1, 243.8, 247.7, 252.4, 257.3, 263.2, 269.5,
314 275.4, 281.1, 286.3, 292, 296.3, 298.2, 298.8},
315 {166, 166.4, 155.7, 148.3, 147.1, 149, 152.1, 157, 163.6, 172.4,
316 185.3, 199.2, 212.6, 224, 233.2, 239.6, 243.3, 244.6, 243.6, 240.3,
317 233.9, 222.6, 203.7, 177, 149.5, 129.7, 119, 114, 111.7, 110.7,
318 110.3, 110.3, 110.6, 110.9, 111.1, 111.3, 111.5, 111.6, 111.9,
319 112.2, 112.5, 112.6, 112.8, 113, 113.4, 114, 115.1, 116.5, 118.3,
320 120.9, 124.4, 130.2, 139.4, 154.6, 173.8, 193.1, 208.1, 220.4,
321 230.1, 238.2, 244.7, 249.5, 254.5, 259.3, 264.5, 269.4, 273.7,
322 278.2, 282.6, 287.4, 290.9, 292.5, 293},
323 {171.9, 172.8, 166.2, 162.3, 161.4, 162.5, 165.2, 169.6, 175.3,
324 183.1, 193.8, 205.9, 218.3, 229.6, 238.5, 244.3, 246.9, 246.7,
325 243.8, 238.4, 230.2, 217.9, 199.6, 174.9, 148.9, 129.8, 119.5,
326 114.8, 112.3, 110.9, 110.3, 110.1, 110.2, 110.3, 110.4, 110.5,
327 110.6, 110.8, 111, 111.4, 111.8, 112, 112.2, 112.4, 112.9, 113.6,
328 114.7, 116.3, 118.4, 121.9, 127.1, 136.1, 149.8, 168.4, 186.9,
329 203.3, 217, 229.1, 238.7, 247, 254, 259.3, 264.3, 268.3, 272.5,
330 276.6, 280.4, 284.4, 288.4, 293.3, 297.2, 298.7, 299.1},
331 {191.6, 192.2, 189, 188.1, 190.2, 193.7, 197.8, 202.9, 208.5,
332 215.6, 224.2, 233.1, 241.2, 247.3, 250.8, 251.3, 248.9, 244.2,
333 237.3, 228.4, 217.2, 202.9, 184.5, 162.5, 140.7, 124.8, 116.2,
334 111.8, 109.4, 107.9, 107, 106.7, 106.6, 106.6, 106.7, 106.7,
335 106.8, 107, 107.4, 108, 108.7, 109.3, 109.8, 110.4, 111.2,
336 112.4, 114.2, 116.9, 121.1, 127.9, 139.3, 155.2, 173.6, 190.7,
337 206.1, 220.1, 232.3, 243, 251.8, 259.2, 265.7, 270.6, 275.3,
338 279.3, 283.3, 286.9, 289.7, 292.8, 296.1, 300.5, 303.9, 304.8,
340 {241.5, 239.6, 236.8, 237.4, 239.4, 242.3, 244.2, 246.4, 249.2,
341 253.6, 258.6, 262.7, 264.8, 264.2, 260.6, 254.1, 245.5, 235.3,
342 223.9, 211.7, 198.3, 183.1, 165.6, 147.1, 130.5, 118.7, 111.9,
343 108.1, 105.8, 104.3, 103.4, 102.8, 102.5, 102.4, 102.5, 102.5,
344 102.5, 102.7, 103.1, 103.8, 104.6, 105.4, 106.1, 107, 108.2,
345 109.9, 112.8, 117.5, 126, 140.4, 161, 181.9, 201.2, 216.8, 230.4,
346 241.8, 251.4, 259.9, 266.9, 272.8, 277.4, 280.4, 282.9, 284.6,
347 286.1, 287.4, 288.3, 289.5, 290.9, 294.2, 296.9, 297.5, 297.6},
348 {301.2, 300.3, 296.6, 295.4, 295, 294.3, 291.2, 287.4, 284.9, 284.7,
349 284.1, 281.5, 277.1, 270.4, 261.7, 250.6, 237.6, 223.1, 207.9, 192,
350 175.8, 158.8, 142.1, 127.6, 116.8, 109.9, 106, 103.6, 102.1, 101.1,
351 100.4, 99.96, 99.6, 99.37, 99.32, 99.32, 99.31, 99.46, 99.77, 100.2,
352 100.7, 101.3, 101.8, 102.7, 104.1, 106.8, 111.9, 121, 136.7, 160,
353 186.9, 209.9, 228.1, 241.2, 251.5, 259.5, 265.7, 270.9, 274.8, 278,
354 280.3, 281.8, 283, 283.3, 283.7, 283.8, 283, 282.2, 281.2, 281.4,
357 memcpy(clim->
tropo, tropo,
sizeof(clim->
tropo));
360 double tropomin = 1e99, tropomax = -1e99;
362 for (
int iy = 0; iy < clim->
tropo_nlat; iy++) {
363 tropomin =
MIN(tropomin, clim->
tropo[it][iy]);
364 tropomax =
MAX(tropomax, clim->
tropo[it][iy]);
369 LOG(2,
"Time steps: %.2f, %.2f ... %.2f s",
373 LOG(2,
"Latitudes: %g, %g ... %g deg",
376 LOG(2,
"Tropopause altitude range: %g ... %g hPa",
Z(tropomax),
378 LOG(2,
"Tropopause pressure range: %g ... %g hPa", tropomin, tropomax);
388 if (t <= ts->time[0])
395 ts->
time[idx + 1], ts->
vmr[idx + 1], t);
408 double sec =
FMOD(t, 365.25 * 86400.);
410 sec += 365.25 * 86400.;
414 if (p < zm->p[zm->
np - 1])
415 p_help = zm->
p[zm->
np - 1];
416 else if (p > zm->
p[0])
420 double lat_help = lat;
421 if (lat < zm->lat[0])
422 lat_help = zm->
lat[0];
423 else if (lat > zm->
lat[zm->
nlat - 1])
424 lat_help = zm->
lat[zm->
nlat - 1];
432 double aux00 =
LIN(zm->
p[ip], zm->
vmr[isec][ip][ilat],
433 zm->
p[ip + 1], zm->
vmr[isec][ip + 1][ilat], p_help);
434 double aux01 =
LIN(zm->
p[ip], zm->
vmr[isec][ip][ilat + 1],
435 zm->
p[ip + 1], zm->
vmr[isec][ip + 1][ilat + 1], p_help);
436 double aux10 =
LIN(zm->
p[ip], zm->
vmr[isec + 1][ip][ilat],
437 zm->
p[ip + 1], zm->
vmr[isec + 1][ip + 1][ilat], p_help);
438 double aux11 =
LIN(zm->
p[ip], zm->
vmr[isec + 1][ip][ilat + 1],
439 zm->
p[ip + 1], zm->
vmr[isec + 1][ip + 1][ilat + 1],
441 aux00 =
LIN(zm->
lat[ilat], aux00, zm->
lat[ilat + 1], aux01, lat_help);
442 aux11 =
LIN(zm->
lat[ilat], aux10, zm->
lat[ilat + 1], aux11, lat_help);
443 aux00 =
LIN(zm->
time[isec], aux00, zm->
time[isec + 1], aux11, sec);
445 return MAX(aux00, 0.0);
458 const int decompress,
462 const size_t nxy = nx * ny;
463 double lon[
EX], lat[
EY];
464 for (
size_t ix = 0; ix < nx; ix++)
465 lon[ix] = 360. * (
double) ix / ((double) nx - 1.);
466 for (
size_t iy = 0; iy < ny; iy++)
467 lat[iy] = -(180. * (
double) iy / ((double) ny - 1.) - 90.);
470 const char domain[] =
"[0.0, 360.0]x[-90.0, 90.0]";
473 const int max_level_grid = 7;
474 cms_param_t *cms_param
475 = cms_set_parameters(nx, ny, max_level_grid, Nd0_x, Nd0_y, domain);
478 double cr = 0, t_coars = 0, t_eval = 0;
484 for (
size_t ip = 0; ip < np; ip++) {
487 cms_module_t *cms_ptr = cms_init(cms_param);
492 cms_sol = cms_read_zstd_sol(cms_ptr, inout);
494 cms_sol = cms_read_sol(cms_ptr, inout);
497#pragma omp parallel for default(shared)
498 for (
size_t ix = 0; ix < nx; ix++)
499 for (
size_t iy = 0; iy < ny; iy++) {
501 const double x[] = { lon[ix], lat[iy] };
502 cms_eval(cms_ptr, cms_sol, x, &val);
503 array[
ARRAY_3D(ix, iy, ny, ip, np)] = (float) val;
507 cr += cms_compression_rate(cms_ptr, cms_sol) / (double) np;
510 cms_delete_sol(cms_sol);
511 cms_delete_module(cms_ptr);
515 LOG(2,
"Read 3-D variable: %s (cms, RATIO= %g)", varname, cr);
522 cms_module_t *cms_ptr[
EP];
523 cms_sol_t *cms_sol[
EP];
527 ? (size_t) omp_get_max_threads()
529 for (
size_t ip0 = 0; ip0 < np; ip0 += dip) {
532 double t0 = omp_get_wtime();
535#pragma omp parallel for default(shared)
536 for (
size_t ip = ip0; ip <
MIN(ip0 + dip, np); ip++) {
540 ALLOC(tmp_arr,
float,
544 for (
size_t ix = 0; ix < nx; ++ix)
545 for (
size_t iy = 0; iy < ny; ++iy)
547 array[
ARRAY_3D(ix, iy, ny, ip, np)];
550 cms_ptr[ip] = cms_init(cms_param);
553 cms_sol[ip] = cms_read_arr(cms_ptr[ip], tmp_arr, lon, lat, nx, ny);
556 if (strcasecmp(varname,
"Z") == 0)
558 else if (strcasecmp(varname,
"T") == 0)
560 else if (strcasecmp(varname,
"U") == 0)
562 else if (strcasecmp(varname,
"V") == 0)
564 else if (strcasecmp(varname,
"W") == 0)
566 else if (strcasecmp(varname,
"PV") == 0)
568 else if (strcasecmp(varname,
"H2O") == 0)
570 else if (strcasecmp(varname,
"O3") == 0)
572 else if (strcasecmp(varname,
"LWC") == 0)
574 else if (strcasecmp(varname,
"RWC") == 0)
576 else if (strcasecmp(varname,
"IWC") == 0)
578 else if (strcasecmp(varname,
"SWC") == 0)
580 else if (strcasecmp(varname,
"CC") == 0)
583 ERRMSG(
"Variable name unknown!");
586 cms_coarsening(cms_ptr[ip], cms_sol[ip],
594 t_coars += (omp_get_wtime() - t0);
597 for (
size_t ip = ip0; ip <
MIN(ip0 + dip, np); ip++) {
600 double *tmp_cms, *tmp_org, *tmp_diff;
601 ALLOC(tmp_cms,
double,
603 ALLOC(tmp_org,
double,
605 ALLOC(tmp_diff,
double,
609 t0 = omp_get_wtime();
612#pragma omp parallel for default(shared)
613 for (
size_t ix = 0; ix < nx; ix++)
614 for (
size_t iy = 0; iy < ny; iy++) {
615 const size_t idx =
ARRAY_2D(ix, iy, ny);
616 const double x[] = { lon[ix], lat[iy] };
617 cms_eval(cms_ptr[ip], cms_sol[ip], x, &tmp_cms[idx]);
618 tmp_org[idx] = array[
ARRAY_3D(ix, iy, ny, ip, np)];
619 tmp_diff[idx] = tmp_cms[idx] - tmp_org[idx];
623 t_eval += (omp_get_wtime() - t0);
627 "cmultiscale: var= %s / lev= %lu / ratio= %g / rho= %g"
628 " / mean= %g / sd= %g / min= %g / max= %g", varname, ip,
629 cms_compression_rate(cms_ptr[ip], cms_sol[ip]),
630 gsl_stats_correlation(tmp_cms, 1, tmp_org, 1, nxy),
631 gsl_stats_mean(tmp_diff, 1, nxy), gsl_stats_sd(tmp_diff, 1, nxy),
632 gsl_stats_min(tmp_diff, 1, nxy), gsl_stats_max(tmp_diff, 1, nxy));
635 cr += cms_compression_rate(cms_ptr[ip], cms_sol[ip]) / (double) np;
639 cms_save_zstd_sol(cms_sol[ip], inout, 3);
641 cms_save_sol(cms_sol[ip], inout);
644 cms_delete_sol(cms_sol[ip]);
645 cms_delete_module(cms_ptr[ip]);
653 LOG(2,
"Write 3-D variable: %s"
654 " (cms, RATIO= %g, T_COARS= %g s, T_EVAL= %g s)",
655 varname, cr, t_coars, t_eval);
659 cms_delete_param(cms_param);
670 const int decompress,
673 double min[
EP], max[
EP], off[
EP], scl[
EP];
675 unsigned short *sarray;
678 ALLOC(sarray,
unsigned short,
685 LOG(2,
"Read 3-D variable: %s (pck, RATIO= %g)",
686 varname, (
double)
sizeof(
float) / (
double)
sizeof(
unsigned short));
695 FREAD(sarray,
unsigned short,
700#pragma omp parallel for default(shared)
701 for (
size_t ixy = 0; ixy < nxy; ixy++)
702 for (
size_t iz = 0; iz < nz; iz++)
704 = (
float) (sarray[ixy * nz + iz] * scl[iz] + off[iz]);
711 LOG(2,
"Write 3-D variable: %s (pck, RATIO= %g)",
712 varname, (
double)
sizeof(
float) / (
double)
sizeof(
unsigned short));
715 for (
size_t iz = 0; iz < nz; iz++) {
719 for (
size_t ixy = 1; ixy < nxy; ixy++)
720 for (
size_t iz = 0; iz < nz; iz++) {
721 if (array[ixy * nz + iz] < min[iz])
722 min[iz] = array[ixy * nz + iz];
723 if (array[ixy * nz + iz] > max[iz])
724 max[iz] = array[ixy * nz + iz];
728 for (
size_t iz = 0; iz < nz; iz++) {
729 scl[iz] = (max[iz] - min[iz]) / 65533.;
734#pragma omp parallel for default(shared)
735 for (
size_t ixy = 0; ixy < nxy; ixy++)
736 for (
size_t iz = 0; iz < nz; iz++)
738 sarray[ixy * nz + iz] = (
unsigned short)
739 ((array[ixy * nz + iz] - off[iz]) / scl[iz] + .5);
741 sarray[ixy * nz + iz] = 0;
750 FWRITE(sarray,
unsigned short,
769 const double tolerance,
770 const int decompress,
774 const zfp_type type = zfp_type_float;
776 zfp_field_3d(array, type, (uint) nx, (uint) ny, (uint) nz);
779 zfp_stream *zfp = zfp_stream_open(NULL);
783 double actual_tol = 0;
785 actual_prec = (int) zfp_stream_set_precision(zfp, (uint) precision);
786 else if (tolerance > 0)
787 actual_tol = zfp_stream_set_accuracy(zfp, tolerance);
789 ERRMSG(
"Set precision or tolerance!");
792 const size_t bufsize = zfp_stream_maximum_size(zfp, field);
793 void *buffer = malloc(bufsize);
796 bitstream *stream = stream_open(buffer, bufsize);
797 zfp_stream_set_bit_stream(zfp, stream);
798 zfp_stream_rewind(zfp);
803 FREAD(&zfpsize,
size_t,
806 if (fread(buffer, 1, zfpsize, inout) != zfpsize)
807 ERRMSG(
"Error while reading zfp data!");
808 if (!zfp_decompress(zfp, field)) {
809 ERRMSG(
"Decompression failed!");
811 LOG(2,
"Read 3-D variable: %s "
812 "(zfp, PREC= %d, TOL= %g, RATIO= %g)",
813 varname, actual_prec, actual_tol,
814 ((
double) (nx * ny * nz)) / (
double) zfpsize);
819 zfpsize = zfp_compress(zfp, field);
821 ERRMSG(
"Compression failed!");
826 if (fwrite(buffer, 1, zfpsize, inout) != zfpsize)
827 ERRMSG(
"Error while writing zfp data!");
829 LOG(2,
"Write 3-D variable: %s "
830 "(zfp, PREC= %d, TOL= %g, RATIO= %g)",
831 varname, actual_prec, actual_tol,
832 ((
double) (nx * ny * nz)) / (
double) zfpsize);
836 zfp_field_free(field);
837 zfp_stream_close(zfp);
838 stream_close(stream);
850 const int decompress,
854 const size_t uncomprLen = n *
sizeof(float);
855 size_t comprLen = ZSTD_compressBound(uncomprLen);
859 char *compr = (
char *) calloc((uint) comprLen, 1);
860 char *uncompr = (
char *) array;
864 FREAD(&comprLen,
size_t,
867 if (fread(compr, 1, comprLen, inout) != comprLen)
868 ERRMSG(
"Error while reading zstd data!");
869 compsize = ZSTD_decompress(uncompr, uncomprLen, compr, comprLen);
870 if (ZSTD_isError(compsize)) {
871 ERRMSG(
"Decompression failed!");
873 LOG(2,
"Read 3-D variable: %s (zstd, RATIO= %g)",
874 varname, ((
double) uncomprLen) / (
double) comprLen)
879 compsize = ZSTD_compress(compr, comprLen, uncompr, uncomprLen, 0);
880 if (ZSTD_isError(compsize)) {
881 ERRMSG(
"Compression failed!");
886 if (fwrite(compr, 1, compsize, inout) != compsize)
887 ERRMSG(
"Error while writing zstd data!");
889 LOG(2,
"Write 3-D variable: %s (zstd, RATIO= %g)",
890 varname, ((
double) uncomprLen) / (
double) compsize);
907 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
908 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
911 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0))
912 *doy = d0l[mon - 1] + day - 1;
914 *doy = d0[mon - 1] + day - 1;
926 d0[12] = { 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 },
927 d0l[12] = { 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336 };
932 if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) {
933 for (i = 11; i > 0; i--)
937 *day = doy - d0l[i] + 1;
939 for (i = 11; i > 0; i--)
943 *day = doy - d0[i] + 1;
958 ERRMSG(
"Too many data points!");
961 gsl_fft_complex_wavetable *wavetable =
962 gsl_fft_complex_wavetable_alloc((
size_t) n);
963 gsl_fft_complex_workspace *workspace =
964 gsl_fft_complex_workspace_alloc((
size_t) n);
967 for (
int i = 0; i < n; i++) {
968 data[2 * i] = fcReal[i];
969 data[2 * i + 1] = fcImag[i];
973 gsl_fft_complex_forward(data, 1, (
size_t) n, wavetable, workspace);
976 for (
int i = 0; i < n; i++) {
977 fcReal[i] = data[2 * i];
978 fcImag[i] = data[2 * i + 1];
982 gsl_fft_complex_wavetable_free(wavetable);
983 gsl_fft_complex_workspace_free(workspace);
994 const double radius = z +
RE;
995 const double latrad =
DEG2RAD(lat);
996 const double lonrad =
DEG2RAD(lon);
997 const double coslat = cos(latrad);
999 x[0] = radius * coslat * cos(lonrad);
1000 x[1] = radius * coslat * sin(lonrad);
1001 x[2] = radius * sin(latrad);
1010 const char *metbase,
1011 const double dt_met,
1018 int year, mon, day, hour, min, sec;
1022 t6 = floor(t / dt_met) * dt_met;
1024 t6 = ceil(t / dt_met) * dt_met;
1027 jsec2time(t6, &year, &mon, &day, &hour, &min, &sec, &r);
1032 sprintf(filename,
"%s_YYYY_MM_DD_HH.nc", metbase);
1034 sprintf(filename,
"%s_YYYY_MM_DD_HH.bin", metbase);
1036 sprintf(filename,
"%s_YYYY_MM_DD_HH.pck", metbase);
1038 sprintf(filename,
"%s_YYYY_MM_DD_HH.zfp", metbase);
1040 sprintf(filename,
"%s_YYYY_MM_DD_HH.zstd", metbase);
1042 sprintf(filename,
"%s_YYYY_MM_DD_HH.cms", metbase);
1043 sprintf(repl,
"%d", year);
1045 sprintf(repl,
"%02d", mon);
1047 sprintf(repl,
"%02d", day);
1049 sprintf(repl,
"%02d", hour);
1055 sprintf(filename,
"%s_YYMMDDHH.nc", metbase);
1056 sprintf(repl,
"%d", year);
1058 sprintf(repl,
"%02d", year % 100);
1060 sprintf(repl,
"%02d", mon);
1062 sprintf(repl,
"%02d", day);
1064 sprintf(repl,
"%02d", hour);
1079 for (
int i = 0; i < 3; i++) {
1083 if (!(ch = strstr(orig, search)))
1085 strncpy(buffer, orig, (
size_t) (ch - orig));
1086 buffer[ch - orig] = 0;
1087 sprintf(buffer + (ch - orig),
"%s%s", repl, ch + strlen(search));
1089 strcpy(orig, buffer);
1096 const int met_tropo,
1116#pragma omp parallel for default(shared) private(ci,cw)
1117 for (
int ix = 0; ix < nx; ix++)
1118 for (
int iy = 0; iy < ny; iy++) {
1120 &pt[iy * nx + ix], ci, cw, 1);
1122 &ps[iy * nx + ix], ci, cw, 0);
1124 &zs[iy * nx + ix], ci, cw, 0);
1126 lats[iy], &zt[iy * nx + ix], ci, cw, 1);
1128 lats[iy], &tt[iy * nx + ix], ci, cw, 0);
1130 lats[iy], &qt[iy * nx + ix], ci, cw, 0);
1132 lats[iy], &o3t[iy * nx + ix], ci, cw, 0);
1149 *lon2 =
FMOD(lon, 360.);
1150 if (*lon2 < lons[0])
1152 else if (*lon2 > lons[nlon - 1])
1157 if (lats[0] < lats[nlat - 1])
1158 *lat2 =
MIN(
MAX(*lat2, lats[0]), lats[nlat - 1]);
1160 *lat2 =
MIN(
MAX(*lat2, lats[nlat - 1]), lats[0]);
1167 float heights0[
EX][
EY][
EP],
1168 float array0[
EX][
EY][
EP],
1170 float heights1[
EX][
EY][
EP],
1171 float array1[
EX][
EY][
EP],
1173 const double height,
1199 int k_max = ind[0][0];
1200 for (
int i = 0; i < 2; i++)
1201 for (
int j = 0; j < 4; j++) {
1202 if (ci[2] > ind[i][j])
1204 if (k_max < ind[i][j])
1210 cw[0] = (lon2 - met0->
lon[ci[0]]) /
1211 (met0->
lon[ci[0] + 1] - met0->
lon[ci[0]]);
1212 cw[1] = (lat2 - met0->
lat[ci[1]]) /
1213 (met0->
lat[ci[1] + 1] - met0->
lat[ci[1]]);
1216 double height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2]]
1217 - heights0[ci[0]][ci[1]][ci[2]])
1218 + heights0[ci[0]][ci[1]][ci[2]];
1219 double height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2]]
1220 - heights0[ci[0]][ci[1] + 1][ci[2]])
1221 + heights0[ci[0]][ci[1] + 1][ci[2]];
1222 double height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2]]
1223 - heights0[ci[0] + 1][ci[1]][ci[2]])
1224 + heights0[ci[0] + 1][ci[1]][ci[2]];
1225 double height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2]]
1226 - heights0[ci[0] + 1][ci[1] + 1][ci[2]])
1227 + heights0[ci[0] + 1][ci[1] + 1][ci[2]];
1230 double height0 = cw[1] * (height01 - height00) + height00;
1231 double height1 = cw[1] * (height11 - height10) + height10;
1234 double height_bot = cw[0] * (height1 - height0) + height0;
1237 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
1238 - heights0[ci[0]][ci[1]][ci[2] + 1])
1239 + heights0[ci[0]][ci[1]][ci[2] + 1];
1240 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
1241 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
1242 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
1243 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
1244 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
1245 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
1246 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1247 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1248 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1251 height0 = cw[1] * (height01 - height00) + height00;
1252 height1 = cw[1] * (height11 - height10) + height10;
1255 double height_top = cw[0] * (height1 - height0) + height0;
1258 while (((heights0[0][0][0] > heights0[0][0][1]) &&
1259 ((height_bot <= height) || (height_top > height))
1260 && (height_bot >= height) && (ci[2] < k_max))
1262 ((heights0[0][0][0] < heights0[0][0][1]) &&
1263 ((height_bot >= height) || (height_top < height))
1264 && (height_bot <= height) && (ci[2] < k_max))
1268 height_bot = height_top;
1271 height00 = cw[3] * (heights1[ci[0]][ci[1]][ci[2] + 1]
1272 - heights0[ci[0]][ci[1]][ci[2] + 1])
1273 + heights0[ci[0]][ci[1]][ci[2] + 1];
1274 height01 = cw[3] * (heights1[ci[0]][ci[1] + 1][ci[2] + 1]
1275 - heights0[ci[0]][ci[1] + 1][ci[2] + 1])
1276 + heights0[ci[0]][ci[1] + 1][ci[2] + 1];
1277 height10 = cw[3] * (heights1[ci[0] + 1][ci[1]][ci[2] + 1]
1278 - heights0[ci[0] + 1][ci[1]][ci[2] + 1])
1279 + heights0[ci[0] + 1][ci[1]][ci[2] + 1];
1280 height11 = cw[3] * (heights1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1281 - heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1282 + heights0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1285 height0 = cw[1] * (height01 - height00) + height00;
1286 height1 = cw[1] * (height11 - height10) + height10;
1289 height_top = cw[0] * (height1 - height0) + height0;
1293 cw[2] = (height - height_bot)
1294 / (height_top - height_bot);
1298 double array000 = cw[3] * (array1[ci[0]][ci[1]][ci[2]]
1299 - array0[ci[0]][ci[1]][ci[2]])
1300 + array0[ci[0]][ci[1]][ci[2]];
1301 double array100 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2]]
1302 - array0[ci[0] + 1][ci[1]][ci[2]])
1303 + array0[ci[0] + 1][ci[1]][ci[2]];
1304 double array010 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2]]
1305 - array0[ci[0]][ci[1] + 1][ci[2]])
1306 + array0[ci[0]][ci[1] + 1][ci[2]];
1307 double array110 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2]]
1308 - array0[ci[0] + 1][ci[1] + 1][ci[2]])
1309 + array0[ci[0] + 1][ci[1] + 1][ci[2]];
1310 double array001 = cw[3] * (array1[ci[0]][ci[1]][ci[2] + 1]
1311 - array0[ci[0]][ci[1]][ci[2] + 1])
1312 + array0[ci[0]][ci[1]][ci[2] + 1];
1313 double array101 = cw[3] * (array1[ci[0] + 1][ci[1]][ci[2] + 1]
1314 - array0[ci[0] + 1][ci[1]][ci[2] + 1])
1315 + array0[ci[0] + 1][ci[1]][ci[2] + 1];
1316 double array011 = cw[3] * (array1[ci[0]][ci[1] + 1][ci[2] + 1]
1317 - array0[ci[0]][ci[1] + 1][ci[2] + 1])
1318 + array0[ci[0]][ci[1] + 1][ci[2] + 1];
1319 double array111 = cw[3] * (array1[ci[0] + 1][ci[1] + 1][ci[2] + 1]
1320 - array0[ci[0] + 1][ci[1] + 1][ci[2] + 1])
1321 + array0[ci[0] + 1][ci[1] + 1][ci[2] + 1];
1323 double array00 = cw[0] * (array100 - array000) + array000;
1324 double array10 = cw[0] * (array110 - array010) + array010;
1325 double array01 = cw[0] * (array101 - array001) + array001;
1326 double array11 = cw[0] * (array111 - array011) + array011;
1328 double aux0 = cw[1] * (array10 - array00) + array00;
1329 double aux1 = cw[1] * (array11 - array01) + array01;
1332 *var = cw[2] * (aux1 - aux0) + aux0;
1362 cw[0] = (met->
p[ci[0] + 1] - p)
1363 / (met->
p[ci[0] + 1] - met->
p[ci[0]]);
1364 cw[1] = (met->
lon[ci[1] + 1] - lon2)
1365 / (met->
lon[ci[1] + 1] - met->
lon[ci[1]]);
1366 cw[2] = (met->
lat[ci[2] + 1] - lat2)
1367 / (met->
lat[ci[2] + 1] - met->
lat[ci[2]]);
1372 cw[0] * (array[ci[1]][ci[2]][ci[0]] - array[ci[1]][ci[2]][ci[0] + 1])
1373 + array[ci[1]][ci[2]][ci[0] + 1];
1375 cw[0] * (array[ci[1]][ci[2] + 1][ci[0]] -
1376 array[ci[1]][ci[2] + 1][ci[0] + 1])
1377 + array[ci[1]][ci[2] + 1][ci[0] + 1];
1379 cw[0] * (array[ci[1] + 1][ci[2]][ci[0]] -
1380 array[ci[1] + 1][ci[2]][ci[0] + 1])
1381 + array[ci[1] + 1][ci[2]][ci[0] + 1];
1383 cw[0] * (array[ci[1] + 1][ci[2] + 1][ci[0]] -
1384 array[ci[1] + 1][ci[2] + 1][ci[0] + 1])
1385 + array[ci[1] + 1][ci[2] + 1][ci[0] + 1];
1388 aux00 = cw[2] * (aux00 - aux01) + aux01;
1389 aux11 = cw[2] * (aux10 - aux11) + aux11;
1390 *var = cw[1] * (aux00 - aux11) + aux11;
1416 if (z >= zs[ix][iy][iz + 1])
1417 aux00 = array[ix][iy][iz + 1];
1418 else if (z <= zs[ix][iy][iz])
1419 aux00 = array[ix][iy][iz];
1421 aux00 =
LIN(zs[ix][iy][iz], array[ix][iy][iz],
1422 zs[ix][iy][iz + 1], array[ix][iy][iz + 1], z);
1426 if (z >= zs[ix][iy + 1][iz + 1])
1427 aux01 = array[ix][iy + 1][iz + 1];
1428 else if (z <= zs[ix][iy + 1][iz])
1429 aux01 = array[ix][iy + 1][iz];
1431 aux01 =
LIN(zs[ix][iy + 1][iz], array[ix][iy + 1][iz],
1432 zs[ix][iy + 1][iz + 1], array[ix][iy + 1][iz + 1], z);
1436 if (z >= zs[ix + 1][iy][iz + 1])
1437 aux10 = array[ix + 1][iy][iz + 1];
1438 else if (z <= zs[ix + 1][iy][iz])
1439 aux10 = array[ix + 1][iy][iz];
1441 aux10 =
LIN(zs[ix + 1][iy][iz], array[ix + 1][iy][iz],
1442 zs[ix + 1][iy][iz + 1], array[ix + 1][iy][iz + 1], z);
1446 if (z >= zs[ix + 1][iy + 1][iz + 1])
1447 aux11 = array[ix + 1][iy + 1][iz + 1];
1448 else if (z <= zs[ix + 1][iy + 1][iz])
1449 aux11 = array[ix + 1][iy + 1][iz];
1451 aux11 =
LIN(zs[ix + 1][iy + 1][iz], array[ix + 1][iy + 1][iz],
1452 zs[ix + 1][iy + 1][iz + 1], array[ix + 1][iy + 1][iz + 1], z);
1455 double aux0 =
LIN(met->
lat[iy], aux00, met->
lat[iy + 1], aux01, lat2);
1456 double aux1 =
LIN(met->
lat[iy], aux10, met->
lat[iy + 1], aux11, lat2);
1457 *var =
LIN(met->
lon[ix], aux0, met->
lon[ix + 1], aux1, lon2);
1464 float array[
EX][
EY],
1485 cw[1] = (met->
lon[ci[1] + 1] - lon2)
1486 / (met->
lon[ci[1] + 1] - met->
lon[ci[1]]);
1487 cw[2] = (met->
lat[ci[2] + 1] - lat2)
1488 / (met->
lat[ci[2] + 1] - met->
lat[ci[2]]);
1492 double aux00 = array[ci[1]][ci[2]];
1493 double aux01 = array[ci[1]][ci[2] + 1];
1494 double aux10 = array[ci[1] + 1][ci[2]];
1495 double aux11 = array[ci[1] + 1][ci[2] + 1];
1498 if (isfinite(aux00) && isfinite(aux01)
1499 && isfinite(aux10) && isfinite(aux11)) {
1500 aux00 = cw[2] * (aux00 - aux01) + aux01;
1501 aux11 = cw[2] * (aux10 - aux11) + aux11;
1502 *var = cw[1] * (aux00 - aux11) + aux11;
1522 float array0[
EX][
EY][
EP],
1524 float array1[
EX][
EY][
EP],
1541 const double wt = (met1->
time - ts) / (met1->
time - met0->
time);
1544 *var = wt * (var0 - var1) + var1;
1552 float array0[
EX][
EY][
EP],
1555 float array1[
EX][
EY][
EP],
1569 *var =
LIN(met0->
time, var0, met1->
time, var1, ts);
1576 float array0[
EX][
EY],
1578 float array1[
EX][
EY],
1594 const double wt = (met1->
time - ts) / (met1->
time - met0->
time);
1597 if (isfinite(var0) && isfinite(var1))
1598 *var = wt * (var0 - var1) + var1;
1609 float array0[
EX][
EY],
1611 float array1[
EX][
EY],
1612 const double lons[
EX],
1613 const double lats[
EY],
1623 double aux0, aux1, aux00, aux01, aux10, aux11, mean = 0;
1632 const int ix =
locate_reg(lons, (
int) nlon, lon2);
1633 const int iy =
locate_irr(lats, (
int) nlat, lat2);
1637 for (
int dx = 0; dx < 2; dx++)
1638 for (
int dy = 0; dy < 2; dy++) {
1639 if (isfinite(array0[ix + dx][iy + dy])) {
1640 mean += array0[ix + dx][iy + dy];
1641 *sigma +=
SQR(array0[ix + dx][iy + dy]);
1644 if (isfinite(array1[ix + dx][iy + dy])) {
1645 mean += array1[ix + dx][iy + dy];
1646 *sigma +=
SQR(array1[ix + dx][iy + dy]);
1651 *sigma = sqrt(
MAX(*sigma / n -
SQR(mean / n), 0.0));
1654 if (method == 1 && isfinite(array0[ix][iy])
1655 && isfinite(array0[ix][iy + 1])
1656 && isfinite(array0[ix + 1][iy])
1657 && isfinite(array0[ix + 1][iy + 1])
1658 && isfinite(array1[ix][iy])
1659 && isfinite(array1[ix][iy + 1])
1660 && isfinite(array1[ix + 1][iy])
1661 && isfinite(array1[ix + 1][iy + 1])) {
1663 aux00 =
LIN(lons[ix], array0[ix][iy],
1664 lons[ix + 1], array0[ix + 1][iy], lon2);
1665 aux01 =
LIN(lons[ix], array0[ix][iy + 1],
1666 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
1667 aux0 =
LIN(lats[iy], aux00, lats[iy + 1], aux01, lat2);
1669 aux10 =
LIN(lons[ix], array1[ix][iy],
1670 lons[ix + 1], array1[ix + 1][iy], lon2);
1671 aux11 =
LIN(lons[ix], array1[ix][iy + 1],
1672 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
1673 aux1 =
LIN(lats[iy], aux10, lats[iy + 1], aux11, lat2);
1675 *var =
LIN(time0, aux0, time1, aux1, time);
1680 aux00 =
NN(lons[ix], array0[ix][iy],
1681 lons[ix + 1], array0[ix + 1][iy], lon2);
1682 aux01 =
NN(lons[ix], array0[ix][iy + 1],
1683 lons[ix + 1], array0[ix + 1][iy + 1], lon2);
1684 aux0 =
NN(lats[iy], aux00, lats[iy + 1], aux01, lat2);
1686 aux10 =
NN(lons[ix], array1[ix][iy],
1687 lons[ix + 1], array1[ix + 1][iy], lon2);
1688 aux11 =
NN(lons[ix], array1[ix][iy + 1],
1689 lons[ix + 1], array1[ix + 1][iy + 1], lon2);
1690 aux1 =
NN(lats[iy], aux10, lats[iy + 1], aux11, lat2);
1692 *var =
NN(time0, aux0, time1, aux1, time);
1717 const time_t jsec0 = (time_t) jsec + timegm(&t0);
1718 t1 = gmtime(&jsec0);
1720 *year = t1->tm_year + 1900;
1721 *mon = t1->tm_mon + 1;
1723 *hour = t1->tm_hour;
1726 *remain = jsec - floor(jsec);
1732 const double kz[
EP],
1733 const double kw[
EP],
1742 const double z =
Z(p);
1747 else if (z > kz[nk - 1])
1751 return LIN(kz[idx], kw[idx], kz[idx + 1], kw[idx + 1], z);
1768 const double a =
RA *
SQR(t), r =
SH(h2o) / (1. -
SH(h2o));
1782 const double press[138] = {
1783 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
1784 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
1785 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
1786 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
1787 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1788 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
1789 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
1790 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
1791 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
1792 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
1793 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
1794 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
1795 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
1796 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
1797 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
1798 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
1799 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
1800 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
1801 1010.8487, 1013.2500, 1044.45
1804 for (
int ip = 0; ip < ctl->
met_np; ip++)
1811 const double press[92] = {
1812 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
1813 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
1814 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
1815 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
1816 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
1818 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
1819 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
1820 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
1821 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
1822 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
1823 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
1824 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
1825 1007.4431, 1010.8487, 1013.2500, 1044.45
1828 for (
int ip = 0; ip < ctl->
met_np; ip++)
1835 const double press[60] = {
1836 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
1837 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
1838 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
1839 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
1840 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
1841 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
1842 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
1843 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1044.45
1846 for (
int ip = 0; ip < ctl->
met_np; ip++)
1853 const double press[147] = {
1854 0.0200, 0.0310, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861, 0.2499,
1855 0.3299, 0.4288, 0.5496, 0.6952, 0.8690, 1.0742, 1.3143, 1.5928, 1.9134,
1856 2.2797, 2.6954, 3.1642, 3.6898, 4.2759, 4.9262, 5.6441, 6.4334, 7.2974,
1857 8.2397, 9.2634, 10.3720, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945,
1858 18.9752, 20.7610, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1859 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.1990, 54.5299, 57.9834,
1860 61.5607, 65.2695, 69.1187, 73.1187, 77.2810, 81.6182, 86.1450, 90.8774,
1861 95.8280, 101.0047, 106.4153, 112.0681, 117.9714, 124.1337, 130.5637,
1862 137.2703, 144.2624, 151.5493, 159.1403, 167.0450, 175.2731, 183.8344,
1863 192.7389, 201.9969, 211.6186, 221.6146, 231.9954, 242.7719, 253.9549,
1864 265.5556, 277.5852, 290.0548, 302.9762, 316.3607, 330.2202, 344.5663,
1865 359.4111, 374.7666, 390.6450, 407.0583, 424.0190, 441.5395, 459.6321,
1866 478.3096, 497.5845, 517.4198, 537.7195, 558.3430, 579.1926, 600.1668,
1867 621.1624, 642.0764, 662.8084, 683.2620, 703.3467, 722.9795, 742.0855,
1868 760.5996, 778.4661, 795.6396, 812.0847, 827.7756, 842.6959, 856.8376,
1869 870.2004, 882.7910, 894.6222, 905.7116, 916.0815, 925.7571, 934.7666,
1870 943.1399, 950.9082, 958.1037, 964.7584, 970.9046, 976.5737, 981.7968,
1871 986.6036, 991.0230, 995.0824, 998.8081, 1002.2250, 1005.3562, 1008.2239,
1872 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73, 1028.85,
1874 1035.09, 1038.21, 1041.33, 1044.45
1877 for (
int ip = 0; ip < ctl->
met_np; ip++)
1884 const double press[101] = {
1885 0.0200, 0.0398, 0.0739, 0.1291, 0.2141, 0.3395, 0.5175, 0.7617,
1886 1.0872, 1.5099, 2.0464, 2.7136, 3.5282, 4.5069, 5.6652, 7.0181,
1887 8.5795, 10.3617, 12.3759, 14.6316, 17.1371, 19.8987, 22.9216, 26.2090,
1888 29.7630, 33.5843, 37.6720, 42.0242, 46.6378, 51.5086, 56.6316, 61.9984,
1889 67.5973, 73.4150, 79.4434, 85.7016, 92.2162, 99.0182, 106.1445,
1891 121.5502, 129.9403, 138.8558, 148.3260, 158.3816, 169.0545, 180.3786,
1892 192.3889, 205.1222, 218.6172, 232.9140, 248.0547, 264.0833, 281.0456,
1893 298.9895, 317.9651, 338.0245, 359.2221, 381.6144, 405.2606, 430.2069,
1894 456.4813, 483.8505, 512.0662, 540.8577, 569.9401, 599.0310, 627.9668,
1895 656.6129, 684.8491, 712.5573, 739.5739, 765.7697, 791.0376, 815.2774,
1896 838.3507, 860.1516, 880.6080, 899.6602, 917.2205, 933.2247, 947.6584,
1897 960.5245, 971.8169, 981.5301, 989.7322, 996.8732, 1002.8013,
1898 1007.4431, 1010.8487, 1013.25, 1016.37, 1019.49, 1022.61, 1025.73,
1900 1035.09, 1038.21, 1041.33, 1044.45
1903 for (
int ip = 0; ip < ctl->
met_np; ip++)
1910 const double press[62] = {
1911 0.01, 0.1361, 0.2499, 0.4288, 0.6952, 1.0742,
1912 2.2797, 3.1642, 4.2759, 7.2974, 9.2634, 11.5685, 14.2377, 20.761,
1913 24.6577, 33.8174, 39.1149, 51.199, 57.9834, 73.1187, 81.6182,
1914 90.8774, 101.005, 112.068, 124.134, 137.27, 151.549, 167.045, 183.834,
1915 201.997, 221.615, 242.772, 265.556, 290.055, 316.361, 344.566, 374.767,
1916 407.058, 441.539, 478.31, 517.42, 558.343, 600.167, 683.262, 722.979,
1917 760.6, 795.64, 827.776, 856.838, 882.791, 905.712, 925.757, 943.14,
1918 958.104, 972.495, 986.886, 1001.28, 1015.67, 1030.06, 1034.86, 1039.65,
1922 for (
int ip = 0; ip < ctl->
met_np; ip++)
1929 const double press[137] = {
1930 0.01, 0.02, 0.031, 0.0467, 0.0683, 0.0975, 0.1361, 0.1861,
1931 0.2499, 0.3299, 0.4288, 0.5496, 0.6952, 0.869, 1.0742,
1932 1.3143, 1.5928, 1.9134, 2.2797, 2.6954, 3.1642, 3.6898,
1933 4.2759, 4.9262, 5.6441, 6.4334, 7.2974, 8.2397, 9.2634,
1934 10.372, 11.5685, 12.8561, 14.2377, 15.7162, 17.2945, 18.9752,
1935 20.761, 22.6543, 24.6577, 26.7735, 29.0039, 31.3512, 33.8174,
1936 36.4047, 39.1149, 41.9493, 44.9082, 47.9915, 51.199, 54.5299,
1937 57.9834, 61.5607, 65.2695, 69.1187, 73.1187, 77.281, 81.6182,
1938 86.145, 90.8774, 95.828, 101.005, 106.415, 112.068, 117.971,
1939 124.134, 130.564, 137.27, 144.262, 151.549, 159.14, 167.045,
1940 175.273, 183.834, 192.739, 201.997, 211.619, 221.615, 231.995,
1941 242.772, 253.955, 265.556, 277.585, 290.055, 302.976, 316.361,
1942 330.22, 344.566, 359.411, 374.767, 390.645, 407.058, 424.019,
1943 441.539, 459.632, 478.31, 497.584, 517.42, 537.72, 558.343,
1944 579.193, 600.167, 621.162, 642.076, 662.808, 683.262, 703.347,
1945 722.979, 742.086, 760.6, 778.466, 795.64, 812.085, 827.776,
1946 842.696, 856.838, 870.2, 882.791, 894.622, 905.712, 916.081,
1947 925.757, 934.767, 943.14, 950.908, 958.104, 965.299, 972.495,
1948 979.69, 986.886, 994.081, 1001.28, 1008.47, 1015.67, 1022.86,
1949 1030.06, 1037.25, 1044.45
1952 for (
int ip = 0; ip < ctl->
met_np; ip++)
1959 const double press[59] = {
1960 0.1, 0.2, 0.3843, 0.6365, 0.9564, 1.3448, 1.8058, 2.3478,
1961 2.985, 3.7397, 4.6462, 5.7565, 7.1322, 8.8366, 10.9483,
1962 13.5647, 16.8064, 20.8227, 25.7989, 31.9642, 39.6029, 49.0671,
1963 60.1802, 73.0663, 87.7274, 104.229, 122.614, 142.902, 165.089,
1964 189.147, 215.025, 242.652, 272.059, 303.217, 336.044, 370.407,
1965 406.133, 443.009, 480.791, 519.209, 557.973, 596.777, 635.306,
1966 673.24, 710.263, 746.063, 780.346, 812.83, 843.263, 871.42,
1967 897.112, 920.189, 940.551, 958.148, 975.744, 993.341, 1010.94,
1971 for (
int ip = 0; ip < ctl->
met_np; ip++)
1975 ERRMSG(
"Use 0 for l137, 1 for l91, 2 for l60 or values between 3 and 7.")
1988 int i = (ihi + ilo) >> 1;
1990 if (xx[i] < xx[i + 1])
1991 while (ihi > ilo + 1) {
1992 i = (ihi + ilo) >> 1;
1998 while (ihi > ilo + 1) {
1999 i = (ihi + ilo) >> 1;
2019 int i = (ihi + ilo) >> 1;
2021 if (x >= xx[ig] && x < xx[ig + 1])
2024 if (xx[i] < xx[i + 1])
2025 while (ihi > ilo + 1) {
2026 i = (ihi + ilo) >> 1;
2032 while (ihi > ilo + 1) {
2033 i = (ihi + ilo) >> 1;
2051 const int i = (int) ((x - xx[0]) / (xx[1] - xx[0]));
2065 float profiles[
EX][
EY][
EP],
2067 const int lon_ap_ind,
2068 const int lat_ap_ind,
2069 const double height_ap,
2075 np, height_ap, ind[0]);
2077 np, height_ap, ind[1]);
2079 np, height_ap, ind[2]);
2098 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2102 double dts, u[4], um = 0, v[4], vm = 0, w[4], wm = 0,
2106 for (
int i = 0; i < ctl->
advect; i++) {
2111 x[0] = atm->
lon[ip];
2112 x[1] = atm->
lat[ip];
2115 dts = (i == 3 ? 1.0 : 0.5) * cache->
dt[ip];
2116 x[0] = atm->
lon[ip] +
DX2DEG(dts * u[i - 1] / 1000., atm->
lat[ip]);
2117 x[1] = atm->
lat[ip] +
DY2DEG(dts * v[i - 1] / 1000.);
2118 x[2] = atm->
p[ip] + dts * w[i - 1];
2120 const double tm = atm->
time[ip] + dts;
2125 tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
2127 tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
2129 tm, x[2], x[0], x[1], &w[i], ci, cw, 0);
2135 met1, met1->
pl, met1->
ul,
2136 tm, x[2], x[0], x[1], &u[i]);
2138 met1, met1->
pl, met1->
vl,
2139 tm, x[2], x[0], x[1], &v[i]);
2141 met1, met1->
pl, met1->
wl,
2142 tm, x[2], x[0], x[1], &w[i]);
2148 k = (i == 0 ? 0.0 : 1.0);
2149 else if (ctl->
advect == 4)
2150 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
2157 atm->
time[ip] += cache->
dt[ip];
2158 atm->
lon[ip] +=
DX2DEG(cache->
dt[ip] * um / 1000.,
2159 (ctl->
advect == 2 ? x[1] : atm->
lat[ip]));
2160 atm->
lat[ip] +=
DY2DEG(cache->
dt[ip] * vm / 1000.);
2161 atm->
p[ip] += cache->
dt[ip] * wm;
2169 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2178 atm->
lon[ip], atm->
lat[ip],
2182 double dts, u[4], um = 0, v[4], vm = 0, zeta_dot[4],
2183 zeta_dotm = 0, x[3] = { 0, 0, 0 };
2186 for (
int i = 0; i < ctl->
advect; i++) {
2191 x[0] = atm->
lon[ip];
2192 x[1] = atm->
lat[ip];
2195 dts = (i == 3 ? 1.0 : 0.5) * cache->
dt[ip];
2196 x[0] = atm->
lon[ip] +
DX2DEG(dts * u[i - 1] / 1000., atm->
lat[ip]);
2197 x[1] = atm->
lat[ip] +
DY2DEG(dts * v[i - 1] / 1000.);
2198 x[2] = atm->
q[ctl->
qnt_zeta][ip] + dts * zeta_dot[i - 1];
2200 const double tm = atm->
time[ip] + dts;
2204 met1->
ul, tm, x[2], x[0], x[1], &u[i], ci, cw, 1);
2206 met1->
vl, tm, x[2], x[0], x[1], &v[i], ci, cw, 0);
2209 x[1], &zeta_dot[i], ci, cw, 0);
2214 k = (i == 0 ? 0.0 : 1.0);
2215 else if (ctl->
advect == 4)
2216 k = (i == 0 || i == 3 ? 1.0 / 6.0 : 2.0 / 6.0);
2219 zeta_dotm += k * zeta_dot[i];
2223 atm->
time[ip] += cache->
dt[ip];
2224 atm->
lon[ip] +=
DX2DEG(cache->
dt[ip] * um / 1000.,
2225 (ctl->
advect == 2 ? x[1] : atm->
lat[ip]));
2226 atm->
lat[ip] +=
DY2DEG(cache->
dt[ip] * vm / 1000.);
2227 atm->
q[ctl->
qnt_zeta][ip] += cache->
dt[ip] * zeta_dotm;
2232 atm->
lon[ip], atm->
lat[ip], &atm->
p[ip], ci, cw, 1);
2251 SELECT_TIMER(
"MODULE_ADVECT_INIT",
"PHYSICS", NVTX_GPU);
2260 atm->
lon[ip], atm->
lat[ip], &atm->
p[ip], ci, cw, 1);
2275 SELECT_TIMER(
"MODULE_BOUND_COND",
"PHYSICS", NVTX_GPU);
2285 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2321 if (atm->
p[ip] < pbl)
2373 ERRMSG(
"Molar mass is not defined!");
2379 const int np = atm->
np;
2383 const int ngrid = nx * ny * nz;
2385 double *restrict
const z = (
double *) malloc((
size_t) nz *
sizeof(double));
2386 double *restrict
const press =
2387 (
double *) malloc((
size_t) nz *
sizeof(double));
2388 double *restrict
const mass =
2389 (
double *) calloc((
size_t) ngrid,
sizeof(double));
2390 double *restrict
const area =
2391 (
double *) malloc((
size_t) ny *
sizeof(double));
2392 double *restrict
const lon =
2393 (
double *) malloc((
size_t) nx *
sizeof(double));
2394 double *restrict
const lat =
2395 (
double *) malloc((
size_t) ny *
sizeof(double));
2397 int *restrict
const ixs = (
int *) malloc((
size_t) np *
sizeof(int));
2398 int *restrict
const iys = (
int *) malloc((
size_t) np *
sizeof(int));
2399 int *restrict
const izs = (
int *) malloc((
size_t) np *
sizeof(int));
2408#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np],z[0:nz],press[0:nz],mass[0:ngrid],area[0:ny],lon[0:nx],lat[0:ny])
2409#pragma acc data present(ctl,met0,met1,atm,ixs,iys,izs,z,press,mass,area,lon,lat)
2410#pragma acc parallel loop independent gang vector
2412#pragma omp parallel for default(shared)
2414 for (
int iz = 0; iz < nz; iz++) {
2416 press[iz] =
P(z[iz]);
2420 const double t0 = tt - 0.5 * ctl->
dt_mod;
2421 const double t1 = tt + 0.5 * ctl->
dt_mod;
2425#pragma acc parallel loop independent gang vector
2427#pragma omp parallel for default(shared)
2429 for (
int ip = 0; ip < np; ip++) {
2433 if (atm->
time[ip] < t0 || atm->
time[ip] > t1
2434 || ixs[ip] < 0 || ixs[ip] >= nx
2435 || iys[ip] < 0 || iys[ip] >= ny || izs[ip] < 0 || izs[ip] >= nz)
2441#pragma acc parallel loop independent gang vector
2443#pragma omp parallel for default(shared)
2445 for (
int ix = 0; ix < nx; ix++)
2448#pragma acc parallel loop independent gang vector
2450#pragma omp parallel for default(shared)
2452 for (
int iy = 0; iy < ny; iy++) {
2454 area[iy] = dlat * dlon *
SQR(
RE * M_PI / 180.) * cos(
DEG2RAD(lat[iy]));
2459#pragma acc parallel loop independent gang vector
2461 for (
int ip = 0; ip < np; ip++)
2464#pragma acc atomic update
2466 mass[
ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz)]
2467 += atm->
q[ctl->
qnt_m][ip];
2471#pragma acc parallel loop independent gang vector
2473#pragma omp parallel for default(shared)
2475 for (
int ip = 0; ip < np; ip++)
2482 lon[ixs[ip]], lat[iys[ip]], &temp, ci, cw, 1);
2485 const double m = mass[
ARRAY_3D(ixs[ip], iys[ip], ny, izs[ip], nz)];
2489 / (
RHO(press[izs[ip]], temp) * area[iys[ip]] * dz * 1e9);
2492#pragma acc exit data delete(ixs,iys,izs,z,press,mass,area,lon,lat)
2522 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2539 atm->
lon[ip], atm->
lat[ip], atm->
p[ip]));
2541 atm->
lat[ip], atm->
p[ip]));
2543 atm->
lat[ip], atm->
p[ip]));
2545 atm->
lat[ip], atm->
p[ip]));
2559 SELECT_TIMER(
"MODULE_CONVECTION",
"PHYSICS", NVTX_GPU);
2565 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2573 double pbot = ps, ptop = ps;
2590 double cape, cin, pel;
2596 if (isfinite(cape) && cape >= ctl->
conv_cape
2598 ptop = GSL_MIN(ptop, pel);
2602 if (ptop != pbot && atm->
p[ip] >= ptop) {
2607 pbot, atm->
lon[ip], atm->
lat[ip], &tbot, ci, cw, 1);
2609 ptop, atm->
lon[ip], atm->
lat[ip], &ttop, ci, cw, 1);
2610 const double rhobot = pbot / tbot;
2611 const double rhotop = ptop / ttop;
2614 const double rho = rhobot + (rhotop - rhobot) * cache->
rs[ip];
2617 atm->
p[ip] =
LIN(rhobot, pbot, rhotop, ptop, rho);
2635 ERRMSG(
"Module needs quantity mass or volume mixing ratio!");
2638 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,clim,atm)") {
2647 const double aux = exp(-cache->
dt[ip] / tdec);
2648 if (ctl->
qnt_m >= 0) {
2651 += atm->
q[ctl->
qnt_m][ip] * (1 - aux);
2652 atm->
q[ctl->
qnt_m][ip] *= aux;
2677 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2685 float umean = 0, usig = 0, vmean = 0, vsig = 0, wmean = 0, wsig = 0;
2686 for (
int i = 0; i < 2; i++)
2687 for (
int j = 0; j < 2; j++)
2688 for (
int k = 0; k < 2; k++) {
2689 umean += met0->
u[ix + i][iy + j][iz + k];
2690 usig +=
SQR(met0->
u[ix + i][iy + j][iz + k]);
2691 vmean += met0->
v[ix + i][iy + j][iz + k];
2692 vsig +=
SQR(met0->
v[ix + i][iy + j][iz + k]);
2693 wmean += met0->
w[ix + i][iy + j][iz + k];
2694 wsig +=
SQR(met0->
w[ix + i][iy + j][iz + k]);
2696 umean += met1->
u[ix + i][iy + j][iz + k];
2697 usig +=
SQR(met1->
u[ix + i][iy + j][iz + k]);
2698 vmean += met1->
v[ix + i][iy + j][iz + k];
2699 vsig +=
SQR(met1->
v[ix + i][iy + j][iz + k]);
2700 wmean += met1->
w[ix + i][iy + j][iz + k];
2701 wsig +=
SQR(met1->
w[ix + i][iy + j][iz + k]);
2703 usig = usig / 16.f -
SQR(umean / 16.f);
2704 usig = (usig > 0 ? sqrtf(usig) : 0);
2705 vsig = vsig / 16.f -
SQR(vmean / 16.f);
2706 vsig = (vsig > 0 ? sqrtf(vsig) : 0);
2707 wsig = wsig / 16.f -
SQR(wmean / 16.f);
2708 wsig = (wsig > 0 ? sqrtf(wsig) : 0);
2711 const double r = 1 - 2 * fabs(cache->
dt[ip]) / ctl->
dt_met;
2712 const double r2 = sqrt(1 - r * r);
2716 cache->
uvwp[ip][0] =
2717 (float) (r * cache->
uvwp[ip][0] +
2722 cache->
uvwp[ip][1] =
2723 (float) (r * cache->
uvwp[ip][1] +
2730 cache->
uvwp[ip][2] =
2731 (float) (r * cache->
uvwp[ip][2] +
2733 atm->
p[ip] += cache->
uvwp[ip][2] * cache->
dt[ip];
2754 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2756 double dsigw_dz = 0.0, sig_u = 0.25, sig_w = 0.1,
2757 tau_u = 300., tau_w = 100.;
2766 if (atm->
p[ip] >= pbl) {
2769 const double p =
MIN(atm->
p[ip], ps);
2770 const double zs =
Z(ps);
2771 const double z = 1e3 * (
Z(p) - zs);
2772 const double zi = 1e3 * (
Z(pbl) - zs);
2773 const double zratio = z / zi;
2776 double ess, nss, h2o, t;
2781 const double rho =
RHO(p,
TVIRT(t, h2o));
2782 const double tau = sqrt(
SQR(ess) +
SQR(nss));
2783 const double ustar = sqrt(tau / rho);
2793 sig_u = 1e-2 + 2.0 * ustar * (1.0 - zratio);
2794 sig_w = 1e-2 + 1.3 * ustar * (1.0 - zratio);
2797 dsigw_dz = -1.3 * ustar / zi;
2800 tau_u = 0.07 * zi / sig_u * sqrt(zratio);
2801 tau_w = 0.1 * zi / sig_w * pow(zratio, 0.8);
2808 const double wstar =
2809 pow(
G0 /
THETAVIRT(p, t, h2o) * shf / (rho *
CPD) * zi, 1. / 3.);
2813 + sqrt(0.4 *
SQR(wstar) + (5.0 - 4.0 * zratio) *
SQR(ustar));
2814 sig_w = 1e-2 + sqrt(1.2 *
SQR(wstar) * (1.0 - 0.9 * zratio)
2815 * pow(zratio, 2.0 / 3.0)
2816 + (1.8 - 1.4 * zratio) *
SQR(ustar));
2819 dsigw_dz = 0.5 / sig_w / zi * (-1.4 *
SQR(ustar) +
SQR(wstar)
2821 pow(
MAX(zratio, 1e-3), -1.0 / 3.0)
2822 - 1.8 * pow(zratio, 2.0 / 3.0)));
2825 const double C0 = 3.0;
2827 (1.5 - 1.2 * pow(zratio, 1.0 / 3.0)) *
SQR(wstar) * wstar / zi
2828 +
SQR(ustar) * ustar * (1.0 - 0.8 * zratio) / (
KARMAN * z);
2829 tau_u = 2 *
SQR(sig_u) / (C0 * eps);
2830 tau_w = 2 *
SQR(sig_w) / (C0 * eps);
2835 sig_u =
MAX(sig_u, 0.25);
2836 sig_w =
MAX(sig_w, 0.1);
2837 tau_u =
MAX(tau_u, 300.);
2838 tau_w =
MAX(tau_w, 100.);
2841 const double ru = exp(-fabs(cache->
dt[ip]) / tau_u);
2842 const double ru2 = sqrt(1.0 -
SQR(ru));
2844 = (float) (cache->
uvwp[ip][0] * ru + ru2 * cache->
rs[3 * ip]);
2846 = (float) (cache->
uvwp[ip][1] * ru + ru2 * cache->
rs[3 * ip + 1]);
2848 const double rw = exp(-fabs(cache->
dt[ip]) / tau_w);
2849 const double rw2 = sqrt(1.0 -
SQR(rw));
2851 = (float) (cache->
uvwp[ip][2] * rw + rw2 * cache->
rs[3 * ip + 2]
2852 + sig_w * dsigw_dz * cache->
dt[ip]);
2859 DZ2DP(cache->
uvwp[ip][2] * cache->
dt[ip] / 1000., atm->
p[ip]);
2881 "acc data present(ctl,cache,clim,met0,met1,atm)") {
2890 const double wpbl =
pbl_weight(ctl, atm, ip, pbl, ps);
2891 const double wtrop =
tropo_weight(clim, atm, ip) * (1.0 - wpbl);
2892 const double wstrat = 1.0 - wpbl - wtrop;
2902 const double sigma = sqrt(2.0 * dx * fabs(cache->
dt[ip])) / 1000.;
2904 atm->
lat[ip] +=
DY2DEG(cache->
rs[3 * ip + 1] * sigma);
2909 const double sigma = sqrt(2.0 * dz * fabs(cache->
dt[ip])) / 1000.;
2910 atm->
p[ip] +=
DZ2DP(cache->
rs[3 * ip + 2] * sigma, atm->
p[ip]);
2929 ERRMSG(
"Module needs quantity mass or volume mixing ratio!");
2932 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
2944 const double dz = 1000. * (
Z(ps - ctl->
dry_depo_dp) -
Z(ps));
2964 const double aux = exp(-cache->
dt[ip] * v_dep / dz);
2965 if (ctl->
qnt_m >= 0) {
2968 += atm->
q[ctl->
qnt_m][ip] * (1 - aux);
2969 atm->
q[ctl->
qnt_m][ip] *= aux;
2993 ERRMSG(
"Module needs quantity mass or volume mixing ratio!");
2996 const double a = 3.12541941e-06;
2997 const double b = -5.72532259e-01;
2998 const double low = pow(1. / a, 1. / b);
3002 "acc data present(ctl,cache,ctl,met0,met1,atm)") {
3009 if (!(lwc > 0 || rwc > 0))
3020 const double k = 9.1e7 * exp(-29700. /
RI * (1. / t - 1. / 298.15));
3023 const double H_SO2 =
3024 1.3e-2 * exp(2900. * (1. / t - 1. / 298.15)) *
RI * t;
3025 const double K_1S = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15));
3028 const double H_h2o2 =
3029 8.3e2 * exp(7600. * (1. / t - 1. / 298.15)) *
RI * t;
3035 cor = atm->
q[ctl->
qnt_Cx][ip] >
3036 low ? a * pow(atm->
q[ctl->
qnt_Cx][ip], b) : 1;
3038 const double h2o2 = H_h2o2
3040 * M * cor * 1000. /
AVO;
3043 const double rho_air = atm->
p[ip] / (
RI * t) *
MA / 10.;
3044 const double CWC = (lwc + rwc) * rho_air / 1e3;
3047 const double rate_coef = k * K_1S * h2o2 * H_SO2 * CWC;
3048 const double aux = exp(-cache->
dt[ip] * rate_coef);
3049 if (ctl->
qnt_m >= 0) {
3052 atm->
q[ctl->
qnt_m][ip] *= aux;
3073 SELECT_TIMER(
"MODULE_ISOSURF_INIT",
"PHYSICS", NVTX_GPU);
3084 PARTICLE_LOOP(0, atm->
np, 0,
"acc data present(cache,met0,met1,atm)") {
3087 cache->
iso_var[ip] = atm->
p[ip] / t;
3093 PARTICLE_LOOP(0, atm->
np, 0,
"acc data present(cache,met0,met1,atm)") {
3104 LOG(1,
"Read balloon pressure data: %s", ctl->
balloon);
3108 if (!(in = fopen(ctl->
balloon,
"r")))
3109 ERRMSG(
"Cannot open file!");
3113 while (fgets(line,
LEN, in))
3114 if (sscanf(line,
"%lg %lg", &(cache->
iso_ts[cache->
iso_n]),
3117 ERRMSG(
"Too many data points!");
3120 if (cache->
iso_n < 1)
3121 ERRMSG(
"Could not read any data!");
3144 PARTICLE_LOOP(0, atm->
np, 0,
"acc data present(ctl,cache,met0,met1,atm)") {
3157 atm->
p[ip] = cache->
iso_var[ip] * t;
3163 atm->
p[ip] = 1000. * pow(cache->
iso_var[ip] / t, -1. / 0.286);
3169 atm->
p[ip] = cache->
iso_ps[0];
3196 const int nvar = NVAR, nfix = NFIX, nreact = NREACT;
3197 double rtol[1] = { 1.0e-3 };
3198 double atol[1] = { 1.0 };
3202#pragma acc data copy(rtol,atol,nvar,nfix,nreact)
3205 "acc data present(ctl,cache,clim,met0,met1,atm) ") {
3208 double var[nvar], fix[nfix], rconst[nreact];
3209 for (
int i = 0; i < nvar; i++)
3211 for (
int i = 0; i < nfix; i++)
3213 for (
int i = 0; i < nreact; i++)
3215 kpp_chem_initialize(ctl, clim, met0, met1, atm, var, fix, rconst, ip);
3220 for (
int i = 0; i < 20; i++) {
3227 Rosenbrock(var, fix, rconst, 0, ctl->
dt_kpp,
3228 atol, rtol, &FunTemplate, &JacTemplate, rpar, ipar);
3231 kpp_chem_output2atm(atm, ctl, met0, met1, var, ip);
3252 ERRMSG(
"Need T_ice and T_NAT to calculate T_STS!");
3256 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3258 double ps, ts, zs, us, vs, ess, nss, shf, lsm, sst, pbl, pt, pct, pcb, cl,
3259 plcl, plfc, pel, cape, cin, o3c, pv, t, tt, u, v, w, h2o, h2ot, o3, lwc,
3260 rwc, iwc, swc, cc, z, zt;
3308 atm->
lon[ip], atm->
lat[ip], atm->
p[ip]));
3310 atm->
lat[ip], atm->
p[ip]));
3312 atm->
lat[ip], atm->
p[ip]));
3314 atm->
lat[ip], atm->
p[ip]));
3315 SET_ATM(qnt_vh, sqrt(u * u + v * v));
3334 atm->
lat[ip], atm->
p[ip])));
3352 const int np = atm->
np;
3353 int *restrict
const ixs = (
int *) malloc((
size_t) np *
sizeof(int));
3354 int *restrict
const iys = (
int *) malloc((
size_t) np *
sizeof(int));
3355 int *restrict
const izs = (
int *) malloc((
size_t) np *
sizeof(int));
3363 const double t0 = t - 0.5 * ctl->
dt_mod;
3364 const double t1 = t + 0.5 * ctl->
dt_mod;
3368#pragma acc enter data create(ixs[0:np],iys[0:np],izs[0:np])
3369#pragma acc data present(ctl,clim,atm,ixs,iys,izs)
3370#pragma acc parallel loop independent gang vector
3372#pragma omp parallel for default(shared)
3374 for (
int ip = 0; ip < np; ip++) {
3377 izs[ip] = (int) ((
Z(atm->
p[ip]) - ctl->
mixing_z0) / dz);
3378 if (atm->
time[ip] < t0 || atm->
time[ip] > t1
3379 || ixs[ip] < 0 || ixs[ip] >= ctl->
mixing_nx
3380 || iys[ip] < 0 || iys[ip] >= ctl->
mixing_ny
3381 || izs[ip] < 0 || izs[ip] >= ctl->
mixing_nz)
3386 if (ctl->
qnt_m >= 0)
3423#pragma acc exit data delete(ixs,iys,izs)
3439 const int qnt_idx) {
3442 const int np = atm->
np;
3444 double *restrict
const cmean =
3445 (
double *) malloc((
size_t) ngrid *
sizeof(double));
3446 int *restrict
const count = (
int *) malloc((
size_t) ngrid *
sizeof(int));
3450#pragma acc enter data create(cmean[0:ngrid],count[0:ngrid])
3451#pragma acc data present(ctl,clim,atm,ixs,iys,izs,cmean,count)
3452#pragma acc parallel loop independent gang vector
3457#pragma omp parallel for
3459 for (
int i = 0; i < ngrid; i++) {
3466#pragma acc parallel loop independent gang vector
3468 for (
int ip = 0; ip < np; ip++)
3473#pragma acc atomic update
3475 cmean[idx] += atm->
q[qnt_idx][ip];
3477#pragma acc atomic update
3482#pragma acc parallel loop independent gang vector
3487#pragma omp parallel for
3489 for (
int i = 0; i < ngrid; i++)
3491 cmean[i] /= count[i];
3495#pragma acc parallel loop independent gang vector
3497#pragma omp parallel for
3499 for (
int ip = 0; ip < np; ip++)
3503 double mixparam = 1.0;
3510 atm->
q[qnt_idx][ip] +=
3513 - atm->
q[qnt_idx][ip]) * mixparam;
3518#pragma acc exit data delete(cmean,count)
3539 ERRMSG(
"Module needs quantity mass or volume mixing ratio!");
3542 const double a = 4.71572206e-08;
3543 const double b = -8.28782867e-01;
3544 const double low = pow(1. / a, 1. / b);
3548 "acc data present(ctl,cache,clim,met0,met1,atm)") {
3574 0 ? pow(298. / t, ctl->
oh_chem[1]) : 1.);
3577 0 ? pow(298. / t, ctl->
oh_chem[3]) : 1.);
3578 const double c = log10(k0 * M / ki);
3579 k = k0 * M / (1. + k0 * M / ki) * pow(0.6, 1. / (1. + c * c));
3588 low ? a * pow(atm->
q[ctl->
qnt_Cx][ip], b) : 1;
3591 const double rate_coef =
3593 atm->
lat[ip], atm->
p[ip]) * M * cor;
3594 const double aux = exp(-cache->
dt[ip] * rate_coef);
3595 if (ctl->
qnt_m >= 0) {
3598 += atm->
q[ctl->
qnt_m][ip] * (1 - aux);
3599 atm->
q[ctl->
qnt_m][ip] *= aux;
3620 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(cache,met0,met1,atm)") {
3631 while (atm->
lat[ip] < -90 || atm->
lat[ip] > 90) {
3632 if (atm->
lat[ip] > 90) {
3633 atm->
lat[ip] = 180 - atm->
lat[ip];
3634 atm->
lon[ip] += 180;
3636 if (atm->
lat[ip] < -90) {
3637 atm->
lat[ip] = -180 - atm->
lat[ip];
3638 atm->
lon[ip] += 180;
3643 while (atm->
lon[ip] < -180)
3644 atm->
lon[ip] += 360;
3645 while (atm->
lon[ip] >= 180)
3646 atm->
lon[ip] -= 360;
3649 if (atm->
p[ip] < met0->
p[met0->
np - 1]) {
3650 atm->
p[ip] = met0->
p[met0->
np - 1];
3651 }
else if (atm->
p[ip] > 300.) {
3653 if (atm->
p[ip] > ps)
3665 gsl_rng_env_setup();
3666 if (omp_get_max_threads() >
NTHREADS)
3667 ERRMSG(
"Too many threads!");
3668 for (
int i = 0; i <
NTHREADS; i++) {
3669 rng[i] = gsl_rng_alloc(gsl_rng_default);
3670 gsl_rng_set(rng[i], gsl_rng_default_seed
3671 + (
long unsigned) (ntask *
NTHREADS + i));
3676 if (curandCreateGenerator(&rng_curand, CURAND_RNG_PSEUDO_DEFAULT) !=
3677 CURAND_STATUS_SUCCESS)
3678 ERRMSG(
"Cannot create random number generator!");
3679 if (curandSetPseudoRandomGeneratorSeed(rng_curand, ntask) !=
3680 CURAND_STATUS_SUCCESS)
3681 ERRMSG(
"Cannot set seed for random number generator!");
3684 (cudaStream_t) acc_get_cuda_stream(acc_async_sync)) !=
3685 CURAND_STATUS_SUCCESS)
3686 ERRMSG(
"Cannot set stream for random number generator!");
3703#pragma omp parallel for default(shared)
3704 for (
size_t i = 0; i < n; ++i)
3705 rs[i] = gsl_rng_uniform(rng[omp_get_thread_num()]);
3709 else if (method == 1) {
3710#pragma omp parallel for default(shared)
3711 for (
size_t i = 0; i < n; ++i)
3712 rs[i] = gsl_ran_gaussian_ziggurat(rng[omp_get_thread_num()], 1.0);
3718#pragma acc update device(rs[:n])
3726 const uint64_t key = 0xc8e4fd154ce32f6d;
3730#pragma acc data present(rs)
3731#pragma acc parallel loop independent gang vector
3733#pragma omp parallel for default(shared)
3735 for (
size_t i = 0; i < n + 1; ++i) {
3736 uint64_t r, t, x, y, z;
3737 y = x = (rng_ctr + i) * key;
3740 x = (x >> 32) | (x << 32);
3742 x = (x >> 32) | (x << 32);
3744 x = (x >> 32) | (x << 32);
3746 x = (x >> 32) | (x << 32);
3747 r = t ^ ((x * x + y) >> 32);
3748 rs[i] = (double) r / (
double) UINT64_MAX;
3755#pragma acc parallel loop independent gang vector
3757#pragma omp parallel for default(shared)
3759 for (
size_t i = 0; i < n; i += 2) {
3760 const double r = sqrt(-2.0 * log(rs[i]));
3761 const double phi = 2.0 * M_PI * rs[i + 1];
3762 rs[i] = r * cosf((
float) phi);
3763 rs[i + 1] = r * sinf((
float) phi);
3771#pragma acc host_data use_device(rs)
3776 if (curandGenerateUniformDouble(rng_curand, rs, (n < 4 ? 4 : n)) !=
3777 CURAND_STATUS_SUCCESS)
3778 ERRMSG(
"Cannot create random numbers!");
3782 else if (method == 1) {
3783 if (curandGenerateNormalDouble
3784 (rng_curand, rs, (n < 4 ? 4 : n), 0.0,
3785 1.0) != CURAND_STATUS_SUCCESS)
3786 ERRMSG(
"Cannot create random numbers!");
3790 ERRMSG(
"MPTRAC was compiled without cuRAND!");
3808 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
3816 const double v_s =
sedi(atm->
p[ip], t, atm->
q[ctl->
qnt_rp][ip],
3820 atm->
p[ip] +=
DZ2DP(v_s * cache->
dt[ip] / 1000., atm->
p[ip]);
3835 const int np = atm->
np;
3836 double *restrict
const a = (
double *) malloc((
size_t) np *
sizeof(double));
3837 int *restrict
const p = (
int *) malloc((
size_t) np *
sizeof(int));
3840#pragma acc enter data create(a[0:np],p[0:np])
3841#pragma acc data present(ctl,met0,atm,a,p)
3846#pragma acc parallel loop independent gang vector
3848#pragma omp parallel for default(shared)
3850 for (
int ip = 0; ip < np; ip++) {
3860#pragma acc host_data use_device(a,p)
3865 ERRMSG(
"MPTRAC was compiled without Thrust library!");
3873 for (
int iq = 0; iq < ctl->
nq; iq++)
3878#pragma acc exit data delete(a,p)
3892 double *restrict
const help =
3893 (
double *) malloc((
size_t) np *
sizeof(double));
3897#pragma acc enter data create(help[0:np])
3898#pragma acc data present(a,p,help)
3899#pragma acc parallel loop independent gang vector
3901#pragma omp parallel for default(shared)
3903 for (
int ip = 0; ip < np; ip++)
3904 help[ip] = a[p[ip]];
3906#pragma acc parallel loop independent gang vector
3908#pragma omp parallel for default(shared)
3910 for (
int ip = 0; ip < np; ip++)
3915#pragma acc exit data delete(help)
3932 const double latmin = gsl_stats_min(met0->
lat, 1, (
size_t) met0->
ny),
3933 latmax = gsl_stats_max(met0->
lat, 1, (
size_t) met0->
ny);
3936 (fabs(met0->
lon[met0->
nx - 1] - met0->
lon[0] - 360.0) >= 0.01);
3939 PARTICLE_LOOP(0, atm->
np, 0,
"acc data present(ctl,cache,met0,atm)") {
3945 cache->
dt[ip] = t - atm->
time[ip];
3947 cache->
dt[ip] = 0.0;
3950 if (local && (atm->
lon[ip] <= met0->
lon[0]
3951 || atm->
lon[ip] >= met0->
lon[met0->
nx - 1]
3952 || atm->
lat[ip] <= latmin || atm->
lat[ip] >= latmax))
3953 cache->
dt[ip] = 0.0;
3964 SELECT_TIMER(
"MODULE_TIMESTEPS_INIT",
"PHYSICS", NVTX_GPU);
3968 ctl->
t_start = gsl_stats_min(atm->
time, 1, (
size_t) atm->
np);
3970 ctl->
t_stop = gsl_stats_max(atm->
time, 1, (
size_t) atm->
np);
3972 ctl->
t_start = gsl_stats_max(atm->
time, 1, (
size_t) atm->
np);
3974 ctl->
t_stop = gsl_stats_min(atm->
time, 1, (
size_t) atm->
np);
3979 ERRMSG(
"Nothing to do! Check T_STOP and DIRECTION!");
3999 SELECT_TIMER(
"MODULE_TRACER_CHEM",
"PHYSICS", NVTX_GPU);
4003 "acc data present(ctl,cache,clim,met0,met1,atm)") {
4026 const double K_o1d =
ARRHENIUS(3.30e-10, 0, t) * o1d * M;
4028 atm->
p[ip], sza, o3c);
4029 atm->
q[ctl->
qnt_Cccl4][ip] *= exp(-cache->
dt[ip] * (K_hv + K_o1d));
4034 const double K_o1d =
ARRHENIUS(2.30e-10, 0, t) * o1d * M;
4036 atm->
p[ip], sza, o3c);
4037 atm->
q[ctl->
qnt_Cccl3f][ip] *= exp(-cache->
dt[ip] * (K_hv + K_o1d));
4042 const double K_o1d =
ARRHENIUS(1.40e-10, -25, t) * o1d * M;
4044 atm->
p[ip], sza, o3c);
4045 atm->
q[ctl->
qnt_Cccl2f2][ip] *= exp(-cache->
dt[ip] * (K_hv + K_o1d));
4050 const double K_o1d =
ARRHENIUS(1.19e-10, -20, t) * o1d * M;
4052 atm->
p[ip], sza, o3c);
4053 atm->
q[ctl->
qnt_Cn2o][ip] *= exp(-cache->
dt[ip] * (K_hv + K_o1d));
4072 ERRMSG(
"Module needs quantity mass or volume mixing ratio!");
4075 PARTICLE_LOOP(0, atm->
np, 1,
"acc data present(ctl,cache,met0,met1,atm)") {
4081 if (!isfinite(pct) || atm->
p[ip] <= pct)
4097 double lwc, rwc, iwc, swc;
4102 const int inside = (lwc > 0 || rwc > 0 || iwc > 0 || swc > 0);
4116 else if (t <= 238.15)
4136 const double K_1 = 1.23e-2 * exp(2.01e3 * (1. / t - 1. / 298.15));
4137 const double K_2 = 6e-8 * exp(1.12e3 * (1. / t - 1. / 298.15));
4138 h *= (1. + K_1 / H_ion + K_1 * K_2 /
SQR(H_ion));
4142 const double dz = 1e3 * (
Z(pct) -
Z(pcb));
4145 lambda = h *
RI * t * Is / 3.6e6 / dz * eta;
4171 const double dz = 1e3 * (
Z(pct) -
Z(pcb));
4174 lambda = h *
RI * t * Is / 3.6e6 / dz * eta;
4179 const double aux = exp(-cache->
dt[ip] * lambda);
4180 if (ctl->
qnt_m >= 0) {
4183 += atm->
q[ctl->
qnt_m][ip] * (1 - aux);
4184 atm->
q[ctl->
qnt_m][ip] *= aux;
4208 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
4210 if (acc_get_num_devices(acc_device_nvidia) <= 0)
4211 ERRMSG(
"Not running on a GPU device!");
4212 acc_set_device_num(rank % acc_get_num_devices(acc_device_nvidia),
4214 acc_device_t device_type = acc_get_device_type();
4215 acc_init(device_type);
4229 SELECT_TIMER(
"CREATE_DATA_REGION",
"MEMORY", NVTX_GPU);
4230 ctl_t *ctlup = *ctl;
4233 met_t *met0up = *met0;
4234 met_t *met1up = *met1;
4235 atm_t *atmup = *atm;
4236#pragma acc enter data create(ctlup[:1],cacheup[:1],climup[:1],met0up[:1],met1up[:1],atmup[:1])
4252 SELECT_TIMER(
"DELETE_DATA_REGION",
"MEMORY", NVTX_GPU);
4253#pragma acc exit data delete (ctl,cache,clim,met0,met1,atm)
4279 char cachefile[
LEN], cmd[2 *
LEN], filename[
LEN];
4285 if (t == ctl->
t_start || !init) {
4292 ERRMSG(
"Cannot open file!");
4297 ERRMSG(
"Cannot open file!");
4307 sprintf(cmd,
"cat %s > /dev/null &", cachefile);
4308 LOG(1,
"Caching: %s", cachefile);
4309 if (system(cmd) != 0)
4310 WARN(
"Caching command failed!");
4315 if (t > (*met1)->time) {
4325 ERRMSG(
"Cannot open file!");
4335 sprintf(cmd,
"cat %s > /dev/null &", cachefile);
4336 LOG(1,
"Caching: %s", cachefile);
4337 if (system(cmd) != 0)
4338 WARN(
"Caching command failed!");
4343 if (t < (*met0)->time) {
4353 ERRMSG(
"Cannot open file!");
4363 sprintf(cmd,
"cat %s > /dev/null &", cachefile);
4364 LOG(1,
"Caching: %s", cachefile);
4365 if (system(cmd) != 0)
4366 WARN(
"Caching command failed!");
4371 if ((*met0)->nx != 0 && (*met1)->nx != 0) {
4372 if ((*met0)->nx != (*met1)->nx
4373 || (*met0)->ny != (*met1)->ny || (*met0)->np != (*met1)->np)
4374 ERRMSG(
"Meteo grid dimensions do not match!");
4375 for (
int ix = 0; ix < (*met0)->nx; ix++)
4376 if (fabs((*met0)->lon[ix] - (*met1)->lon[ix]) > 0.001)
4377 ERRMSG(
"Meteo grid longitudes do not match!");
4378 for (
int iy = 0; iy < (*met0)->ny; iy++)
4379 if (fabs((*met0)->lat[iy] - (*met1)->lat[iy]) > 0.001)
4380 ERRMSG(
"Meteo grid latitudes do not match!");
4381 for (
int ip = 0; ip < (*met0)->np; ip++)
4382 if (fabs((*met0)->p[ip] - (*met1)->p[ip]) > 0.001)
4383 ERRMSG(
"Meteo grid pressure levels do not match!");
4409 const char *filename,
4422 LOG(1,
"Read atmospheric data: %s", filename);
4442 ERRMSG(
"Atmospheric data type not supported!");
4450 ERRMSG(
"Can not read any data!");
4454 LOG(2,
"Number of particles: %d", atm->
np);
4455 gsl_stats_minmax(&mini, &maxi, atm->
time, 1, (
size_t) atm->
np);
4456 LOG(2,
"Time range: %.2f ... %.2f s", mini, maxi);
4457 gsl_stats_minmax(&mini, &maxi, atm->
p, 1, (
size_t) atm->
np);
4458 LOG(2,
"Altitude range: %g ... %g km",
Z(maxi),
Z(mini));
4459 LOG(2,
"Pressure range: %g ... %g hPa", maxi, mini);
4460 gsl_stats_minmax(&mini, &maxi, atm->
lon, 1, (
size_t) atm->
np);
4461 LOG(2,
"Longitude range: %g ... %g deg", mini, maxi);
4462 gsl_stats_minmax(&mini, &maxi, atm->
lat, 1, (
size_t) atm->
np);
4463 LOG(2,
"Latitude range: %g ... %g deg", mini, maxi);
4464 for (
int iq = 0; iq < ctl->
nq; iq++) {
4466 sprintf(msg,
"Quantity %s range: %s ... %s %s",
4469 gsl_stats_minmax(&mini, &maxi, atm->
q[iq], 1, (
size_t) atm->
np);
4470 LOG(2, msg, mini, maxi);
4540 const char *filename,
4549 LOG(1,
"\nMassive-Parallel Trajectory Calculations (MPTRAC)\n"
4550 "(executable: %s | version: %s | compiled: %s, %s)\n",
4551 argv[0], VERSION, __DATE__, __TIME__);
4647 ctl->
nq = (int)
scan_ctl(filename, argc, argv,
"NQ", -1,
"0", NULL);
4649 ERRMSG(
"Too many quantities!");
4650 for (
int iq = 0; iq < ctl->
nq; iq++) {
4656 scan_ctl(filename, argc, argv,
"QNT_FORMAT", iq,
"%g",
4658 if (strcasecmp(ctl->
qnt_name[iq],
"aoa") == 0)
4662 SET_QNT(qnt_idx,
"idx",
"particle index",
"-")
4663 SET_QNT(qnt_ens,
"ens",
"ensemble index",
"-")
4664 SET_QNT(qnt_stat,
"stat",
"station flag",
"-")
4665 SET_QNT(qnt_m,
"m",
"mass",
"kg")
4666 SET_QNT(qnt_vmr,
"vmr",
"volume mixing ratio",
"ppv")
4667 SET_QNT(qnt_rp,
"rp",
"particle radius",
"microns")
4668 SET_QNT(qnt_rhop,
"rhop",
"particle density",
"kg/m^3")
4669 SET_QNT(qnt_ps,
"ps",
"surface pressure",
"hPa")
4670 SET_QNT(qnt_ts,
"ts",
"surface temperature",
"K")
4671 SET_QNT(qnt_zs,
"zs",
"surface height",
"km")
4672 SET_QNT(qnt_us,
"us",
"surface zonal wind",
"m/s")
4673 SET_QNT(qnt_vs,
"vs",
"surface meridional wind",
"m/s")
4674 SET_QNT(qnt_ess,
"ess",
"eastward turbulent surface stress",
"N/m^2")
4675 SET_QNT(qnt_nss,
"nss",
"northward turbulent surface stress",
"N/m^2")
4676 SET_QNT(qnt_shf,
"shf",
"surface sensible heat flux",
"W/m^2")
4677 SET_QNT(qnt_lsm,
"lsm",
"land-sea mask",
"1")
4678 SET_QNT(qnt_sst,
"sst",
"sea surface temperature",
"K")
4679 SET_QNT(qnt_pbl,
"pbl",
"planetary boundary layer",
"hPa")
4680 SET_QNT(qnt_pt,
"pt",
"tropopause pressure",
"hPa")
4681 SET_QNT(qnt_tt,
"tt",
"tropopause temperature",
"K")
4682 SET_QNT(qnt_zt,
"zt",
"tropopause geopotential height",
"km")
4683 SET_QNT(qnt_h2ot,
"h2ot",
"tropopause water vapor",
"ppv")
4684 SET_QNT(qnt_zg,
"zg",
"geopotential height",
"km")
4685 SET_QNT(qnt_p,
"p",
"pressure",
"hPa")
4686 SET_QNT(qnt_t,
"t",
"temperature",
"K")
4687 SET_QNT(qnt_rho,
"rho",
"air density",
"kg/m^3")
4688 SET_QNT(qnt_u,
"u",
"zonal wind",
"m/s")
4689 SET_QNT(qnt_v,
"v",
"meridional wind",
"m/s")
4690 SET_QNT(qnt_w,
"w",
"vertical velocity",
"hPa/s")
4691 SET_QNT(qnt_h2o,
"h2o",
"water vapor",
"ppv")
4692 SET_QNT(qnt_o3,
"o3",
"ozone",
"ppv")
4693 SET_QNT(qnt_lwc,
"lwc",
"cloud liquid water content",
"kg/kg")
4694 SET_QNT(qnt_rwc,
"rwc",
"cloud rain water content",
"kg/kg")
4695 SET_QNT(qnt_iwc,
"iwc",
"cloud ice water content",
"kg/kg")
4696 SET_QNT(qnt_swc,
"iwc",
"cloud snow water content",
"kg/kg")
4697 SET_QNT(qnt_cc,
"cc",
"cloud cover",
"1")
4698 SET_QNT(qnt_pct,
"pct",
"cloud top pressure",
"hPa")
4699 SET_QNT(qnt_pcb,
"pcb",
"cloud bottom pressure",
"hPa")
4700 SET_QNT(qnt_cl,
"cl",
"total column cloud water",
"kg/m^2")
4701 SET_QNT(qnt_plcl,
"plcl",
"lifted condensation level",
"hPa")
4702 SET_QNT(qnt_plfc,
"plfc",
"level of free convection",
"hPa")
4703 SET_QNT(qnt_pel,
"pel",
"equilibrium level",
"hPa")
4704 SET_QNT(qnt_cape,
"cape",
"convective available potential energy",
4706 SET_QNT(qnt_cin,
"cin",
"convective inhibition",
"J/kg")
4707 SET_QNT(qnt_o3c,
"o3c",
"total column ozone",
"DU")
4708 SET_QNT(qnt_hno3,
"hno3",
"nitric acid",
"ppv")
4709 SET_QNT(qnt_oh,
"oh",
"hydroxyl radical",
"ppv")
4710 SET_QNT(qnt_h2o2,
"h2o2",
"hydrogen peroxide",
"ppv")
4711 SET_QNT(qnt_ho2,
"ho2",
"hydroperoxyl radical",
"ppv")
4712 SET_QNT(qnt_o1d,
"o1d",
"atomic oxygen",
"ppv")
4713 SET_QNT(qnt_mloss_oh,
"mloss_oh",
"mass loss due to OH chemistry",
"kg")
4714 SET_QNT(qnt_mloss_h2o2,
"mloss_h2o2",
"mass loss due to H2O2 chemistry",
4716 SET_QNT(qnt_mloss_kpp,
"mloss_kpp",
"mass loss due to kpp chemistry",
4718 SET_QNT(qnt_mloss_wet,
"mloss_wet",
"mass loss due to wet deposition",
4720 SET_QNT(qnt_mloss_dry,
"mloss_dry",
"mass loss due to dry deposition",
4722 SET_QNT(qnt_mloss_decay,
"mloss_decay",
4723 "mass loss due to exponential decay",
"kg")
4724 SET_QNT(qnt_loss_rate,
"loss_rate",
"total loss rate",
"s^-1")
4725 SET_QNT(qnt_psat,
"psat",
"saturation pressure over water",
"hPa")
4726 SET_QNT(qnt_psice,
"psice",
"saturation pressure over ice",
"hPa")
4727 SET_QNT(qnt_pw,
"pw",
"partial water vapor pressure",
"hPa")
4728 SET_QNT(qnt_sh,
"sh",
"specific humidity",
"kg/kg")
4729 SET_QNT(qnt_rh,
"rh",
"relative humidity",
"%%")
4730 SET_QNT(qnt_rhice,
"rhice",
"relative humidity over ice",
"%%")
4731 SET_QNT(qnt_theta,
"theta",
"potential temperature",
"K")
4732 SET_QNT(qnt_zeta,
"zeta",
"zeta coordinate",
"K")
4733 SET_QNT(qnt_zeta_d,
"zeta_d",
"diagnosed zeta coordinate",
"K")
4734 SET_QNT(qnt_tvirt,
"tvirt",
"virtual temperature",
"K")
4735 SET_QNT(qnt_lapse,
"lapse",
"temperature lapse rate",
"K/km")
4736 SET_QNT(qnt_vh,
"vh",
"horizontal velocity",
"m/s")
4737 SET_QNT(qnt_vz,
"vz",
"vertical velocity",
"m/s")
4738 SET_QNT(qnt_pv,
"pv",
"potential vorticity",
"PVU")
4739 SET_QNT(qnt_tdew,
"tdew",
"dew point temperature",
"K")
4740 SET_QNT(qnt_tice,
"tice",
"frost point temperature",
"K")
4741 SET_QNT(qnt_tsts,
"tsts",
"STS existence temperature",
"K")
4742 SET_QNT(qnt_tnat,
"tnat",
"NAT existence temperature",
"K")
4743 SET_QNT(qnt_Cx,
"Cx",
"Trace species x volume mixing ratio",
"ppv")
4744 SET_QNT(qnt_Ch2o,
"Ch2o",
"H2O volume mixing ratio",
"ppv")
4745 SET_QNT(qnt_Co3,
"Co3",
"O3 volume mixing ratio",
"ppv")
4746 SET_QNT(qnt_Cco,
"Cco",
"CO volume mixing ratio",
"ppv")
4747 SET_QNT(qnt_Coh,
"Coh",
"HO volume mixing ratio",
"ppv")
4748 SET_QNT(qnt_Ch,
"Ch",
"H radical volume mixing ratio",
"ppv")
4749 SET_QNT(qnt_Cho2,
"Cho2",
"HO2 volume mixing ratio",
"ppv")
4750 SET_QNT(qnt_Ch2o2,
"Ch2o2",
"H2O2 volume mixing ratio",
"ppv")
4751 SET_QNT(qnt_Co1d,
"Co1d",
"O(1D) volume mixing ratio",
"ppv")
4752 SET_QNT(qnt_Co3p,
"Co3p",
"O(3P) radical volume mixing ratio",
"ppv")
4753 SET_QNT(qnt_Cccl4,
"Cccl4",
"CCl4 (CFC-10) volume mixing ratio",
"ppv")
4754 SET_QNT(qnt_Cccl3f,
"Cccl3f",
"CCl3F (CFC-11) volume mixing ratio",
4756 SET_QNT(qnt_Cccl2f2,
"Cccl2f2",
"CCl2F2 (CFC-12) volume mixing ratio",
4758 SET_QNT(qnt_Cn2o,
"Cn2o",
"N2O volume mixing ratio",
"ppv")
4759 SET_QNT(qnt_Csf6,
"Csf6",
"SF6 volume mixing ratio",
"ppv")
4760 SET_QNT(qnt_aoa,
"aoa",
"age of air",
"s")
4766 (int)
scan_ctl(filename, argc, argv,
"ADVECT_VERT_COORD", -1,
"0", NULL);
4768 ERRMSG(
"Set ADVECT_VERT_COORD to 0, 1, or 2!");
4770 (int)
scan_ctl(filename, argc, argv,
"MET_VERT_COORD", -1,
"0", NULL);
4772 ERRMSG(
"Set MET_VERT_COORD to 0, 1, 2, 3, or 4!");
4774 ERRMSG(
"Please add zeta to your quantities for diabatic calculations!");
4777 (
"Using ADVECT_VERT_COORD = 2 requires meteo data on model levels!");
4781 (int)
scan_ctl(filename, argc, argv,
"DIRECTION", -1,
"1", NULL);
4783 ERRMSG(
"Set DIRECTION to -1 or 1!");
4784 ctl->
t_stop =
scan_ctl(filename, argc, argv,
"T_STOP", -1,
"1e100", NULL);
4785 ctl->
dt_mod =
scan_ctl(filename, argc, argv,
"DT_MOD", -1,
"180", NULL);
4789 ctl->
dt_met =
scan_ctl(filename, argc, argv,
"DT_MET", -1,
"3600", NULL);
4791 (int)
scan_ctl(filename, argc, argv,
"MET_CONVENTION", -1,
"0", NULL);
4793 (int)
scan_ctl(filename, argc, argv,
"MET_TYPE", -1,
"0", NULL);
4796 (
"Please use meteo files in netcdf format for diabatic calculations.");
4798 (int)
scan_ctl(filename, argc, argv,
"MET_CLAMS", -1,
"0", NULL);
4800 (int)
scan_ctl(filename, argc, argv,
"MET_NC_SCALE", -1,
"1", NULL);
4802 (int)
scan_ctl(filename, argc, argv,
"MET_NC_LEVEL", -1,
"0", NULL);
4804 (int)
scan_ctl(filename, argc, argv,
"MET_NC_QUANT", -1,
"0", NULL);
4806 (int)
scan_ctl(filename, argc, argv,
"MET_ZFP_PREC", -1,
"8", NULL);
4808 scan_ctl(filename, argc, argv,
"MET_ZFP_TOL_T", -1,
"5.0", NULL);
4810 scan_ctl(filename, argc, argv,
"MET_ZFP_TOL_Z", -1,
"0.5", NULL);
4812 (int)
scan_ctl(filename, argc, argv,
"MET_CMS_BATCH", -1,
"-1", NULL);
4814 (int)
scan_ctl(filename, argc, argv,
"MET_CMS_ZSTD", -1,
"1", NULL);
4816 (int)
scan_ctl(filename, argc, argv,
"MET_CMS_HEUR", -1,
"1", NULL);
4818 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_Z", -1,
"1.0", NULL);
4820 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_T", -1,
"0.05", NULL);
4822 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_U", -1,
"0.05", NULL);
4824 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_V", -1,
"0.05", NULL);
4826 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_W", -1,
"1.0", NULL);
4828 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_PV", -1,
"1.0", NULL);
4830 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_H2O", -1,
"1.0", NULL);
4832 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_O3", -1,
"1.0", NULL);
4834 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_LWC", -1,
"1.0", NULL);
4836 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_RWC", -1,
"1.0", NULL);
4838 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_IWC", -1,
"1.0", NULL);
4840 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_SWC", -1,
"1.0", NULL);
4842 scan_ctl(filename, argc, argv,
"MET_CMS_EPS_CC", -1,
"1.0", NULL);
4843 ctl->
met_dx = (int)
scan_ctl(filename, argc, argv,
"MET_DX", -1,
"1", NULL);
4844 ctl->
met_dy = (int)
scan_ctl(filename, argc, argv,
"MET_DY", -1,
"1", NULL);
4845 ctl->
met_dp = (int)
scan_ctl(filename, argc, argv,
"MET_DP", -1,
"1", NULL);
4847 ERRMSG(
"MET_DX, MET_DY, and MET_DP need to be greater than zero!");
4848 ctl->
met_sx = (int)
scan_ctl(filename, argc, argv,
"MET_SX", -1,
"1", NULL);
4849 ctl->
met_sy = (int)
scan_ctl(filename, argc, argv,
"MET_SY", -1,
"1", NULL);
4850 ctl->
met_sp = (int)
scan_ctl(filename, argc, argv,
"MET_SP", -1,
"1", NULL);
4852 ERRMSG(
"MET_SX, MET_SY, and MET_SP need to be greater than zero!");
4854 scan_ctl(filename, argc, argv,
"MET_DETREND", -1,
"-999", NULL);
4855 ctl->
met_np = (int)
scan_ctl(filename, argc, argv,
"MET_NP", -1,
"0", NULL);
4857 ERRMSG(
"Too many pressure levels!");
4859 (int)
scan_ctl(filename, argc, argv,
"MET_PRESS_LEVEL_DEF", -1,
"-1",
4865 for (
int ip = 0; ip < ctl->
met_np; ip++)
4867 scan_ctl(filename, argc, argv,
"MET_P", ip,
"", NULL);
4871 (int)
scan_ctl(filename, argc, argv,
"MET_NLEV", -1,
"0", NULL);
4873 ERRMSG(
"Too many model levels!");
4874 for (
int ip = 0; ip < ctl->
met_nlev; ip++) {
4876 scan_ctl(filename, argc, argv,
"MET_LEV_HYAM", ip,
"", NULL);
4878 scan_ctl(filename, argc, argv,
"MET_LEV_HYBM", ip,
"", NULL);
4881 (int)
scan_ctl(filename, argc, argv,
"MET_GEOPOT_SX", -1,
"-1", NULL);
4883 (int)
scan_ctl(filename, argc, argv,
"MET_GEOPOT_SY", -1,
"-1", NULL);
4885 (int)
scan_ctl(filename, argc, argv,
"MET_RELHUM", -1,
"0", NULL);
4887 (int)
scan_ctl(filename, argc, argv,
"MET_CAPE", -1,
"1", NULL);
4889 ERRMSG(
"Set MET_CAPE to 0 or 1!");
4891 (int)
scan_ctl(filename, argc, argv,
"MET_PBL", -1,
"3", NULL);
4893 ERRMSG(
"Set MET_PBL to 0 ... 3!");
4895 scan_ctl(filename, argc, argv,
"MET_PBL_MIN", -1,
"0.1", NULL);
4897 scan_ctl(filename, argc, argv,
"MET_PBL_MAX", -1,
"5.0", NULL);
4899 (int)
scan_ctl(filename, argc, argv,
"MET_TROPO", -1,
"3", NULL);
4901 ERRMSG(
"Set MET_TROPO to 0 ... 5!");
4903 scan_ctl(filename, argc, argv,
"MET_TROPO_PV", -1,
"3.5", NULL);
4905 scan_ctl(filename, argc, argv,
"MET_TROPO_THETA", -1,
"380", NULL);
4907 (int)
scan_ctl(filename, argc, argv,
"MET_TROPO_SPLINE", -1,
"1", NULL);
4909 scan_ctl(filename, argc, argv,
"MET_DT_OUT", -1,
"0.1", NULL);
4911 (int)
scan_ctl(filename, argc, argv,
"MET_CACHE", -1,
"0", NULL);
4913 (int)
scan_ctl(filename, argc, argv,
"MET_MPI_SHARE", -1,
"0", NULL);
4916 ctl->
sort_dt =
scan_ctl(filename, argc, argv,
"SORT_DT", -1,
"-999", NULL);
4920 (int)
scan_ctl(filename, argc, argv,
"ISOSURF", -1,
"0", NULL);
4925 (int)
scan_ctl(filename, argc, argv,
"RNG_TYPE", -1,
"1", NULL);
4927 ERRMSG(
"Set RNG_TYPE to 0, 1, or 2!");
4930 ctl->
advect = (int)
scan_ctl(filename, argc, argv,
"ADVECT", -1,
"2", NULL);
4933 ERRMSG(
"Set ADVECT to 0, 1, 2, or 4!");
4937 = (int)
scan_ctl(filename, argc, argv,
"DIFFUSION", -1,
"0", NULL);
4939 ERRMSG(
"Set DIFFUSION to 0, 1 or 2!");
4941 scan_ctl(filename, argc, argv,
"TURB_DX_PBL", -1,
"50", NULL);
4943 scan_ctl(filename, argc, argv,
"TURB_DX_TROP", -1,
"50", NULL);
4945 scan_ctl(filename, argc, argv,
"TURB_DX_STRAT", -1,
"0", NULL);
4947 scan_ctl(filename, argc, argv,
"TURB_DZ_PBL", -1,
"0", NULL);
4949 scan_ctl(filename, argc, argv,
"TURB_DZ_TROP", -1,
"0", NULL);
4951 scan_ctl(filename, argc, argv,
"TURB_DZ_STRAT", -1,
"0.1", NULL);
4953 scan_ctl(filename, argc, argv,
"TURB_MESOX", -1,
"0.16", NULL);
4955 scan_ctl(filename, argc, argv,
"TURB_MESOZ", -1,
"0.16", NULL);
4959 = (int)
scan_ctl(filename, argc, argv,
"CONV_MIX_PBL", -1,
"0", NULL);
4961 =
scan_ctl(filename, argc, argv,
"CONV_PBL_TRANS", -1,
"0", NULL);
4963 =
scan_ctl(filename, argc, argv,
"CONV_CAPE", -1,
"-999", NULL);
4965 =
scan_ctl(filename, argc, argv,
"CONV_CIN", -1,
"-999", NULL);
4966 ctl->
conv_dt =
scan_ctl(filename, argc, argv,
"CONV_DT", -1,
"-999", NULL);
4970 scan_ctl(filename, argc, argv,
"BOUND_MASS", -1,
"-999", NULL);
4972 scan_ctl(filename, argc, argv,
"BOUND_MASS_TREND", -1,
"0", NULL);
4974 scan_ctl(filename, argc, argv,
"BOUND_VMR", -1,
"-999", NULL);
4976 scan_ctl(filename, argc, argv,
"BOUND_VMR_TREND", -1,
"0", NULL);
4978 scan_ctl(filename, argc, argv,
"BOUND_LAT0", -1,
"-999", NULL);
4980 scan_ctl(filename, argc, argv,
"BOUND_LAT1", -1,
"-999", NULL);
4982 scan_ctl(filename, argc, argv,
"BOUND_P0", -1,
"-999", NULL);
4984 scan_ctl(filename, argc, argv,
"BOUND_P1", -1,
"-999", NULL);
4986 scan_ctl(filename, argc, argv,
"BOUND_DPS", -1,
"-999", NULL);
4988 scan_ctl(filename, argc, argv,
"BOUND_DZS", -1,
"-999", NULL);
4990 scan_ctl(filename, argc, argv,
"BOUND_ZETAS", -1,
"-999", NULL);
4992 (int)
scan_ctl(filename, argc, argv,
"BOUND_PBL", -1,
"0", NULL);
4996 if (strcasecmp(ctl->
species,
"CF2Cl2") == 0) {
5000 }
else if (strcasecmp(ctl->
species,
"CFCl3") == 0) {
5004 }
else if (strcasecmp(ctl->
species,
"CH4") == 0) {
5011 }
else if (strcasecmp(ctl->
species,
"CO") == 0) {
5020 }
else if (strcasecmp(ctl->
species,
"CO2") == 0) {
5024 }
else if (strcasecmp(ctl->
species,
"H2O") == 0) {
5026 }
else if (strcasecmp(ctl->
species,
"N2O") == 0) {
5030 }
else if (strcasecmp(ctl->
species,
"NH3") == 0) {
5037 }
else if (strcasecmp(ctl->
species,
"HNO3") == 0) {
5041 }
else if (strcasecmp(ctl->
species,
"NO") == 0) {
5050 }
else if (strcasecmp(ctl->
species,
"NO2") == 0) {
5059 }
else if (strcasecmp(ctl->
species,
"O3") == 0) {
5066 }
else if (strcasecmp(ctl->
species,
"SF6") == 0) {
5070 }
else if (strcasecmp(ctl->
species,
"SO2") == 0) {
5083 sprintf(defstr,
"%g", ctl->
molmass);
5084 ctl->
molmass =
scan_ctl(filename, argc, argv,
"MOLMASS", -1, defstr, NULL);
5089 (int)
scan_ctl(filename, argc, argv,
"OH_CHEM_REACTION", -1, defstr,
5091 for (
int ip = 0; ip < 4; ip++) {
5092 sprintf(defstr,
"%g", ctl->
oh_chem[ip]);
5094 scan_ctl(filename, argc, argv,
"OH_CHEM", ip, defstr, NULL);
5097 scan_ctl(filename, argc, argv,
"OH_CHEM_BETA", -1,
"0", NULL);
5101 (int)
scan_ctl(filename, argc, argv,
"H2O2_CHEM_REACTION", -1,
"0", NULL);
5105 (int)
scan_ctl(filename, argc, argv,
"KPP_CHEM", -1,
"0", NULL);
5106 ctl->
dt_kpp =
scan_ctl(filename, argc, argv,
"DT_KPP", -1,
"1800", NULL);
5110 (int)
scan_ctl(filename, argc, argv,
"TRACER_CHEM", -1,
"0", NULL);
5113 for (
int ip = 0; ip < 2; ip++) {
5116 scan_ctl(filename, argc, argv,
"WET_DEPO_IC_H", ip, defstr, NULL);
5118 for (
int ip = 0; ip < 1; ip++) {
5121 scan_ctl(filename, argc, argv,
"WET_DEPO_BC_H", ip, defstr, NULL);
5124 scan_ctl(filename, argc, argv,
"WET_DEPO_SO2_PH", -1,
"0", NULL);
5126 scan_ctl(filename, argc, argv,
"WET_DEPO_IC_A", -1,
"0", NULL);
5128 scan_ctl(filename, argc, argv,
"WET_DEPO_IC_B", -1,
"0", NULL);
5130 scan_ctl(filename, argc, argv,
"WET_DEPO_BC_A", -1,
"0", NULL);
5132 scan_ctl(filename, argc, argv,
"WET_DEPO_BC_B", -1,
"0", NULL);
5134 scan_ctl(filename, argc, argv,
"WET_DEPO_PRE", 0,
"0.5", NULL);
5136 scan_ctl(filename, argc, argv,
"WET_DEPO_PRE", 1,
"0.36", NULL);
5138 scan_ctl(filename, argc, argv,
"WET_DEPO_IC_RET_RATIO", -1,
"1", NULL);
5140 scan_ctl(filename, argc, argv,
"WET_DEPO_BC_RET_RATIO", -1,
"1", NULL);
5144 scan_ctl(filename, argc, argv,
"DRY_DEPO_VDEP", -1,
"0", NULL);
5146 scan_ctl(filename, argc, argv,
"DRY_DEPO_DP", -1,
"30", NULL);
5149 scan_ctl(filename, argc, argv,
"CLIM_PHOTO", -1,
5150 "../../data/clams_photolysis_rates.nc", ctl->
clim_photo);
5151 scan_ctl(filename, argc, argv,
"CLIM_HNO3_FILENAME", -1,
5153 scan_ctl(filename, argc, argv,
"CLIM_OH_FILENAME", -1,
5155 scan_ctl(filename, argc, argv,
"CLIM_H2O2_FILENAME", -1,
5157 scan_ctl(filename, argc, argv,
"CLIM_HO2_FILENAME", -1,
5159 scan_ctl(filename, argc, argv,
"CLIM_O1D_FILENAME", -1,
5161 scan_ctl(filename, argc, argv,
"CLIM_CCL4_TIMESERIES", -1,
5163 scan_ctl(filename, argc, argv,
"CLIM_CCL3F_TIMESERIES", -1,
5165 scan_ctl(filename, argc, argv,
"CLIM_CCL2F2_TIMESERIES", -1,
5167 scan_ctl(filename, argc, argv,
"CLIM_N2O_TIMESERIES", -1,
5169 scan_ctl(filename, argc, argv,
"CLIM_SF6_TIMESERIES", -1,
5174 scan_ctl(filename, argc, argv,
"MIXING_DT", -1,
"3600.", NULL);
5176 scan_ctl(filename, argc, argv,
"MIXING_TROP", -1,
"-999", NULL);
5178 scan_ctl(filename, argc, argv,
"MIXING_STRAT", -1,
"-999", NULL);
5180 scan_ctl(filename, argc, argv,
"MIXING_Z0", -1,
"-5", NULL);
5182 scan_ctl(filename, argc, argv,
"MIXING_Z1", -1,
"85", NULL);
5184 (int)
scan_ctl(filename, argc, argv,
"MIXING_NZ", -1,
"90", NULL);
5186 scan_ctl(filename, argc, argv,
"MIXING_LON0", -1,
"-180", NULL);
5188 scan_ctl(filename, argc, argv,
"MIXING_LON1", -1,
"180", NULL);
5190 (int)
scan_ctl(filename, argc, argv,
"MIXING_NX", -1,
"360", NULL);
5192 scan_ctl(filename, argc, argv,
"MIXING_LAT0", -1,
"-90", NULL);
5194 scan_ctl(filename, argc, argv,
"MIXING_LAT1", -1,
"90", NULL);
5196 (int)
scan_ctl(filename, argc, argv,
"MIXING_NY", -1,
"180", NULL);
5200 scan_ctl(filename, argc, argv,
"CHEMGRID_Z0", -1,
"-5", NULL);
5202 scan_ctl(filename, argc, argv,
"CHEMGRID_Z1", -1,
"85", NULL);
5204 (int)
scan_ctl(filename, argc, argv,
"CHEMGRID_NZ", -1,
"90", NULL);
5206 scan_ctl(filename, argc, argv,
"CHEMGRID_LON0", -1,
"-180", NULL);
5208 scan_ctl(filename, argc, argv,
"CHEMGRID_LON1", -1,
"180", NULL);
5210 (int)
scan_ctl(filename, argc, argv,
"CHEMGRID_NX", -1,
"360", NULL);
5212 scan_ctl(filename, argc, argv,
"CHEMGRID_LAT0", -1,
"-90", NULL);
5214 scan_ctl(filename, argc, argv,
"CHEMGRID_LAT1", -1,
"90", NULL);
5216 (int)
scan_ctl(filename, argc, argv,
"CHEMGRID_NY", -1,
"180", NULL);
5221 =
scan_ctl(filename, argc, argv,
"TDEC_STRAT", -1,
"0", NULL);
5224 ctl->
psc_h2o =
scan_ctl(filename, argc, argv,
"PSC_H2O", -1,
"4e-6", NULL);
5226 scan_ctl(filename, argc, argv,
"PSC_HNO3", -1,
"9e-9", NULL);
5232 scan_ctl(filename, argc, argv,
"ATM_DT_OUT", -1,
"86400", NULL);
5234 (int)
scan_ctl(filename, argc, argv,
"ATM_FILTER", -1,
"0", NULL);
5236 (int)
scan_ctl(filename, argc, argv,
"ATM_STRIDE", -1,
"1", NULL);
5238 (int)
scan_ctl(filename, argc, argv,
"ATM_TYPE", -1,
"0", NULL);
5240 (int)
scan_ctl(filename, argc, argv,
"ATM_TYPE_OUT", -1,
"-1", NULL);
5244 (int)
scan_ctl(filename, argc, argv,
"ATM_NC_LEVEL", -1,
"0", NULL);
5245 for (
int iq = 0; iq < ctl->
nq; iq++)
5247 (
int)
scan_ctl(filename, argc, argv,
"ATM_NC_QUANT", iq,
"0", NULL);
5249 (int)
scan_ctl(filename, argc, argv,
"OBS_TYPE", -1,
"0", NULL);
5255 scan_ctl(filename, argc, argv,
"CSI_DT_OUT", -1,
"86400", NULL);
5258 scan_ctl(filename, argc, argv,
"CSI_OBSMIN", -1,
"0", NULL);
5260 scan_ctl(filename, argc, argv,
"CSI_MODMIN", -1,
"0", NULL);
5261 ctl->
csi_z0 =
scan_ctl(filename, argc, argv,
"CSI_Z0", -1,
"-5", NULL);
5262 ctl->
csi_z1 =
scan_ctl(filename, argc, argv,
"CSI_Z1", -1,
"85", NULL);
5263 ctl->
csi_nz = (int)
scan_ctl(filename, argc, argv,
"CSI_NZ", -1,
"1", NULL);
5265 scan_ctl(filename, argc, argv,
"CSI_LON0", -1,
"-180", NULL);
5266 ctl->
csi_lon1 =
scan_ctl(filename, argc, argv,
"CSI_LON1", -1,
"180", NULL);
5268 (int)
scan_ctl(filename, argc, argv,
"CSI_NX", -1,
"360", NULL);
5269 ctl->
csi_lat0 =
scan_ctl(filename, argc, argv,
"CSI_LAT0", -1,
"-90", NULL);
5270 ctl->
csi_lat1 =
scan_ctl(filename, argc, argv,
"CSI_LAT1", -1,
"90", NULL);
5272 (int)
scan_ctl(filename, argc, argv,
"CSI_NY", -1,
"180", NULL);
5277 scan_ctl(filename, argc, argv,
"ENS_DT_OUT", -1,
"86400", NULL);
5280 scan_ctl(filename, argc, argv,
"GRID_BASENAME", -1,
"-",
5285 scan_ctl(filename, argc, argv,
"GRID_DT_OUT", -1,
"86400", NULL);
5287 (int)
scan_ctl(filename, argc, argv,
"GRID_SPARSE", -1,
"0", NULL);
5289 (int)
scan_ctl(filename, argc, argv,
"GRID_NC_LEVEL", -1,
"0", NULL);
5290 for (
int iq = 0; iq < ctl->
nq; iq++)
5292 (
int)
scan_ctl(filename, argc, argv,
"GRID_NC_QUANT", iq,
"0", NULL);
5294 (int)
scan_ctl(filename, argc, argv,
"GRID_STDDEV", -1,
"0", NULL);
5295 ctl->
grid_z0 =
scan_ctl(filename, argc, argv,
"GRID_Z0", -1,
"-5", NULL);
5296 ctl->
grid_z1 =
scan_ctl(filename, argc, argv,
"GRID_Z1", -1,
"85", NULL);
5298 (int)
scan_ctl(filename, argc, argv,
"GRID_NZ", -1,
"1", NULL);
5300 scan_ctl(filename, argc, argv,
"GRID_LON0", -1,
"-180", NULL);
5302 scan_ctl(filename, argc, argv,
"GRID_LON1", -1,
"180", NULL);
5304 (int)
scan_ctl(filename, argc, argv,
"GRID_NX", -1,
"360", NULL);
5306 scan_ctl(filename, argc, argv,
"GRID_LAT0", -1,
"-90", NULL);
5308 scan_ctl(filename, argc, argv,
"GRID_LAT1", -1,
"90", NULL);
5310 (int)
scan_ctl(filename, argc, argv,
"GRID_NY", -1,
"180", NULL);
5312 (int)
scan_ctl(filename, argc, argv,
"GRID_TYPE", -1,
"0", NULL);
5315 scan_ctl(filename, argc, argv,
"PROF_BASENAME", -1,
"-",
5318 ctl->
prof_z0 =
scan_ctl(filename, argc, argv,
"PROF_Z0", -1,
"0", NULL);
5319 ctl->
prof_z1 =
scan_ctl(filename, argc, argv,
"PROF_Z1", -1,
"60", NULL);
5321 (int)
scan_ctl(filename, argc, argv,
"PROF_NZ", -1,
"60", NULL);
5323 scan_ctl(filename, argc, argv,
"PROF_LON0", -1,
"-180", NULL);
5325 scan_ctl(filename, argc, argv,
"PROF_LON1", -1,
"180", NULL);
5327 (int)
scan_ctl(filename, argc, argv,
"PROF_NX", -1,
"360", NULL);
5329 scan_ctl(filename, argc, argv,
"PROF_LAT0", -1,
"-90", NULL);
5331 scan_ctl(filename, argc, argv,
"PROF_LAT1", -1,
"90", NULL);
5333 (int)
scan_ctl(filename, argc, argv,
"PROF_NY", -1,
"180", NULL);
5336 scan_ctl(filename, argc, argv,
"SAMPLE_BASENAME", -1,
"-",
5338 scan_ctl(filename, argc, argv,
"SAMPLE_KERNEL", -1,
"-",
5340 scan_ctl(filename, argc, argv,
"SAMPLE_OBSFILE", -1,
"-",
5343 scan_ctl(filename, argc, argv,
"SAMPLE_DX", -1,
"50", NULL);
5345 scan_ctl(filename, argc, argv,
"SAMPLE_DZ", -1,
"-999", NULL);
5348 scan_ctl(filename, argc, argv,
"STAT_BASENAME", -1,
"-",
5352 ctl->
stat_r =
scan_ctl(filename, argc, argv,
"STAT_R", -1,
"50", NULL);
5354 scan_ctl(filename, argc, argv,
"STAT_T0", -1,
"-1e100", NULL);
5355 ctl->
stat_t1 =
scan_ctl(filename, argc, argv,
"STAT_T1", -1,
"1e100", NULL);
5360 scan_ctl(filename, argc, argv,
"VTK_DT_OUT", -1,
"86400", NULL);
5362 (int)
scan_ctl(filename, argc, argv,
"VTK_STRIDE", -1,
"1", NULL);
5364 scan_ctl(filename, argc, argv,
"VTK_SCALE", -1,
"1.0", NULL);
5366 scan_ctl(filename, argc, argv,
"VTK_OFFSET", -1,
"0.0", NULL);
5368 (int)
scan_ctl(filename, argc, argv,
"VTK_SPHERE", -1,
"0", NULL);
5374 const char *filename,
5380 LOG(1,
"Read meteo data: %s", filename);
5386 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
5406 ERRMSG(
"MET_TYPE not implemented!");
5415 LOG(2,
"Broadcast data on rank %d...", rank);
5544 ERRMSG(
"Code was compiled without KPP!");
5577#pragma acc update device(ctl[:1])
5581 if (cache != NULL) {
5584#pragma acc update device(cache[:1])
5591#pragma acc update device(clim[:1])
5598 met_t *met0up = *met0;
5599#pragma acc update device(met0up[:1])
5606 met_t *met1up = *met1;
5607#pragma acc update device(met1up[:1])
5614#pragma acc update device(atm[:1])
5633#pragma acc update host(ctl[:1])
5637 if (cache != NULL) {
5640#pragma acc update host(cache[:1])
5647#pragma acc update host(clim[:1])
5654 met_t *met0up = *met0;
5655#pragma acc update host(met0up[:1])
5662 met_t *met1up = *met1;
5663#pragma acc update host(met1up[:1])
5670#pragma acc update host(atm[:1])
5678 const char *filename,
5687 LOG(1,
"Write atmospheric data: %s", filename);
5711 ERRMSG(
"Atmospheric data type not supported!");
5715 LOG(2,
"Number of particles: %d", atm->
np);
5716 gsl_stats_minmax(&mini, &maxi, atm->
time, 1, (
size_t) atm->
np);
5717 LOG(2,
"Time range: %.2f ... %.2f s", mini, maxi);
5718 gsl_stats_minmax(&mini, &maxi, atm->
p, 1, (
size_t) atm->
np);
5719 LOG(2,
"Altitude range: %g ... %g km",
Z(maxi),
Z(mini));
5720 LOG(2,
"Pressure range: %g ... %g hPa", maxi, mini);
5721 gsl_stats_minmax(&mini, &maxi, atm->
lon, 1, (
size_t) atm->
np);
5722 LOG(2,
"Longitude range: %g ... %g deg", mini, maxi);
5723 gsl_stats_minmax(&mini, &maxi, atm->
lat, 1, (
size_t) atm->
np);
5724 LOG(2,
"Latitude range: %g ... %g deg", mini, maxi);
5725 for (
int iq = 0; iq < ctl->
nq; iq++) {
5727 sprintf(msg,
"Quantity %s range: %s ... %s %s",
5730 gsl_stats_minmax(&mini, &maxi, atm->
q[iq], 1, (
size_t) atm->
np);
5731 LOG(2, msg, mini, maxi);
5738 const char *filename,
5746 LOG(1,
"Write meteo data: %s", filename);
5751 ERRMSG(
"MPTRAC was compiled without zfp compression!");
5755 ERRMSG(
"MPTRAC was compiled without zstd compression!");
5759 ERRMSG(
"MPTRAC was compiled without cmultiscale compression!");
5772 ERRMSG(
"MET_TYPE not implemented!");
5778 const char *dirname,
5785 char ext[10], filename[2 *
LEN];
5789 int year, mon, day, hour, min, sec;
5792 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
5807 sprintf(ext,
"tab");
5809 sprintf(ext,
"bin");
5812 sprintf(filename,
"%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
5813 dirname, ctl->
atm_basename, year, mon, day, hour, min, ext);
5819 sprintf(filename,
"%s/%s_%04d_%02d_%02d_%02d_%02d.%s",
5822 write_grid(filename, ctl, met0, met1, atm, t);
5827 sprintf(filename,
"%s/%s.tab", dirname, ctl->
csi_basename);
5833 sprintf(filename,
"%s/%s_%04d_%02d_%02d_%02d_%02d.tab",
5834 dirname, ctl->
ens_basename, year, mon, day, hour, min);
5840 sprintf(filename,
"%s/%s.tab", dirname, ctl->
prof_basename);
5841 write_prof(filename, ctl, met0, met1, atm, t);
5852 sprintf(filename,
"%s/%s.tab", dirname, ctl->
stat_basename);
5861 sprintf(filename,
"%s/%s_%05d.vtk", dirname, ctl->
vtk_basename, ++nvtk);
5871 const double hno3) {
5874 const double h2o_help =
MAX(h2o, 0.1e-6);
5877 const double p_hno3 = hno3 * p / 1.333224;
5878 const double p_h2o = h2o_help * p / 1.333224;
5879 const double a = 0.009179 - 0.00088 * log10(p_h2o);
5880 const double b = (38.9855 - log10(p_hno3) - 2.7836 * log10(p_h2o)) / a;
5881 const double c = -11397.0 / a;
5882 double tnat = (-b + sqrt(b * b - 4. * c)) / 2.;
5883 double x2 = (-b - sqrt(b * b - 4. * c)) / 2.;
5901 const double p0 = pbl;
5904 if (atm->
p[ip] > p0)
5906 else if (atm->
p[ip] < p1)
5909 return LIN(p0, 1.0, p1, 0.0, atm->
p[ip]);
5915 const char *filename,
5921 if (!(in = fopen(filename,
"r"))) {
5922 WARN(
"Cannot open file!");
5928 while (fgets(line,
LEN, in)) {
5932 TOK(line, tok,
"%lg", atm->
time[atm->
np]);
5933 TOK(NULL, tok,
"%lg", atm->
p[atm->
np]);
5934 TOK(NULL, tok,
"%lg", atm->
lon[atm->
np]);
5935 TOK(NULL, tok,
"%lg", atm->
lat[atm->
np]);
5936 for (
int iq = 0; iq < ctl->
nq; iq++)
5937 TOK(NULL, tok,
"%lg", atm->
q[iq][atm->
np]);
5940 atm->
p[atm->
np] =
P(atm->
p[atm->
np]);
5943 if ((++atm->
np) >
NP)
5944 ERRMSG(
"Too many data points!");
5957 const char *filename,
5963 if (!(in = fopen(filename,
"r")))
5968 FREAD(&version,
int,
5972 ERRMSG(
"Wrong version of binary data!");
5990 for (
int iq = 0; iq < ctl->
nq; iq++)
5991 FREAD(atm->
q[iq],
double,
6001 ERRMSG(
"Error while reading binary data!");
6013 const char *filename,
6020 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
6027 if (nc_inq_varid(ncid,
"TIME_INIT", &varid) == NC_NOERR) {
6028 NC(nc_get_var_double(ncid, varid, atm->
time));
6030 WARN(
"TIME_INIT not found use time instead!");
6033 for (
int ip = 0; ip < atm->
np; ip++) {
6034 atm->
time[ip] = time_init;
6046 if (nc_inq_varid(ncid,
"PRESS_INIT", &varid) == NC_NOERR) {
6047 NC(nc_get_var_double(ncid, varid, atm->
p));
6049 WARN(
"PRESS_INIT not found use PRESS instead!");
6050 nc_inq_varid(ncid,
"PRESS", &varid);
6051 NC(nc_get_var_double(ncid, varid, atm->
p));
6069 const char *filename,
6076 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
6089 for (
int iq = 0; iq < ctl->
nq; iq++)
6102 const char *filename,
6108 LOG(1,
"Read photolysis rates: %s", filename);
6111 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
6112 WARN(
"Photolysis rate data are missing!");
6119 if (photo->
p[0] < photo->
p[1])
6120 ERRMSG(
"Pressure data are not descending!");
6125 if (photo->
o3c[0] > photo->
o3c[1])
6126 ERRMSG(
"Total column ozone data are not ascending!");
6131 if (photo->
sza[0] > photo->
sza[1])
6132 ERRMSG(
"Solar zenith angle data are not ascending!");
6149 LOG(2,
"Number of pressure levels: %d", photo->
np);
6150 LOG(2,
"Altitude levels: %g, %g ... %g km",
6151 Z(photo->
p[0]),
Z(photo->
p[1]),
Z(photo->
p[photo->
np - 1]));
6152 LOG(2,
"Pressure levels: %g, %g ... %g hPa",
6153 photo->
p[0], photo->
p[1], photo->
p[photo->
np - 1]);
6154 LOG(2,
"Number of solar zenith angles: %d", photo->
nsza);
6155 LOG(2,
"Solar zenith angles: %g, %g ... %g deg",
6158 LOG(2,
"Number of total column ozone values: %d", photo->
no3c);
6159 LOG(2,
"Total column ozone: %g, %g ... %g DU",
6161 LOG(2,
"N2O photolysis rate: %g, %g ... %g s**-1",
6162 photo->
n2o[0][0][0], photo->
n2o[1][0][0],
6163 photo->
n2o[photo->
np - 1][photo->
nsza - 1][photo->
no3c - 1]);
6164 LOG(2,
"CCl4 photolysis rate: %g, %g ... %g s**-1",
6165 photo->
ccl4[0][0][0], photo->
ccl4[1][0][0],
6167 LOG(2,
"CFC-11 photolysis rate: %g, %g ... %g s**-1",
6168 photo->
ccl3f[0][0][0], photo->
ccl3f[1][0][0],
6170 LOG(2,
"CFC-12 photolysis rate: %g, %g ... %g s**-1",
6173 LOG(2,
"O2 photolysis rate: %g, %g ... %g s**-1",
6174 photo->
o2[0][0][0], photo->
o2[1][0][0],
6175 photo->
o2[photo->
np - 1][photo->
nsza - 1][photo->
no3c - 1]);
6176 LOG(2,
"O3 -> O(1D) photolysis rate: %g, %g ... %g s**-1",
6177 photo->
o3_1[0][0][0], photo->
o3_1[1][0][0],
6179 LOG(2,
"O3 -> O(3P) photolysis rate: %g, %g ... %g s**-1",
6180 photo->
o3_2[0][0][0], photo->
o3_2[1][0][0],
6182 LOG(2,
"H2O2 photolysis rate: %g, %g ... %g s**-1",
6183 photo->
h2o2[0][0][0], photo->
h2o2[1][0][0],
6185 LOG(2,
"H2O photolysis rate: %g, %g ... %g s**-1",
6186 photo->
h2o[0][0][0], photo->
h2o[1][0][0],
6187 photo->
h2o[photo->
np - 1][photo->
nsza - 1][photo->
no3c - 1]);
6194 const char *varname,
6208 for (
int ip = 0; ip < photo->
np; ip++)
6209 for (
int is = 0; is < photo->
nsza; is++)
6210 for (
int io = 0; io < photo->
no3c; io++)
6221 const char *filename,
6225 LOG(1,
"Read climatological time series: %s", filename);
6229 if (!(in = fopen(filename,
"r"))) {
6230 WARN(
"Cannot open file!");
6237 while (fgets(line,
LEN, in))
6238 if (sscanf(line,
"%lg %lg", &ts->
time[nh], &ts->
vmr[nh]) == 2) {
6241 ts->
time[nh] = (ts->
time[nh] - 2000.0) * 365.25 * 86400.;
6244 if (nh > 0 && ts->
time[nh] <= ts->
time[nh - 1])
6245 ERRMSG(
"Time series must be ascending!");
6249 ERRMSG(
"Too many data points!");
6258 ERRMSG(
"Not enough data points!");
6261 LOG(2,
"Number of time steps: %d", ts->
ntime);
6262 LOG(2,
"Time steps: %.2f, %.2f ... %.2f s", ts->
time[0], ts->
time[1],
6264 LOG(2,
"Volume mixing ratio range: %g ... %g ppv",
6265 gsl_stats_min(ts->
vmr, 1, (
size_t) nh), gsl_stats_max(ts->
vmr, 1,
6275 const char *filename,
6276 const char *varname,
6279 int ncid, varid, it, iy, iz, iz2, nt;
6281 double *help, varmin = 1e99, varmax = -1e99;
6284 LOG(1,
"Read %s data: %s", varname, filename);
6287 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
6288 WARN(
"%s climatology data are missing!", varname);
6295 if (zm->
p[0] < zm->
p[1])
6296 ERRMSG(
"Pressure data are not descending!");
6301 if (zm->
lat[0] > zm->
lat[1])
6302 ERRMSG(
"Latitude data are not ascending!");
6306 zm->
time[0] = 1209600.00;
6307 zm->
time[1] = 3888000.00;
6308 zm->
time[2] = 6393600.00;
6309 zm->
time[3] = 9072000.00;
6310 zm->
time[4] = 11664000.00;
6311 zm->
time[5] = 14342400.00;
6312 zm->
time[6] = 16934400.00;
6313 zm->
time[7] = 19612800.00;
6314 zm->
time[8] = 22291200.00;
6315 zm->
time[9] = 24883200.00;
6316 zm->
time[10] = 27561600.00;
6317 zm->
time[11] = 30153600.00;
6326 for (it = 0; it < zm->
ntime; it++)
6327 for (iz = 0; iz < zm->
np; iz++)
6328 for (iy = 0; iy < zm->
nlat; iy++)
6333 for (it = 0; it < zm->
ntime; it++)
6334 for (iy = 0; iy < zm->
nlat; iy++)
6335 for (iz = 0; iz < zm->
np; iz++) {
6336 if (zm->
vmr[it][iz][iy] < 0) {
6337 for (iz2 = 0; iz2 < zm->
np; iz2++)
6338 if (zm->
vmr[it][iz2][iy] >= 0) {
6339 zm->
vmr[it][iz][iy] = zm->
vmr[it][iz2][iy];
6342 for (iz2 = zm->
np - 1; iz2 >= 0; iz2--)
6343 if (zm->
vmr[it][iz2][iy] >= 0) {
6344 zm->
vmr[it][iz][iy] = zm->
vmr[it][iz2][iy];
6348 varmin =
MIN(varmin, zm->
vmr[it][iz][iy]);
6349 varmax =
MAX(varmax, zm->
vmr[it][iz][iy]);
6356 LOG(2,
"Number of time steps: %d", zm->
ntime);
6357 LOG(2,
"Time steps: %.2f, %.2f ... %.2f s",
6359 LOG(2,
"Number of pressure levels: %d", zm->
np);
6360 LOG(2,
"Altitude levels: %g, %g ... %g km",
6361 Z(zm->
p[0]),
Z(zm->
p[1]),
Z(zm->
p[zm->
np - 1]));
6362 LOG(2,
"Pressure levels: %g, %g ... %g hPa", zm->
p[0],
6363 zm->
p[1], zm->
p[zm->
np - 1]);
6364 LOG(2,
"Number of latitudes: %d", zm->
nlat);
6365 LOG(2,
"Latitudes: %g, %g ... %g deg",
6367 LOG(2,
"%s volume mixing ratio range: %g ... %g ppv", varname, varmin,
6374 const char *filename,
6380 LOG(1,
"Read kernel function: %s", filename);
6384 if (!(in = fopen(filename,
"r")))
6385 ERRMSG(
"Cannot open file!");
6390 while (fgets(line,
LEN, in))
6391 if (sscanf(line,
"%lg %lg", &kz[n], &kw[n]) == 2) {
6392 if (n > 0 && kz[n] < kz[n - 1])
6393 ERRMSG(
"Height levels must be ascending!");
6395 ERRMSG(
"Too many height levels!");
6404 ERRMSG(
"Not enough height levels!");
6407 const double kmax = gsl_stats_max(kw, 1, (
size_t) n);
6408 for (
int iz = 0; iz < n; iz++)
6415 const char *filename,
6423 int year, mon, day, hour, min, sec;
6429 if (!(in = fopen(filename,
"r"))) {
6430 WARN(
"Cannot open file!");
6436 FREAD(&met_type,
int,
6440 ERRMSG(
"Wrong MET_TYPE of binary data!");
6444 FREAD(&version,
int,
6448 ERRMSG(
"Wrong version of binary data!");
6454 jsec2time(met->
time, &year, &mon, &day, &hour, &min, &sec, &r);
6455 LOG(2,
"Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
6456 met->
time, year, mon, day, hour, min);
6457 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
6458 || day < 1 || day > 31 || hour < 0 || hour > 23)
6459 ERRMSG(
"Error while reading time!");
6465 LOG(2,
"Number of longitudes: %d", met->
nx);
6466 if (met->
nx < 2 || met->
nx >
EX)
6467 ERRMSG(
"Number of longitudes out of range!");
6472 LOG(2,
"Number of latitudes: %d", met->
ny);
6473 if (met->
ny < 2 || met->
ny >
EY)
6474 ERRMSG(
"Number of latitudes out of range!");
6479 LOG(2,
"Number of levels: %d", met->
np);
6480 if (met->
np < 2 || met->
np >
EP)
6481 ERRMSG(
"Number of levels out of range!");
6487 LOG(2,
"Longitudes: %g, %g ... %g deg",
6493 LOG(2,
"Latitudes: %g, %g ... %g deg",
6499 LOG(2,
"Altitude levels: %g, %g ... %g km",
6500 Z(met->
p[0]),
Z(met->
p[1]),
Z(met->
p[met->
np - 1]));
6501 LOG(2,
"Pressure levels: %g, %g ... %g hPa",
6502 met->
p[0], met->
p[1], met->
p[met->
np - 1]);
6551 ERRMSG(
"Error while reading binary data!");
6566 const char *varname) {
6575 LOG(2,
"Read 2-D variable: %s (uncompressed)", varname);
6577 (
size_t) (met->
nx * met->
ny),
6581 for (
int ix = 0; ix < met->
nx; ix++)
6582 for (
int iy = 0; iy < met->
ny; iy++)
6583 var[ix][iy] = help[
ARRAY_2D(ix, iy, met->
ny)];
6596 const char *varname,
6597 const float bound_min,
6598 const float bound_max) {
6608 LOG(2,
"Read 3-D variable: %s (uncompressed)", varname);
6610 (
size_t) (met->
nx * met->
ny * met->
np),
6617 (
size_t) met->
np, 1, in);
6623 FREAD(&precision,
int,
6628 FREAD(&tolerance,
double,
6635 ERRMSG(
"MPTRAC was compiled without zfp compression!");
6645 ERRMSG(
"MPTRAC was compiled without zstd compression!");
6653 (
size_t) met->
np, 1, in);
6655 ERRMSG(
"MPTRAC was compiled without cmultiscale compression!");
6660#pragma omp parallel for default(shared) collapse(2)
6661 for (
int ix = 0; ix < met->
nx; ix++)
6662 for (
int iy = 0; iy < met->
ny; iy++)
6663 for (
int ip = 0; ip < met->
np; ip++) {
6664 var[ix][iy][ip] = help[
ARRAY_3D(ix, iy, met->
ny, ip, met->
np)];
6665 if (var[ix][iy][ip] < bound_min)
6666 var[ix][iy][ip] = bound_min;
6667 else if (var[ix][iy][ip] > bound_max)
6668 var[ix][iy][ip] = bound_max;
6688 LOG(2,
"Calculate CAPE...");
6691 const double pfac = 1.01439, dz0 =
RI /
MA /
G0 * log(pfac);
6694#pragma omp parallel for default(shared) collapse(2)
6695 for (
int ix = 0; ix < met->
nx; ix++)
6696 for (
int iy = 0; iy < met->
ny; iy++) {
6700 double h2o = 0, t, theta = 0;
6701 double pbot =
MIN(met->
ps[ix][iy], met->
p[0]);
6702 double ptop = pbot - 50.;
6703 for (
int ip = 0; ip < met->
np; ip++) {
6704 if (met->
p[ip] <= pbot) {
6705 theta +=
THETA(met->
p[ip], met->
t[ix][iy][ip]);
6706 h2o += met->
h2o[ix][iy][ip];
6709 if (met->
p[ip] < ptop && n > 0)
6716 met->
plcl[ix][iy] = NAN;
6717 met->
plfc[ix][iy] = NAN;
6718 met->
pel[ix][iy] = NAN;
6719 met->
cape[ix][iy] = NAN;
6720 met->
cin[ix][iy] = NAN;
6726 pbot = met->
ps[ix][iy];
6728 met->
plcl[ix][iy] = (float) (0.5 * (pbot + ptop));
6729 t = theta / pow(1000. / met->
plcl[ix][iy], 0.286);
6730 if (
RH(met->
plcl[ix][iy], t, h2o) > 100.)
6731 ptop = met->
plcl[ix][iy];
6733 pbot = met->
plcl[ix][iy];
6734 }
while (pbot - ptop > 0.1);
6738 double dcape, dz, h2o_env, t_env;
6739 double p = met->
ps[ix][iy];
6740 met->
cape[ix][iy] = met->
cin[ix][iy] = 0;
6742 dz = dz0 *
TVIRT(t, h2o);
6744 t = theta / pow(1000. / p, 0.286);
6748 &h2o_env, ci, cw, 0);
6749 dcape = 1e3 *
G0 * (
TVIRT(t, h2o) -
TVIRT(t_env, h2o_env)) /
6750 TVIRT(t_env, h2o_env) * dz;
6752 met->
cin[ix][iy] += fabsf((
float) dcape);
6753 }
while (p > met->
plcl[ix][iy]);
6758 p = met->
plcl[ix][iy];
6759 t = theta / pow(1000. / p, 0.286);
6762 dz = dz0 *
TVIRT(t, h2o);
6765 double psat =
PSAT(t);
6766 h2o = psat / (p - (1. -
EPS) * psat);
6770 &h2o_env, ci, cw, 0);
6771 double dcape_old = dcape;
6772 dcape = 1e3 *
G0 * (
TVIRT(t, h2o) -
TVIRT(t_env, h2o_env)) /
6773 TVIRT(t_env, h2o_env) * dz;
6775 met->
cape[ix][iy] += (float) dcape;
6776 if (!isfinite(met->
plfc[ix][iy]))
6777 met->
plfc[ix][iy] = (
float) p;
6778 }
else if (dcape_old > 0)
6779 met->
pel[ix][iy] = (float) p;
6780 if (dcape < 0 && !isfinite(met->
plfc[ix][iy]))
6781 met->
cin[ix][iy] += fabsf((
float) dcape);
6785 if (!isfinite(met->
plfc[ix][iy]))
6786 met->
cin[ix][iy] = NAN;
6797 LOG(2,
"Calculate cloud data...");
6800 const double ccmin = 0.01, cwmin = 1e-6;
6803#pragma omp parallel for default(shared) collapse(2)
6804 for (
int ix = 0; ix < met->
nx; ix++)
6805 for (
int iy = 0; iy < met->
ny; iy++) {
6808 met->
pct[ix][iy] = NAN;
6809 met->
pcb[ix][iy] = NAN;
6810 met->
cl[ix][iy] = 0;
6813 for (
int ip = 0; ip < met->
np - 1; ip++) {
6816 if (met->
p[ip] > met->
ps[ix][iy] || met->
p[ip] <
P(20.))
6820 if (met->
cc[ix][iy][ip] > ccmin
6821 && (met->
iwc[ix][iy][ip] > cwmin
6822 || met->
rwc[ix][iy][ip] > cwmin
6823 || met->
lwc[ix][iy][ip] > cwmin
6824 || met->
swc[ix][iy][ip] > cwmin)) {
6828 = (float) (0.5 * (met->
p[ip] + (
float) met->
p[ip + 1]));
6831 if (!isfinite(met->
pcb[ix][iy]))
6833 = (
float) (0.5 * (met->
p[ip] + met->
p[
MAX(ip - 1, 0)]));
6837 met->
cl[ix][iy] += (float)
6838 (0.5 * (met->
lwc[ix][iy][ip] + met->
lwc[ix][iy][ip + 1]
6839 + met->
rwc[ix][iy][ip] + met->
rwc[ix][iy][ip + 1]
6840 + met->
iwc[ix][iy][ip] + met->
iwc[ix][iy][ip + 1]
6841 + met->
swc[ix][iy][ip] + met->
swc[ix][iy][ip + 1])
6842 * 100. * (met->
p[ip] - met->
p[ip + 1]) /
G0);
6860 SELECT_TIMER(
"READ_MET_DETREND",
"METPROC", NVTX_READ);
6861 LOG(2,
"Detrend meteo data...");
6868 const double tssq = 2. *
SQR(sigma);
6871 int sy = (int) (3. *
DY2DEG(sigma) / fabs(met->
lat[1] - met->
lat[0]));
6875#pragma omp parallel for default(shared) collapse(2)
6876 for (
int ix = 0; ix < met->
nx; ix++) {
6877 for (
int iy = 0; iy < met->
ny; iy++) {
6885 (int) (3. *
DX2DEG(sigma, met->
lat[iy]) /
6886 fabs(met->
lon[1] - met->
lon[0]));
6891 for (
int ip = 0; ip < met->
np; ip++) {
6892 help->
t[ix][iy][ip] = 0;
6893 help->
u[ix][iy][ip] = 0;
6894 help->
v[ix][iy][ip] = 0;
6895 help->
w[ix][iy][ip] = 0;
6899 for (
int ix2 = ix - sx; ix2 <= ix + sx; ix2++) {
6903 else if (ix3 >= met->
nx)
6905 for (
int iy2 =
MAX(iy - sy, 0);
6906 iy2 <=
MIN(iy + sy, met->
ny - 1); iy2++) {
6913 const float w = (float) exp(-
DIST2(x0, x1) / tssq);
6917 for (
int ip = 0; ip < met->
np; ip++) {
6918 help->
t[ix][iy][ip] += w * met->
t[ix3][iy2][ip];
6919 help->
u[ix][iy][ip] += w * met->
u[ix3][iy2][ip];
6920 help->
v[ix][iy][ip] += w * met->
v[ix3][iy2][ip];
6921 help->
w[ix][iy][ip] += w * met->
w[ix3][iy2][ip];
6927 for (
int ip = 0; ip < met->
np; ip++) {
6928 help->
t[ix][iy][ip] /= wsum;
6929 help->
u[ix][iy][ip] /= wsum;
6930 help->
v[ix][iy][ip] /= wsum;
6931 help->
w[ix][iy][ip] /= wsum;
6937#pragma omp parallel for default(shared) collapse(3)
6938 for (
int ix = 0; ix < met->
nx; ix++)
6939 for (
int iy = 0; iy < met->
ny; iy++)
6940 for (
int ip = 0; ip < met->
np; ip++) {
6941 met->
t[ix][iy][ip] -= help->
t[ix][iy][ip];
6942 met->
u[ix][iy][ip] -= help->
u[ix][iy][ip];
6943 met->
v[ix][iy][ip] -= help->
v[ix][iy][ip];
6944 met->
w[ix][iy][ip] -= help->
w[ix][iy][ip];
6957 SELECT_TIMER(
"READ_MET_EXTRAPOLATE",
"METPROC", NVTX_READ);
6958 LOG(2,
"Extrapolate meteo data...");
6961#pragma omp parallel for default(shared) collapse(2)
6962 for (
int ix = 0; ix < met->
nx; ix++)
6963 for (
int iy = 0; iy < met->
ny; iy++) {
6967 for (ip0 = met->
np - 1; ip0 >= 0; ip0--)
6968 if (!isfinite(met->
t[ix][iy][ip0])
6969 || !isfinite(met->
u[ix][iy][ip0])
6970 || !isfinite(met->
v[ix][iy][ip0])
6971 || !isfinite(met->
w[ix][iy][ip0]))
6975 for (
int ip = ip0; ip >= 0; ip--) {
6976 met->
t[ix][iy][ip] = met->
t[ix][iy][ip + 1];
6977 met->
u[ix][iy][ip] = met->
u[ix][iy][ip + 1];
6978 met->
v[ix][iy][ip] = met->
v[ix][iy][ip + 1];
6979 met->
w[ix][iy][ip] = met->
w[ix][iy][ip + 1];
6980 met->
h2o[ix][iy][ip] = met->
h2o[ix][iy][ip + 1];
6981 met->
o3[ix][iy][ip] = met->
o3[ix][iy][ip + 1];
6982 met->
lwc[ix][iy][ip] = met->
lwc[ix][iy][ip + 1];
6983 met->
rwc[ix][iy][ip] = met->
rwc[ix][iy][ip + 1];
6984 met->
iwc[ix][iy][ip] = met->
iwc[ix][iy][ip + 1];
6985 met->
swc[ix][iy][ip] = met->
swc[ix][iy][ip + 1];
6986 met->
cc[ix][iy][ip] = met->
cc[ix][iy][ip + 1];
7005 LOG(2,
"Calculate geopotential heights...");
7012#pragma omp parallel for default(shared)
7013 for (
int ip = 0; ip < met->
np; ip++)
7014 logp[ip] = log(met->
p[ip]);
7017#pragma omp parallel for default(shared) collapse(2)
7018 for (
int ix = 0; ix < met->
nx; ix++)
7019 for (
int iy = 0; iy < met->
ny; iy++) {
7022 const double zs = met->
zs[ix][iy];
7023 const double lnps = log(met->
ps[ix][iy]);
7027 const double ts =
LIN(met->
p[ip0], met->
t[ix][iy][ip0], met->
p[ip0 + 1],
7028 met->
t[ix][iy][ip0 + 1], met->
ps[ix][iy]);
7030 LIN(met->
p[ip0], met->
h2o[ix][iy][ip0], met->
p[ip0 + 1],
7031 met->
h2o[ix][iy][ip0 + 1], met->
ps[ix][iy]);
7034 met->
z[ix][iy][ip0 + 1]
7036 ZDIFF(lnps, ts, h2os, logp[ip0 + 1],
7037 met->
t[ix][iy][ip0 + 1], met->
h2o[ix][iy][ip0 + 1]));
7038 for (
int ip = ip0 + 2; ip < met->
np; ip++)
7040 = (
float) (met->
z[ix][iy][ip - 1] +
7041 ZDIFF(logp[ip - 1], met->
t[ix][iy][ip - 1],
7042 met->
h2o[ix][iy][ip - 1], logp[ip],
7043 met->
t[ix][iy][ip], met->
h2o[ix][iy][ip]));
7048 ZDIFF(lnps, ts, h2os, logp[ip0],
7049 met->
t[ix][iy][ip0], met->
h2o[ix][iy][ip0]));
7050 for (
int ip = ip0 - 1; ip >= 0; ip--)
7052 = (
float) (met->
z[ix][iy][ip + 1] +
7053 ZDIFF(logp[ip + 1], met->
t[ix][iy][ip + 1],
7054 met->
h2o[ix][iy][ip + 1], logp[ip],
7055 met->
t[ix][iy][ip], met->
h2o[ix][iy][ip]));
7059 if (dx == 0 || dy == 0)
7063 if (dx < 0 || dy < 0) {
7064 if (fabs(met->
lon[1] - met->
lon[0]) < 0.5) {
7074 float ws[dx + 1][dy + 1];
7075#pragma omp parallel for default(shared) collapse(2)
7076 for (
int ix = 0; ix <= dx; ix++)
7077 for (
int iy = 0; iy < dy; iy++)
7078 ws[ix][iy] = (1.0f - (
float) ix / (float) dx)
7079 * (1.0f - (float) iy / (
float) dy);
7082#pragma omp parallel for default(shared) collapse(3)
7083 for (
int ix = 0; ix < met->
nx; ix++)
7084 for (
int iy = 0; iy < met->
ny; iy++)
7085 for (
int ip = 0; ip < met->
np; ip++)
7086 help[
ARRAY_3D(ip, ix, met->
nx, iy, met->
ny)] = met->
z[ix][iy][ip];
7089#pragma omp parallel for default(shared) collapse(3)
7090 for (
int ip = 0; ip < met->
np; ip++)
7091 for (
int ix = 0; ix < met->
nx; ix++)
7092 for (
int iy = 0; iy < met->
ny; iy++) {
7093 float res = 0, wsum = 0;
7094 int iy0 =
MAX(iy - dy + 1, 0);
7095 int iy1 =
MIN(iy + dy - 1, met->
ny - 1);
7096 for (
int ix2 = ix - dx + 1; ix2 <= ix + dx - 1; ++ix2) {
7100 else if (ix3 >= met->
nx)
7102 for (
int iy2 = iy0; iy2 <= iy1; ++iy2)
7103 if (isfinite(help[
ARRAY_3D(ip, ix3, met->
nx, iy2, met->
ny)])) {
7104 float w = ws[abs(ix - ix2)][abs(iy - iy2)];
7105 res += w * help[
ARRAY_3D(ip, ix3, met->
nx, iy2, met->
ny)];
7110 met->
z[ix][iy][ip] = res / wsum;
7112 met->
z[ix][iy][ip] = NAN;
7122 const char *filename,
7127 char levname[
LEN], tstr[10];
7129 double rtime = 0, r, r2;
7131 int varid, year2, mon2, day2, hour2, min2, sec2,
7132 year, mon, day, hour, min, sec;
7138 LOG(2,
"Read meteo grid information...");
7147 jsec2time(met->
time, &year, &mon, &day, &hour, &min, &sec, &r);
7148 if (nc_inq_varid(ncid,
"time", &varid) == NC_NOERR) {
7149 NC(nc_get_var_double(ncid, varid, &rtime));
7150 if (fabs(year * 10000. + mon * 100. + day + hour / 24. - rtime) > 1.0)
7151 WARN(
"Time information in meteo file does not match filename!");
7153 WARN(
"Time information in meteo file is missing!");
7164 sprintf(tstr,
"19%.2s", &filename[strlen(filename) - 11]);
7166 sprintf(tstr,
"20%.2s", &filename[strlen(filename) - 11]);
7168 sprintf(tstr,
"%.2s", &filename[strlen(filename) - 9]);
7170 sprintf(tstr,
"%.2s", &filename[strlen(filename) - 7]);
7172 sprintf(tstr,
"%.2s", &filename[strlen(filename) - 5]);
7178 if (year < 1900 || year > 2100 || mon < 1 || mon > 12
7179 || day < 1 || day > 31 || hour < 0 || hour > 23)
7180 ERRMSG(
"Cannot read time from filename!");
7181 jsec2time(met->
time, &year2, &mon2, &day2, &hour2, &min2, &sec2, &r2);
7182 LOG(2,
"Time: %.2f (%d-%02d-%02d, %02d:%02d UTC)",
7183 met->
time, year2, mon2, day2, hour2, min2);
7187 LOG(2,
"Number of longitudes: %d", met->
nx);
7190 LOG(2,
"Number of latitudes: %d", met->
ny);
7193 sprintf(levname,
"lev");
7194 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR)
7195 sprintf(levname,
"plev");
7196 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR)
7197 sprintf(levname,
"hybrid");
7201 sprintf(levname,
"lev_2");
7202 if (nc_inq_dimid(ncid, levname, &dimid2) != NC_NOERR) {
7203 sprintf(levname,
"plev");
7204 NC(nc_inq_dimid(ncid, levname, &dimid2));
7206 NC(nc_inq_dimlen(ncid, dimid2, &np));
7209 LOG(2,
"Number of levels: %d", met->
np);
7210 if (met->
np < 2 || met->
np >
EP)
7211 ERRMSG(
"Number of levels out of range!");
7215 LOG(2,
"Longitudes: %g, %g ... %g deg",
7218 LOG(2,
"Latitudes: %g, %g ... %g deg",
7222 for (
int ix = 2; ix < met->
nx; ix++)
7224 (fabs(met->
lon[ix] - met->
lon[ix - 1]) -
7225 fabs(met->
lon[1] - met->
lon[0])) > 0.001)
7226 ERRMSG(
"No regular grid spacing in longitudes!");
7227 for (
int iy = 2; iy < met->
ny; iy++)
7229 (fabs(met->
lat[iy] - met->
lat[iy - 1]) -
7230 fabs(met->
lat[1] - met->
lat[0])) > 0.001) {
7231 WARN(
"No regular grid spacing in latitudes!");
7238 for (
int ip = 0; ip < met->
np; ip++)
7240 LOG(2,
"Altitude levels: %g, %g ... %g km",
7241 Z(met->
p[0]),
Z(met->
p[1]),
Z(met->
p[met->
np - 1]));
7242 LOG(2,
"Pressure levels: %g, %g ... %g hPa",
7243 met->
p[0], met->
p[1], met->
p[met->
np - 1]);
7247 if (strcasecmp(levname,
"hybrid") == 0)
7260 LOG(2,
"Read level data...");
7263 if (!
read_met_nc_3d(ncid,
"t",
"T",
"temp",
"TEMP", ctl, met, met->
t, 1.0))
7264 ERRMSG(
"Cannot read temperature!");
7267 if (!
read_met_nc_3d(ncid,
"u",
"U", NULL, NULL, ctl, met, met->
u, 1.0))
7268 ERRMSG(
"Cannot read zonal wind!");
7269 if (!
read_met_nc_3d(ncid,
"v",
"V", NULL, NULL, ctl, met, met->
v, 1.0))
7270 ERRMSG(
"Cannot read meridional wind!");
7272 (ncid,
"w",
"W",
"omega",
"OMEGA", ctl, met, met->
w, 0.01f))
7273 WARN(
"Cannot read vertical velocity!");
7278 (ncid,
"q",
"Q",
"sh",
"SH", ctl, met, met->
h2o, (
float) (
MA /
MH2O)))
7279 WARN(
"Cannot read specific humidity!");
7282 (ncid,
"rh",
"RH", NULL, NULL, ctl, met, met->
h2o, 0.01f))
7283 WARN(
"Cannot read relative humidity!");
7284#pragma omp parallel for default(shared) collapse(2)
7285 for (
int ix = 0; ix < met->
nx; ix++)
7286 for (
int iy = 0; iy < met->
ny; iy++)
7287 for (
int ip = 0; ip < met->
np; ip++) {
7288 double pw = met->
h2o[ix][iy][ip] *
PSAT(met->
t[ix][iy][ip]);
7289 met->
h2o[ix][iy][ip] =
7290 (float) (pw / (met->
p[ip] - (1.0 -
EPS) * pw));
7296 (ncid,
"o3",
"O3", NULL, NULL, ctl, met, met->
o3, (
float) (
MA /
MO3)))
7297 WARN(
"Cannot read ozone data!");
7301 (ncid,
"clwc",
"CLWC", NULL, NULL, ctl, met, met->
lwc, 1.0))
7302 WARN(
"Cannot read cloud liquid water content!");
7304 (ncid,
"crwc",
"CRWC", NULL, NULL, ctl, met, met->
rwc, 1.0))
7305 WARN(
"Cannot read cloud rain water content!");
7307 (ncid,
"ciwc",
"CIWC", NULL, NULL, ctl, met, met->
iwc, 1.0))
7308 WARN(
"Cannot read cloud ice water content!");
7310 (ncid,
"cswc",
"CSWC", NULL, NULL, ctl, met, met->
swc, 1.0))
7311 WARN(
"Cannot read cloud snow water content!");
7313 WARN(
"Cannot read cloud cover!");
7317 (ncid,
"ZETA",
"zeta", NULL, NULL, ctl, met, met->
zetal, 1.0))
7318 WARN(
"Cannot read ZETA!");
7320 (ncid,
"ZETA_DOT_TOT",
"ZETA_DOT_clr",
"zeta_dot_clr",
7321 NULL, ctl, met, met->
zeta_dotl, 0.00001157407f))
7322 WARN(
"Cannot read ZETA_DOT!");
7326 for (
int ix = 0; ix < met->
nx; ix++)
7327 for (
int iy = 0; iy < met->
ny; iy++)
7328 for (
int ip = 0; ip < met->
np; ip++) {
7329 met->
ul[ix][iy][ip] = met->
u[ix][iy][ip];
7330 met->
vl[ix][iy][ip] = met->
v[ix][iy][ip];
7331 met->
wl[ix][iy][ip] = met->
w[ix][iy][ip];
7344 (ncid,
"pl",
"PL",
"pressure",
"PRESSURE", ctl, met, met->
pl,
7347 (ncid,
"press",
"PRESS", NULL, NULL, ctl, met, met->
pl, 1.0))
7348 ERRMSG(
"Cannot read pressure on model levels!");
7355 double hyam[
EP], hybm[
EP];
7369 ERRMSG(
"Mismatch in number of model levels!");
7372 for (
int ip = 0; ip < met->
np; ip++) {
7379 for (
int ix = 0; ix < met->
nx; ix++)
7380 for (
int iy = 0; iy < met->
ny; iy++)
7381 for (
int ip = 0; ip < met->
np; ip++)
7382 met->
pl[ix][iy][ip] =
7383 (
float) (hyam[ip] / 100. + hybm[ip] * met->
ps[ix][iy]);
7390 double hyam[
EP], hybm[
EP];
7393 for (
int ip = 0; ip < met->
np + 1; ip++) {
7400 ERRMSG(
"Mismatch in number of model levels!");
7403#pragma omp parallel for default(shared) collapse(2)
7404 for (
int ix = 0; ix < met->
nx; ix++)
7405 for (
int iy = 0; iy < met->
ny; iy++)
7406 for (
int ip = 0; ip < met->
np; ip++) {
7407 double p0 = hyam[ip] / 100. + hybm[ip] * met->
ps[ix][iy];
7408 double p1 = hyam[ip + 1] / 100. + hybm[ip + 1] * met->
ps[ix][iy];
7409 met->
pl[ix][iy][ip] = (float) ((p1 - p0) / log(p1 / p0));
7414 for (
int ix = 0; ix < met->
nx; ix++)
7415 for (
int iy = 0; iy < met->
ny; iy++)
7416 for (
int ip = 1; ip < met->
np; ip++)
7417 if ((met->
pl[ix][iy][0] > met->
pl[ix][iy][1]
7418 && met->
pl[ix][iy][ip - 1] <= met->
pl[ix][iy][ip])
7419 || (met->
pl[ix][iy][0] < met->
pl[ix][iy][1]
7420 && met->
pl[ix][iy][ip - 1] >= met->
pl[ix][iy][ip]))
7421 ERRMSG(
"Pressure profiles are not monotonic!");
7442 for (
int ip = 0; ip < met->
np; ip++)
7443 met->
p[ip] = ctl->
met_p[ip];
7447 for (
int ip = 1; ip < met->
np; ip++)
7448 if (met->
p[ip - 1] < met->
p[ip])
7449 ERRMSG(
"Pressure levels must be descending!");
7458 const char *varname) {
7460 double aux[
EP], p[
EP];
7464 LOG(2,
"Interpolate meteo data to pressure levels: %s", varname);
7467#pragma omp parallel for default(shared) private(aux,p) collapse(2)
7468 for (
int ix = 0; ix < met->
nx; ix++)
7469 for (
int iy = 0; iy < met->
ny; iy++) {
7472 for (
int ip = 0; ip < met->
np; ip++)
7473 p[ip] = met->
pl[ix][iy][ip];
7476 for (
int ip = 0; ip < ctl->
met_np; ip++) {
7477 double pt = ctl->
met_p[ip];
7478 if ((pt > p[0] && p[0] > p[1]) || (pt < p[0] && p[0] < p[1]))
7480 else if ((pt > p[met->
np - 1] && p[1] > p[0])
7481 || (pt < p[met->
np - 1] && p[1] < p[0]))
7482 pt = p[met->
np - 1];
7484 aux[ip] =
LIN(p[ip2], var[ix][iy][ip2],
7485 p[ip2 + 1], var[ix][iy][ip2 + 1], pt);
7489 for (
int ip = 0; ip < ctl->
met_np; ip++)
7490 var[ix][iy][ip] = (
float) aux[ip];
7505 SELECT_TIMER(
"READ_MET_MONOTONIZE",
"METPROC", NVTX_READ);
7506 LOG(2,
"Make zeta profiles monotone...");
7509#pragma omp parallel for default(shared) collapse(2)
7510 for (
int i = 0; i < met->
nx; i++)
7511 for (
int j = 0; j < met->
ny; j++) {
7514 while (k < met->npl) {
7515 if ((met->
zetal[i][j][k - 1] >= met->
zetal[i][j][k])) {
7521 while ((met->
zetal[i][j][k - 1] >=
7522 met->
zetal[i][j][k + l]) & (k + l < met->npl));
7527 (float) (met->
zetal[i][j][k + l] - met->
zetal[i][j][k - 1])
7530 for (
int m = k; m < k + l; m++) {
7531 float d = (float) (met->
hybrid[m] - met->
hybrid[k - 1]);
7532 met->
zetal[i][j][m] = s * d + met->
zetal[i][j][k - 1];
7544#pragma omp parallel for default(shared) collapse(2)
7545 for (
int i = 0; i < met->
nx; i++)
7546 for (
int j = 0; j < met->
ny; j++) {
7549 while (k < met->npl) {
7550 if ((met->
pl[i][j][k - 1] <= met->
pl[i][j][k])) {
7557 while ((met->
pl[i][j][k - 1] <= met->
pl[i][j][k + l]) & (k + l <
7562 float s = (float) (met->
pl[i][j][k + l] - met->
pl[i][j][k - 1])
7565 for (
int m = k; m < k + l; m++) {
7566 float d = (float) (met->
hybrid[m] - met->
hybrid[k - 1]);
7567 met->
pl[i][j][m] = s * d + met->
pl[i][j][k - 1];
7582 const char *filename,
7590 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR) {
7591 WARN(
"Cannot open file!");
7654 const char *varname,
7655 const char *varname2,
7656 const char *varname3,
7657 const char *varname4,
7658 const char *varname5,
7659 const char *varname6,
7668 float offset, scalfac;
7673 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
7674 sprintf(varsel,
"%s", varname);
7675 else if (varname2 != NULL
7676 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
7677 sprintf(varsel,
"%s", varname2);
7678 else if (varname3 != NULL
7679 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
7680 sprintf(varsel,
"%s", varname3);
7681 else if (varname4 != NULL
7682 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
7683 sprintf(varsel,
"%s", varname4);
7684 else if (varname5 != NULL
7685 && nc_inq_varid(ncid, varname5, &varid) == NC_NOERR)
7686 sprintf(varsel,
"%s", varname5);
7687 else if (varname6 != NULL
7688 && nc_inq_varid(ncid, varname6, &varid) == NC_NOERR)
7689 sprintf(varsel,
"%s", varname6);
7695 && nc_get_att_float(ncid, varid,
"add_offset", &offset) == NC_NOERR
7696 && nc_get_att_float(ncid, varid,
"scale_factor",
7697 &scalfac) == NC_NOERR) {
7705 short fillval, missval;
7706 if (nc_get_att_short(ncid, varid,
"_FillValue", &fillval) != NC_NOERR)
7708 if (nc_get_att_short(ncid, varid,
"missing_value", &missval) != NC_NOERR)
7712 LOG(2,
"Read 2-D variable: %s"
7713 " (FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
7714 varsel, fillval, missval, scalfac, offset);
7717 NC(nc_get_var_short(ncid, varid, help));
7721 ERRMSG(
"Meteo data layout not implemented for packed netCDF files!");
7724#pragma omp parallel for default(shared) num_threads(12)
7725 for (
int ix = 0; ix < met->
nx; ix++)
7726 for (
int iy = 0; iy < met->
ny; iy++) {
7729 const short aux = help[
ARRAY_2D(iy, ix, met->
nx)];
7730 if ((fillval == 0 || aux != fillval)
7731 && (missval == 0 || aux != missval)
7732 && fabsf(aux * scalfac + offset) < 1e14f)
7733 dest[ix][iy] += scl * (aux * scalfac + offset);
7751 float fillval, missval;
7752 if (nc_get_att_float(ncid, varid,
"_FillValue", &fillval) != NC_NOERR)
7754 if (nc_get_att_float(ncid, varid,
"missing_value", &missval) != NC_NOERR)
7758 LOG(2,
"Read 2-D variable: %s (FILL = %g, MISS = %g)",
7759 varsel, fillval, missval);
7762 NC(nc_get_var_float(ncid, varid, help));
7768#pragma omp parallel for default(shared) num_threads(12)
7769 for (
int ix = 0; ix < met->
nx; ix++)
7770 for (
int iy = 0; iy < met->
ny; iy++) {
7773 const float aux = help[
ARRAY_2D(iy, ix, met->
nx)];
7774 if ((fillval == 0 || aux != fillval)
7775 && (missval == 0 || aux != missval)
7776 && fabsf(aux) < 1e14f)
7777 dest[ix][iy] += scl * aux;
7785#pragma omp parallel for default(shared) num_threads(12)
7786 for (
int iy = 0; iy < met->
ny; iy++)
7787 for (
int ix = 0; ix < met->
nx; ix++) {
7790 const float aux = help[
ARRAY_2D(ix, iy, met->
ny)];
7791 if ((fillval == 0 || aux != fillval)
7792 && (missval == 0 || aux != missval)
7793 && fabsf(aux) < 1e14f)
7794 dest[ix][iy] += scl * aux;
7812 const char *varname,
7813 const char *varname2,
7814 const char *varname3,
7815 const char *varname4,
7823 float offset, scalfac;
7828 if (nc_inq_varid(ncid, varname, &varid) == NC_NOERR)
7829 sprintf(varsel,
"%s", varname);
7830 else if (varname2 != NULL
7831 && nc_inq_varid(ncid, varname2, &varid) == NC_NOERR)
7832 sprintf(varsel,
"%s", varname2);
7833 else if (varname3 != NULL
7834 && nc_inq_varid(ncid, varname3, &varid) == NC_NOERR)
7835 sprintf(varsel,
"%s", varname3);
7836 else if (varname4 != NULL
7837 && nc_inq_varid(ncid, varname4, &varid) == NC_NOERR)
7838 sprintf(varsel,
"%s", varname4);
7844 && nc_get_att_float(ncid, varid,
"add_offset", &offset) == NC_NOERR
7845 && nc_get_att_float(ncid, varid,
"scale_factor",
7846 &scalfac) == NC_NOERR) {
7854 short fillval, missval;
7855 if (nc_get_att_short(ncid, varid,
"_FillValue", &fillval) != NC_NOERR)
7857 if (nc_get_att_short(ncid, varid,
"missing_value", &missval) != NC_NOERR)
7861 LOG(2,
"Read 3-D variable: %s "
7862 "(FILL = %d, MISS = %d, SCALE = %g, OFFSET = %g)",
7863 varsel, fillval, missval, scalfac, offset);
7866 NC(nc_get_var_short(ncid, varid, help));
7870 ERRMSG(
"Meteo data layout not implemented for packed netCDF files!");
7873#pragma omp parallel for default(shared) num_threads(12)
7874 for (
int ix = 0; ix < met->
nx; ix++)
7875 for (
int iy = 0; iy < met->
ny; iy++)
7876 for (
int ip = 0; ip < met->
np; ip++) {
7877 const short aux = help[
ARRAY_3D(ip, iy, met->
ny, ix, met->
nx)];
7878 if ((fillval == 0 || aux != fillval)
7879 && (missval == 0 || aux != missval)
7880 && fabsf(aux * scalfac + offset) < 1e14f)
7881 dest[ix][iy][ip] = scl * (aux * scalfac + offset);
7883 dest[ix][iy][ip] = NAN;
7899 float fillval, missval;
7900 if (nc_get_att_float(ncid, varid,
"_FillValue", &fillval) != NC_NOERR)
7902 if (nc_get_att_float(ncid, varid,
"missing_value", &missval) != NC_NOERR)
7906 LOG(2,
"Read 3-D variable: %s (FILL = %g, MISS = %g)",
7907 varsel, fillval, missval);
7910 NC(nc_get_var_float(ncid, varid, help));
7916#pragma omp parallel for default(shared) num_threads(12)
7917 for (
int ix = 0; ix < met->
nx; ix++)
7918 for (
int iy = 0; iy < met->
ny; iy++)
7919 for (
int ip = 0; ip < met->
np; ip++) {
7920 const float aux = help[
ARRAY_3D(ip, iy, met->
ny, ix, met->
nx)];
7921 if ((fillval == 0 || aux != fillval)
7922 && (missval == 0 || aux != missval)
7923 && fabsf(aux) < 1e14f)
7924 dest[ix][iy][ip] = scl * aux;
7926 dest[ix][iy][ip] = NAN;
7932#pragma omp parallel for default(shared) num_threads(12)
7933 for (
int ip = 0; ip < met->
np; ip++)
7934 for (
int iy = 0; iy < met->
ny; iy++)
7935 for (
int ix = 0; ix < met->
nx; ix++) {
7936 const float aux = help[
ARRAY_3D(ix, iy, met->
ny, ip, met->
np)];
7937 if ((fillval == 0 || aux != fillval)
7938 && (missval == 0 || aux != missval)
7939 && fabsf(aux) < 1e14f)
7940 dest[ix][iy][ip] = scl * aux;
7942 dest[ix][iy][ip] = NAN;
7962 LOG(2,
"Calculate planetary boundary layer...");
7968#pragma omp parallel for default(shared) collapse(2)
7969 for (
int ix = 0; ix < met->
nx; ix++)
7970 for (
int iy = 0; iy < met->
ny; iy++) {
7973 const float z = met->
zs[ix][iy] + met->
pbl[ix][iy];
7976 (float) (
LIN(met->
z[ix][iy][ip], met->
p[ip],
7977 met->
z[ix][iy][ip + 1], met->
p[ip + 1], z));
7986 const double rib_crit = 0.25, dz = 0.05, umin = 5.0;
7989#pragma omp parallel for default(shared) collapse(2)
7990 for (
int ix = 0; ix < met->
nx; ix++)
7991 for (
int iy = 0; iy < met->
ny; iy++) {
7994 const double pbl_bot = met->
ps[ix][iy] * exp(-dz /
H0);
7998 for (ip = 1; ip < met->
np; ip++)
7999 if (met->
p[ip] < pbl_bot)
8003 const double h2os =
LIN(met->
p[ip - 1], met->
h2o[ix][iy][ip - 1],
8004 met->
p[ip], met->
h2o[ix][iy][ip], pbl_bot);
8005 const double tvs =
THETAVIRT(pbl_bot, met->
ts[ix][iy], h2os);
8011 for (; ip < met->
np; ip++) {
8014 double vh2 =
SQR(met->
u[ix][iy][ip] - met->
us[ix][iy])
8015 +
SQR(met->
v[ix][iy][ip] - met->
vs[ix][iy]);
8016 vh2 =
MAX(vh2,
SQR(umin));
8020 G0 * 1e3 * (met->
z[ix][iy][ip] - met->
zs[ix][iy]) / tvs
8022 met->
h2o[ix][iy][ip]) - tvs) / vh2;
8025 if (rib >= rib_crit) {
8026 met->
pbl[ix][iy] = (float) (
LIN(rib_old, met->
p[ip - 1],
8027 rib, met->
p[ip], rib_crit));
8028 if (met->
pbl[ix][iy] > pbl_bot)
8029 met->
pbl[ix][iy] = (float) pbl_bot;
8044 const double dtheta = 2.0, zmin = 0.1;
8047#pragma omp parallel for default(shared) collapse(2)
8048 for (
int ix = 0; ix < met->
nx; ix++)
8049 for (
int iy = 0; iy < met->
ny; iy++) {
8052 const double theta0 =
THETA(met->
ps[ix][iy], met->
ts[ix][iy]);
8056 for (ip = met->
np - 2; ip > 0; ip--)
8057 if (met->
p[ip] >= 300.)
8058 if (met->
p[ip] > met->
ps[ix][iy]
8059 ||
THETA(met->
p[ip], met->
t[ix][iy][ip]) <= theta0 + dtheta)
8064 = (float) (
LIN(
THETA(met->
p[ip + 1], met->
t[ix][iy][ip + 1]),
8066 THETA(met->
p[ip], met->
t[ix][iy][ip]),
8067 met->
p[ip], theta0 + dtheta));
8070 double pbl_min = met->
ps[ix][iy] * exp(-zmin /
H0);
8071 if (met->
pbl[ix][iy] > pbl_min || met->
p[ip] > met->
ps[ix][iy])
8072 met->
pbl[ix][iy] = (float) pbl_min;
8077#pragma omp parallel for default(shared) collapse(2)
8078 for (
int ix = 0; ix < met->
nx; ix++)
8079 for (
int iy = 0; iy < met->
ny; iy++) {
8083 met->
pbl[ix][iy] =
MIN(met->
pbl[ix][iy], (
float) pbl_min);
8087 met->
pbl[ix][iy] =
MAX(met->
pbl[ix][iy], (
float) pbl_max);
8097 SELECT_TIMER(
"READ_MET_PERIODIC",
"METPROC", NVTX_READ);
8098 LOG(2,
"Apply periodic boundary conditions...");
8101 if (!(fabs(met->
lon[met->
nx - 1] - met->
lon[0]
8102 + met->
lon[1] - met->
lon[0] - 360) < 0.01))
8106 if ((++met->
nx) >=
EX)
8107 ERRMSG(
"Cannot create periodic boundary conditions!");
8113#pragma omp parallel for default(shared)
8114 for (
int iy = 0; iy < met->
ny; iy++) {
8115 met->
ps[met->
nx - 1][iy] = met->
ps[0][iy];
8116 met->
zs[met->
nx - 1][iy] = met->
zs[0][iy];
8117 met->
ts[met->
nx - 1][iy] = met->
ts[0][iy];
8118 met->
us[met->
nx - 1][iy] = met->
us[0][iy];
8119 met->
vs[met->
nx - 1][iy] = met->
vs[0][iy];
8120 met->
ess[met->
nx - 1][iy] = met->
ess[0][iy];
8121 met->
nss[met->
nx - 1][iy] = met->
nss[0][iy];
8122 met->
shf[met->
nx - 1][iy] = met->
shf[0][iy];
8123 met->
lsm[met->
nx - 1][iy] = met->
lsm[0][iy];
8124 met->
sst[met->
nx - 1][iy] = met->
sst[0][iy];
8125 met->
pbl[met->
nx - 1][iy] = met->
pbl[0][iy];
8126 met->
cape[met->
nx - 1][iy] = met->
cape[0][iy];
8127 met->
cin[met->
nx - 1][iy] = met->
cin[0][iy];
8128 for (
int ip = 0; ip < met->
np; ip++) {
8129 met->
t[met->
nx - 1][iy][ip] = met->
t[0][iy][ip];
8130 met->
u[met->
nx - 1][iy][ip] = met->
u[0][iy][ip];
8131 met->
v[met->
nx - 1][iy][ip] = met->
v[0][iy][ip];
8132 met->
w[met->
nx - 1][iy][ip] = met->
w[0][iy][ip];
8133 met->
h2o[met->
nx - 1][iy][ip] = met->
h2o[0][iy][ip];
8134 met->
o3[met->
nx - 1][iy][ip] = met->
o3[0][iy][ip];
8135 met->
lwc[met->
nx - 1][iy][ip] = met->
lwc[0][iy][ip];
8136 met->
rwc[met->
nx - 1][iy][ip] = met->
rwc[0][iy][ip];
8137 met->
iwc[met->
nx - 1][iy][ip] = met->
iwc[0][iy][ip];
8138 met->
swc[met->
nx - 1][iy][ip] = met->
swc[0][iy][ip];
8139 met->
cc[met->
nx - 1][iy][ip] = met->
cc[0][iy][ip];
8141 for (
int ip = 0; ip < met->
npl; ip++) {
8142 met->
ul[met->
nx - 1][iy][ip] = met->
ul[0][iy][ip];
8143 met->
vl[met->
nx - 1][iy][ip] = met->
vl[0][iy][ip];
8144 met->
wl[met->
nx - 1][iy][ip] = met->
wl[0][iy][ip];
8145 met->
pl[met->
nx - 1][iy][ip] = met->
pl[0][iy][ip];
8146 met->
zetal[met->
nx - 1][iy][ip] = met->
zetal[0][iy][ip];
8158 SELECT_TIMER(
"READ_MET_POLAR_WINDS",
"METPROC", NVTX_READ);
8159 LOG(2,
"Apply fix for polar winds...");
8162 if (fabs(met->
lat[0]) < 89.999 || fabs(met->
lat[met->
ny - 1]) < 89.999)
8166 for (
int ihem = 0; ihem < 2; ihem++) {
8169 int i89 = 1, i90 = 0, sign = 1;
8174 if (met->
lat[i90] < 0)
8178 double clon[
EX], slon[
EX];
8179#pragma omp parallel for default(shared)
8180 for (
int ix = 0; ix < met->
nx; ix++) {
8181 clon[ix] = cos(sign *
DEG2RAD(met->
lon[ix]));
8182 slon[ix] = sin(sign *
DEG2RAD(met->
lon[ix]));
8186#pragma omp parallel for default(shared)
8187 for (
int ip = 0; ip < met->
np; ip++) {
8190 double vel89x = 0, vel89y = 0;
8191 for (
int ix = 0; ix < met->
nx; ix++) {
8193 (met->
u[ix][i89][ip] * clon[ix] -
8194 met->
v[ix][i89][ip] * slon[ix]) / met->
nx;
8196 (met->
u[ix][i89][ip] * slon[ix] +
8197 met->
v[ix][i89][ip] * clon[ix]) / met->
nx;
8201 for (
int ix = 0; ix < met->
nx; ix++) {
8203 = (float) (vel89x * clon[ix] + vel89y * slon[ix]);
8205 = (float) (-vel89x * slon[ix] + vel89y * clon[ix]);
8220 LOG(2,
"Calculate potential vorticity...");
8223#pragma omp parallel for default(shared)
8224 for (
int ip = 0; ip < met->
np; ip++)
8225 pows[ip] = pow(1000. / met->
p[ip], 0.286);
8228#pragma omp parallel for default(shared)
8229 for (
int ix = 0; ix < met->
nx; ix++) {
8232 const int ix0 =
MAX(ix - 1, 0);
8233 const int ix1 =
MIN(ix + 1, met->
nx - 1);
8236 for (
int iy = 0; iy < met->
ny; iy++) {
8239 const int iy0 =
MAX(iy - 1, 0);
8240 const int iy1 =
MIN(iy + 1, met->
ny - 1);
8243 const double latr = 0.5 * (met->
lat[iy1] + met->
lat[iy0]);
8244 const double dx = 1000. *
DEG2DX(met->
lon[ix1] - met->
lon[ix0], latr);
8245 const double dy = 1000. *
DEG2DY(met->
lat[iy1] - met->
lat[iy0]);
8246 const double c0 = cos(
DEG2RAD(met->
lat[iy0]));
8247 const double c1 = cos(
DEG2RAD(met->
lat[iy1]));
8248 const double cr = cos(
DEG2RAD(latr));
8249 const double vort = 2 * 7.2921e-5 * sin(
DEG2RAD(latr));
8252 for (
int ip = 0; ip < met->
np; ip++) {
8256 = (met->
t[ix1][iy][ip] - met->
t[ix0][iy][ip]) * pows[ip] / dx;
8257 const double dvdx = (met->
v[ix1][iy][ip] - met->
v[ix0][iy][ip]) / dx;
8261 = (met->
t[ix][iy1][ip] - met->
t[ix][iy0][ip]) * pows[ip] / dy;
8263 = (met->
u[ix][iy1][ip] * c1 - met->
u[ix][iy0][ip] * c0) / dy;
8266 const int ip0 =
MAX(ip - 1, 0);
8267 const int ip1 =
MIN(ip + 1, met->
np - 1);
8270 double dtdp, dudp, dvdp;
8271 const double dp0 = 100. * (met->
p[ip] - met->
p[ip0]);
8272 const double dp1 = 100. * (met->
p[ip1] - met->
p[ip]);
8273 if (ip != ip0 && ip != ip1) {
8274 double denom = dp0 * dp1 * (dp0 + dp1);
8275 dtdp = (dp0 * dp0 * met->
t[ix][iy][ip1] * pows[ip1]
8276 - dp1 * dp1 * met->
t[ix][iy][ip0] * pows[ip0]
8277 + (dp1 * dp1 - dp0 * dp0) * met->
t[ix][iy][ip] * pows[ip])
8279 dudp = (dp0 * dp0 * met->
u[ix][iy][ip1]
8280 - dp1 * dp1 * met->
u[ix][iy][ip0]
8281 + (dp1 * dp1 - dp0 * dp0) * met->
u[ix][iy][ip])
8283 dvdp = (dp0 * dp0 * met->
v[ix][iy][ip1]
8284 - dp1 * dp1 * met->
v[ix][iy][ip0]
8285 + (dp1 * dp1 - dp0 * dp0) * met->
v[ix][iy][ip])
8288 const double denom = dp0 + dp1;
8290 (met->
t[ix][iy][ip1] * pows[ip1] -
8291 met->
t[ix][iy][ip0] * pows[ip0]) / denom;
8292 dudp = (met->
u[ix][iy][ip1] - met->
u[ix][iy][ip0]) / denom;
8293 dvdp = (met->
v[ix][iy][ip1] - met->
v[ix][iy][ip0]) / denom;
8297 met->
pv[ix][iy][ip] = (float)
8299 (-dtdp * (dvdx - dudy / cr + vort) + dvdp * dtdx - dudp * dtdy));
8305#pragma omp parallel for default(shared)
8306 for (
int ix = 0; ix < met->
nx; ix++)
8307 for (
int ip = 0; ip < met->
np; ip++) {
8309 = met->
pv[ix][1][ip]
8310 = met->
pv[ix][2][ip];
8311 met->
pv[ix][met->
ny - 1][ip]
8312 = met->
pv[ix][met->
ny - 2][ip]
8313 = met->
pv[ix][met->
ny - 3][ip];
8324 LOG(2,
"Calculate total column ozone...");
8327#pragma omp parallel for default(shared) collapse(2)
8328 for (
int ix = 0; ix < met->
nx; ix++)
8329 for (
int iy = 0; iy < met->
ny; iy++) {
8333 for (
int ip = 1; ip < met->
np; ip++)
8334 if (met->
p[ip - 1] <= met->
ps[ix][iy]) {
8336 0.5 * (met->
o3[ix][iy][ip - 1] + met->
o3[ix][iy][ip]);
8337 const double dp = met->
p[ip - 1] - met->
p[ip];
8338 cd += vmr *
MO3 /
MA * dp * 1e2 /
G0;
8342 met->
o3c[ix][iy] = (float) (cd / 2.1415e-5);
8361 LOG(2,
"Downsampling of meteo data...");
8370 memcpy(help->
lon, met->
lon,
sizeof(met->
lon));
8371 memcpy(help->
lat, met->
lat,
sizeof(met->
lat));
8372 memcpy(help->
p, met->
p,
sizeof(met->
p));
8375 for (
int ix = 0; ix < met->
nx; ix += ctl->
met_dx) {
8376 for (
int iy = 0; iy < met->
ny; iy += ctl->
met_dy) {
8377 for (
int ip = 0; ip < met->
np; ip += ctl->
met_dp) {
8378 help->
ps[ix][iy] = 0;
8379 help->
zs[ix][iy] = 0;
8380 help->
ts[ix][iy] = 0;
8381 help->
us[ix][iy] = 0;
8382 help->
vs[ix][iy] = 0;
8383 help->
ess[ix][iy] = 0;
8384 help->
nss[ix][iy] = 0;
8385 help->
shf[ix][iy] = 0;
8386 help->
lsm[ix][iy] = 0;
8387 help->
sst[ix][iy] = 0;
8388 help->
pbl[ix][iy] = 0;
8389 help->
cape[ix][iy] = 0;
8390 help->
cin[ix][iy] = 0;
8391 help->
t[ix][iy][ip] = 0;
8392 help->
u[ix][iy][ip] = 0;
8393 help->
v[ix][iy][ip] = 0;
8394 help->
w[ix][iy][ip] = 0;
8395 help->
h2o[ix][iy][ip] = 0;
8396 help->
o3[ix][iy][ip] = 0;
8397 help->
lwc[ix][iy][ip] = 0;
8398 help->
rwc[ix][iy][ip] = 0;
8399 help->
iwc[ix][iy][ip] = 0;
8400 help->
swc[ix][iy][ip] = 0;
8401 help->
cc[ix][iy][ip] = 0;
8403 for (
int ix2 = ix - ctl->
met_sx + 1; ix2 <= ix + ctl->met_sx - 1;
8408 else if (ix3 >= met->
nx)
8411 for (
int iy2 =
MAX(iy - ctl->
met_sy + 1, 0);
8412 iy2 <=
MIN(iy + ctl->
met_sy - 1, met->
ny - 1); iy2++)
8413 for (
int ip2 =
MAX(ip - ctl->
met_sp + 1, 0);
8414 ip2 <=
MIN(ip + ctl->
met_sp - 1, met->
np - 1); ip2++) {
8415 float w = (1.0f - (float) abs(ix - ix2) / (float) ctl->
met_sx)
8416 * (1.0f - (float) abs(iy - iy2) / (float) ctl->
met_sy)
8417 * (1.0f - (float) abs(ip - ip2) / (float) ctl->
met_sp);
8418 help->
ps[ix][iy] += w * met->
ps[ix3][iy2];
8419 help->
zs[ix][iy] += w * met->
zs[ix3][iy2];
8420 help->
ts[ix][iy] += w * met->
ts[ix3][iy2];
8421 help->
us[ix][iy] += w * met->
us[ix3][iy2];
8422 help->
vs[ix][iy] += w * met->
vs[ix3][iy2];
8423 help->
ess[ix][iy] += w * met->
ess[ix3][iy2];
8424 help->
nss[ix][iy] += w * met->
nss[ix3][iy2];
8425 help->
shf[ix][iy] += w * met->
shf[ix3][iy2];
8426 help->
lsm[ix][iy] += w * met->
lsm[ix3][iy2];
8427 help->
sst[ix][iy] += w * met->
sst[ix3][iy2];
8428 help->
pbl[ix][iy] += w * met->
pbl[ix3][iy2];
8429 help->
cape[ix][iy] += w * met->
cape[ix3][iy2];
8430 help->
cin[ix][iy] += w * met->
cin[ix3][iy2];
8431 help->
t[ix][iy][ip] += w * met->
t[ix3][iy2][ip2];
8432 help->
u[ix][iy][ip] += w * met->
u[ix3][iy2][ip2];
8433 help->
v[ix][iy][ip] += w * met->
v[ix3][iy2][ip2];
8434 help->
w[ix][iy][ip] += w * met->
w[ix3][iy2][ip2];
8435 help->
h2o[ix][iy][ip] += w * met->
h2o[ix3][iy2][ip2];
8436 help->
o3[ix][iy][ip] += w * met->
o3[ix3][iy2][ip2];
8437 help->
lwc[ix][iy][ip] += w * met->
lwc[ix3][iy2][ip2];
8438 help->
rwc[ix][iy][ip] += w * met->
rwc[ix3][iy2][ip2];
8439 help->
iwc[ix][iy][ip] += w * met->
iwc[ix3][iy2][ip2];
8440 help->
swc[ix][iy][ip] += w * met->
swc[ix3][iy2][ip2];
8441 help->
cc[ix][iy][ip] += w * met->
cc[ix3][iy2][ip2];
8445 help->
ps[ix][iy] /= wsum;
8446 help->
zs[ix][iy] /= wsum;
8447 help->
ts[ix][iy] /= wsum;
8448 help->
us[ix][iy] /= wsum;
8449 help->
vs[ix][iy] /= wsum;
8450 help->
ess[ix][iy] /= wsum;
8451 help->
nss[ix][iy] /= wsum;
8452 help->
shf[ix][iy] /= wsum;
8453 help->
lsm[ix][iy] /= wsum;
8454 help->
sst[ix][iy] /= wsum;
8455 help->
pbl[ix][iy] /= wsum;
8456 help->
cape[ix][iy] /= wsum;
8457 help->
cin[ix][iy] /= wsum;
8458 help->
t[ix][iy][ip] /= wsum;
8459 help->
u[ix][iy][ip] /= wsum;
8460 help->
v[ix][iy][ip] /= wsum;
8461 help->
w[ix][iy][ip] /= wsum;
8462 help->
h2o[ix][iy][ip] /= wsum;
8463 help->
o3[ix][iy][ip] /= wsum;
8464 help->
lwc[ix][iy][ip] /= wsum;
8465 help->
rwc[ix][iy][ip] /= wsum;
8466 help->
iwc[ix][iy][ip] /= wsum;
8467 help->
swc[ix][iy][ip] /= wsum;
8468 help->
cc[ix][iy][ip] /= wsum;
8475 for (
int ix = 0; ix < help->
nx; ix += ctl->
met_dx) {
8478 for (
int iy = 0; iy < help->
ny; iy += ctl->
met_dy) {
8480 met->
ps[met->
nx][met->
ny] = help->
ps[ix][iy];
8481 met->
zs[met->
nx][met->
ny] = help->
zs[ix][iy];
8482 met->
ts[met->
nx][met->
ny] = help->
ts[ix][iy];
8483 met->
us[met->
nx][met->
ny] = help->
us[ix][iy];
8484 met->
vs[met->
nx][met->
ny] = help->
vs[ix][iy];
8485 met->
ess[met->
nx][met->
ny] = help->
ess[ix][iy];
8486 met->
nss[met->
nx][met->
ny] = help->
nss[ix][iy];
8487 met->
shf[met->
nx][met->
ny] = help->
shf[ix][iy];
8488 met->
lsm[met->
nx][met->
ny] = help->
lsm[ix][iy];
8489 met->
sst[met->
nx][met->
ny] = help->
sst[ix][iy];
8490 met->
pbl[met->
nx][met->
ny] = help->
pbl[ix][iy];
8492 met->
cin[met->
nx][met->
ny] = help->
cin[ix][iy];
8494 for (
int ip = 0; ip < help->
np; ip += ctl->
met_dp) {
8495 met->
p[met->
np] = help->
p[ip];
8496 met->
t[met->
nx][met->
ny][met->
np] = help->
t[ix][iy][ip];
8497 met->
u[met->
nx][met->
ny][met->
np] = help->
u[ix][iy][ip];
8498 met->
v[met->
nx][met->
ny][met->
np] = help->
v[ix][iy][ip];
8499 met->
w[met->
nx][met->
ny][met->
np] = help->
w[ix][iy][ip];
8500 met->
h2o[met->
nx][met->
ny][met->
np] = help->
h2o[ix][iy][ip];
8501 met->
o3[met->
nx][met->
ny][met->
np] = help->
o3[ix][iy][ip];
8502 met->
lwc[met->
nx][met->
ny][met->
np] = help->
lwc[ix][iy][ip];
8503 met->
rwc[met->
nx][met->
ny][met->
np] = help->
rwc[ix][iy][ip];
8504 met->
iwc[met->
nx][met->
ny][met->
np] = help->
iwc[ix][iy][ip];
8505 met->
swc[met->
nx][met->
ny][met->
np] = help->
swc[ix][iy][ip];
8506 met->
cc[met->
nx][met->
ny][met->
np] = help->
cc[ix][iy][ip];
8527 LOG(2,
"Read surface data...");
8531 (ncid,
"lnsp",
"LNSP", NULL, NULL, NULL, NULL, ctl, met, met->
ps, 1.0f,
8533 for (
int ix = 0; ix < met->
nx; ix++)
8534 for (
int iy = 0; iy < met->
ny; iy++)
8535 met->
ps[ix][iy] = (
float) (exp(met->
ps[ix][iy]) / 100.);
8538 (ncid,
"ps",
"PS",
"sp",
"SP", NULL, NULL, ctl, met, met->
ps, 0.01f,
8540 WARN(
"Cannot not read surface pressure data (use lowest level)!");
8541 for (
int ix = 0; ix < met->
nx; ix++)
8542 for (
int iy = 0; iy < met->
ny; iy++)
8544 = (ctl->
met_np > 0 ? (
float) ctl->
met_p[0] : (
float) met->
p[0]);
8552 (ncid,
"z",
"Z", NULL, NULL, NULL, NULL, ctl, met, met->
zs,
8553 (
float) (1. / (1000. *
G0)), 1))
8555 (ncid,
"zm",
"ZM", NULL, NULL, NULL, NULL, ctl, met, met->
zs,
8556 (
float) (1. / 1000.), 1))
8557 WARN(
"Cannot read surface geopotential height!");
8568 memcpy(help, met->
pl,
sizeof(met->
pl));
8570 (ncid,
"gph",
"GPH", NULL, NULL, ctl, met, met->
pl,
8571 (
float) (1e-3 /
G0)))
8572 ERRMSG(
"Cannot read geopotential height!");
8573 for (
int ix = 0; ix < met->
nx; ix++)
8574 for (
int iy = 0; iy < met->
ny; iy++)
8575 met->
zs[ix][iy] = met->
pl[ix][iy][0];
8576 memcpy(met->
pl, help,
sizeof(met->
pl));
8582 (ncid,
"t2m",
"T2M",
"2t",
"2T",
"t2",
"T2", ctl, met, met->
ts, 1.0, 1))
8583 WARN(
"Cannot read surface temperature!");
8587 (ncid,
"u10m",
"U10M",
"10u",
"10U",
"u10",
"U10", ctl, met, met->
us,
8589 WARN(
"Cannot read surface zonal wind!");
8593 (ncid,
"v10m",
"V10M",
"10v",
"10V",
"v10",
"V10", ctl, met, met->
vs,
8595 WARN(
"Cannot read surface meridional wind!");
8599 (ncid,
"iews",
"IEWS", NULL, NULL, NULL, NULL, ctl, met, met->
ess, 1.0,
8601 WARN(
"Cannot read eastward turbulent surface stress!");
8605 (ncid,
"inss",
"INSS", NULL, NULL, NULL, NULL, ctl, met, met->
nss, 1.0,
8607 WARN(
"Cannot read nothward turbulent surface stress!");
8611 (ncid,
"ishf",
"ISHF", NULL, NULL, NULL, NULL, ctl, met, met->
shf, 1.0,
8613 WARN(
"Cannot read surface sensible heat flux!");
8617 (ncid,
"lsm",
"LSM", NULL, NULL, NULL, NULL, ctl, met, met->
lsm, 1.0,
8619 WARN(
"Cannot read land-sea mask!");
8623 (ncid,
"sstk",
"SSTK",
"sst",
"SST", NULL, NULL, ctl, met, met->
sst,
8625 WARN(
"Cannot read sea surface temperature!");
8630 (ncid,
"blp",
"BLP", NULL, NULL, NULL, NULL, ctl, met, met->
pbl,
8632 WARN(
"Cannot read planetary boundary layer pressure!");
8635 (ncid,
"blh",
"BLH", NULL, NULL, NULL, NULL, ctl, met, met->
pbl,
8637 WARN(
"Cannot read planetary boundary layer height!");
8642 (ncid,
"cape",
"CAPE", NULL, NULL, NULL, NULL, ctl, met, met->
cape,
8644 WARN(
"Cannot read CAPE!");
8649 (ncid,
"cin",
"CIN", NULL, NULL, NULL, NULL, ctl, met, met->
cin,
8651 WARN(
"Cannot read convective inhibition!");
8661 double p2[200], pv[
EP], pv2[200], t[
EP], t2[200], th[
EP],
8662 th2[200], z[
EP], z2[200];
8666 LOG(2,
"Calculate tropopause...");
8669#pragma omp parallel for default(shared)
8670 for (
int iz = 0; iz < met->
np; iz++)
8671 z[iz] =
Z(met->
p[iz]);
8672#pragma omp parallel for default(shared)
8673 for (
int iz = 0; iz <= 190; iz++) {
8674 z2[iz] = 4.5 + 0.1 * iz;
8680#pragma omp parallel for default(shared) collapse(2)
8681 for (
int ix = 0; ix < met->
nx; ix++)
8682 for (
int iy = 0; iy < met->
ny; iy++)
8683 met->
pt[ix][iy] = NAN;
8687#pragma omp parallel for default(shared) collapse(2)
8688 for (
int ix = 0; ix < met->
nx; ix++)
8689 for (
int iy = 0; iy < met->
ny; iy++)
8697#pragma omp parallel for default(shared) private(t,t2) collapse(2)
8698 for (
int ix = 0; ix < met->
nx; ix++)
8699 for (
int iy = 0; iy < met->
ny; iy++) {
8702 for (
int iz = 0; iz < met->
np; iz++)
8703 t[iz] = met->
t[ix][iy][iz];
8707 int iz = (int) gsl_stats_min_index(t2, 1, 171);
8708 if (iz > 0 && iz < 170)
8709 met->
pt[ix][iy] = (float) p2[iz];
8711 met->
pt[ix][iy] = NAN;
8719#pragma omp parallel for default(shared) private(t,t2) collapse(2)
8720 for (
int ix = 0; ix < met->
nx; ix++)
8721 for (
int iy = 0; iy < met->
ny; iy++) {
8725 for (iz = 0; iz < met->
np; iz++)
8726 t[iz] = met->
t[ix][iy][iz];
8730 met->
pt[ix][iy] = NAN;
8731 for (iz = 0; iz <= 170; iz++) {
8733 for (
int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
8734 if (
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
8739 if (iz > 0 && iz < 170)
8740 met->
pt[ix][iy] = (float) p2[iz];
8747 met->
pt[ix][iy] = NAN;
8748 for (; iz <= 170; iz++) {
8750 for (
int iz2 = iz + 1; iz2 <= iz + 10; iz2++)
8751 if (
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) < 3.0) {
8758 for (; iz <= 170; iz++) {
8760 for (
int iz2 = iz + 1; iz2 <= iz + 20; iz2++)
8761 if (
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]) > 2.0) {
8766 if (iz > 0 && iz < 170)
8767 met->
pt[ix][iy] = (float) p2[iz];
8779#pragma omp parallel for default(shared) private(pv,pv2,th,th2) collapse(2)
8780 for (
int ix = 0; ix < met->
nx; ix++)
8781 for (
int iy = 0; iy < met->
ny; iy++) {
8784 for (
int iz = 0; iz < met->
np; iz++)
8785 pv[iz] = met->
pv[ix][iy][iz];
8789 for (
int iz = 0; iz < met->
np; iz++)
8790 th[iz] =
THETA(met->
p[iz], met->
t[ix][iy][iz]);
8794 met->
pt[ix][iy] = NAN;
8795 for (
int iz = 0; iz <= 170; iz++)
8798 if (iz > 0 && iz < 170)
8799 met->
pt[ix][iy] = (float) p2[iz];
8806 ERRMSG(
"Cannot calculate tropopause!");
8809#pragma omp parallel for default(shared) collapse(2)
8810 for (
int ix = 0; ix < met->
nx; ix++)
8811 for (
int iy = 0; iy < met->
ny; iy++) {
8812 double h2ot, tt, zt;
8815 met->
lat[iy], &tt, ci, cw, 1);
8817 met->
lat[iy], &zt, ci, cw, 0);
8819 met->
lat[iy], &h2ot, ci, cw, 0);
8820 met->
tt[ix][iy] = (float) tt;
8821 met->
zt[ix][iy] = (float) zt;
8822 met->
h2ot[ix][iy] = (float) h2ot;
8829 const char *filename,
8839 LOG(1,
"Read observation data: %s", filename);
8843 read_obs_asc(filename, rt, rz, rlon, rlat, robs, nobs);
8845 read_obs_nc(filename, rt, rz, rlon, rlat, robs, nobs);
8847 ERRMSG(
"Set OBS_TYPE to 0 or 1!");
8850 for (
int i = 1; i < *nobs; i++)
8851 if (rt[i] < rt[i - 1])
8852 ERRMSG(
"Time must be ascending!");
8857 LOG(2,
"Number of observations: %d", *nobs);
8858 gsl_stats_minmax(&mini, &maxi, rt, 1, (
size_t) n);
8859 LOG(2,
"Time range: %.2f ... %.2f s", mini, maxi);
8860 gsl_stats_minmax(&mini, &maxi, rz, 1, (
size_t) n);
8861 LOG(2,
"Altitude range: %g ... %g km", mini, maxi);
8862 gsl_stats_minmax(&mini, &maxi, rlon, 1, (
size_t) n);
8863 LOG(2,
"Longitude range: %g ... %g deg", mini, maxi);
8864 gsl_stats_minmax(&mini, &maxi, rlat, 1, (
size_t) n);
8865 LOG(2,
"Latitude range: %g ... %g deg", mini, maxi);
8866 gsl_stats_minmax(&mini, &maxi, robs, 1, (
size_t) n);
8867 LOG(2,
"Observation range: %g ... %g", mini, maxi);
8873 const char *filename,
8883 if (!(in = fopen(filename,
"r")))
8884 ERRMSG(
"Cannot open file!");
8888 while (fgets(line,
LEN, in))
8889 if (sscanf(line,
"%lg %lg %lg %lg %lg", &rt[*nobs], &rz[*nobs],
8890 &rlon[*nobs], &rlat[*nobs], &robs[*nobs]) == 5)
8891 if ((++(*nobs)) >=
NOBS)
8892 ERRMSG(
"Too many observations!");
8901 const char *filename,
8912 if (nc_open(filename, NC_NOWRITE, &ncid) != NC_NOERR)
8913 ERRMSG(
"Cannot open file!");
8930 const char *filename,
8933 const char *varname,
8935 const char *defvalue,
8940 char fullname1[
LEN], fullname2[
LEN], rval[
LEN];
8945 if (filename[strlen(filename) - 1] !=
'-')
8946 if (!(in = fopen(filename,
"r")))
8947 ERRMSG(
"Cannot open file!");
8951 sprintf(fullname1,
"%s[%d]", varname, arridx);
8952 sprintf(fullname2,
"%s[*]", varname);
8954 sprintf(fullname1,
"%s", varname);
8955 sprintf(fullname2,
"%s", varname);
8960 char dummy[
LEN], line[
LEN], rvarname[
LEN];
8961 while (fgets(line,
LEN, in)) {
8962 if (sscanf(line,
"%4999s %4999s %4999s", rvarname, dummy, rval) == 3)
8963 if (strcasecmp(rvarname, fullname1) == 0 ||
8964 strcasecmp(rvarname, fullname2) == 0) {
8970 for (i = 1; i < argc - 1; i++)
8971 if (strcasecmp(argv[i], fullname1) == 0 ||
8972 strcasecmp(argv[i], fullname2) == 0) {
8973 sprintf(rval,
"%s", argv[i + 1]);
8984 if (strlen(defvalue) > 0)
8985 sprintf(rval,
"%s", defvalue);
8987 ERRMSG(
"Missing variable %s!\n", fullname1);
8991 LOG(1,
"%s = %s", fullname1, rval);
8995 sprintf(value,
"%s", rval);
9005 const double rhop) {
9008 const double rp_help = rp * 1e-6;
9011 const double rho =
RHO(p, T);
9014 const double eta = 1.8325e-5 * (416.16 / (T + 120.)) * pow(T / 296.16, 1.5);
9017 const double v = sqrt(8. *
KB * T / (M_PI * 4.8096e-26));
9020 const double lambda = 2. * eta / (rho * v);
9023 const double K = lambda / rp_help;
9026 const double G = 1. + K * (1.249 + 0.42 * exp(-0.87 / K));
9029 return 2. *
SQR(rp_help) * (rhop - rho) *
G0 / (9. * eta) * G;
9047 gsl_interp_accel *acc = gsl_interp_accel_alloc();
9048 gsl_spline *s = gsl_spline_alloc(gsl_interp_cspline, (
size_t) n);
9051 gsl_spline_init(s, x, y, (
size_t) n);
9052 for (
int i = 0; i < n2; i++)
9055 else if (x2[i] >= x[n - 1])
9058 y2[i] = gsl_spline_eval(s, x2[i], acc);
9062 gsl_interp_accel_free(acc);
9067 for (
int i = 0; i < n2; i++)
9070 else if (x2[i] >= x[n - 1])
9074 y2[i] =
LIN(x[idx], y[idx], x[idx + 1], y[idx + 1], x2[i]);
9088 float mean = 0, var = 0;
9090 for (
int i = 0; i < n; ++i) {
9092 var +=
SQR(data[i]);
9095 var = var / (float) n -
SQR(mean / (
float) n);
9097 return (var > 0 ? sqrtf(var) : 0);
9108 const double D = sec / 86400 - 0.5;
9111 const double g =
DEG2RAD(357.529 + 0.98560028 * D);
9112 const double q = 280.459 + 0.98564736 * D;
9113 const double L =
DEG2RAD(q + 1.915 * sin(g) + 0.020 * sin(2 * g));
9116 const double e =
DEG2RAD(23.439 - 0.00000036 * D);
9119 const double sindec = sin(e) * sin(L);
9122 const double ra = atan2(cos(e) * sin(L), cos(L));
9125 const double GMST = 18.697374558 + 24.06570982441908 * D;
9128 const double LST = GMST + lon / 15;
9131 const double h = LST / 12 * M_PI - ra;
9134 const double lat_help =
DEG2RAD(lat);
9137 return acos(sin(lat_help) * sindec +
9138 cos(lat_help) * sqrt(1 -
SQR(sindec)) * cos(h));
9150 const double remain,
9162 t1.tm_year = year - 1900;
9163 t1.tm_mon = mon - 1;
9169 *jsec = (double) timegm(&t1) - (double) timegm(&t0) + remain;
9184 static int iname = -1, igroup = -1, nname, ngroup, ct_name[
NTIMER];
9187 t1 = omp_get_wtime();
9192 rt_name[iname] += dt;
9193 rt_min[iname] = (ct_name[iname] <= 0 ? dt :
MIN(rt_min[iname], dt));
9194 rt_max[iname] = (ct_name[iname] <= 0 ? dt :
MAX(rt_max[iname], dt));
9198 rt_group[igroup] += t1 - t0;
9202 for (
int i = 0; i < nname; i++)
9203 LOG(1,
"TIMER_%s = %.3f s (min= %g s, mean= %g s,"
9204 " max= %g s, n= %d)", names[i], rt_name[i], rt_min[i],
9205 rt_name[i] / ct_name[i], rt_max[i], ct_name[i]);
9206 for (
int i = 0; i < ngroup; i++)
9207 LOG(1,
"TIMER_GROUP_%s = %.3f s", groups[i], rt_group[i]);
9209 for (
int i = 0; i < nname; i++)
9210 total += rt_name[i];
9211 LOG(1,
"TIMER_TOTAL = %.3f s", total);
9215 for (iname = 0; iname < nname; iname++)
9216 if (strcasecmp(name, names[iname]) == 0)
9218 for (igroup = 0; igroup < ngroup; igroup++)
9219 if (strcasecmp(group, groups[igroup]) == 0)
9223 if (iname >= nname) {
9224 sprintf(names[iname],
"%s", name);
9226 ERRMSG(
"Too many timers!");
9230 if (igroup >= ngroup) {
9231 sprintf(groups[igroup],
"%s", group);
9232 if ((++ngroup) >=
NTIMER)
9233 ERRMSG(
"Too many groups!");
9243 const char *filename,
9251 int len = (int) strlen(filename);
9252 sprintf(tstr,
"%.4s", &filename[len - offset]);
9253 int year = atoi(tstr);
9254 sprintf(tstr,
"%.2s", &filename[len - offset + 5]);
9255 int mon = atoi(tstr);
9256 sprintf(tstr,
"%.2s", &filename[len - offset + 8]);
9257 int day = atoi(tstr);
9258 sprintf(tstr,
"%.2s", &filename[len - offset + 11]);
9259 int hour = atoi(tstr);
9260 sprintf(tstr,
"%.2s", &filename[len - offset + 14]);
9261 int min = atoi(tstr);
9264 if (year < 1900 || year > 2100 || mon < 1 || mon > 12 || day < 1
9265 || day > 31 || hour < 0 || hour > 23 || min < 0 || min > 59)
9266 ERRMSG(
"Cannot read time from filename!");
9269 time2jsec(year, mon, day, hour, min, 0, 0.0, &t);
9286 const double p1 = pt * 0.866877899;
9287 const double p0 = pt / 0.866877899;
9290 if (atm->
p[ip] > p0)
9292 else if (atm->
p[ip] < p1)
9295 return LIN(p0, 1.0, p1, 0.0, atm->
p[ip]);
9301 const char *filename,
9309 const double t0 = t - 0.5 * ctl->
dt_mod;
9310 const double t1 = t + 0.5 * ctl->
dt_mod;
9316 if (!(out = popen(
"gnuplot",
"w")))
9317 ERRMSG(
"Cannot create pipe to gnuplot!");
9320 fprintf(out,
"set out \"%s.png\"\n", filename);
9324 int year, mon, day, hour, min, sec;
9325 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
9326 fprintf(out,
"timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
9327 year, mon, day, hour, min);
9332 ERRMSG(
"Cannot open file!");
9334 while (fgets(line,
LEN, in))
9335 fprintf(out,
"%s", line);
9342 if (!(out = fopen(filename,
"w")))
9343 ERRMSG(
"Cannot create file!");
9349 "# $2 = altitude [km]\n"
9350 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
9351 for (
int iq = 0; iq < ctl->
nq; iq++)
9352 fprintf(out,
"# $%i = %s [%s]\n", iq + 5, ctl->
qnt_name[iq],
9357 for (
int ip = 0; ip < atm->
np; ip += ctl->
atm_stride) {
9364 fprintf(out,
"%.2f %g %g %g", atm->
time[ip],
Z(atm->
p[ip]),
9365 atm->
lon[ip], atm->
lat[ip]);
9366 for (
int iq = 0; iq < ctl->
nq; iq++) {
9371 fprintf(out, ctl->
qnt_format[iq], atm->
q[iq][ip]);
9383 const char *filename,
9390 if (!(out = fopen(filename,
"w")))
9391 ERRMSG(
"Cannot create file!");
9415 for (
int iq = 0; iq < ctl->
nq; iq++)
9433 const char *filename,
9437 int tid, pid, ncid, varid;
9438 size_t start[2], count[2];
9441 nc_create(filename, NC_NETCDF4, &ncid);
9444 NC(nc_def_dim(ncid,
"time", 1, &tid));
9445 NC(nc_def_dim(ncid,
"NPARTS", (
size_t) atm->
np, &pid));
9448 int dim_ids[2] = { tid, pid };
9449 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &tid,
"Time",
9450 "seconds since 2000-01-01 00:00:00 UTC", ctl->
atm_nc_level, 0);
9451 NC_DEF_VAR(
"LAT", NC_DOUBLE, 1, &pid,
"Latitude",
"deg",
9453 NC_DEF_VAR(
"LON", NC_DOUBLE, 1, &pid,
"Longitude",
"deg",
9455 NC_DEF_VAR(
"PRESS", NC_DOUBLE, 1, &pid,
"Pressure",
"hPa",
9458 for (
int iq = 0; iq < ctl->
nq; iq++)
9468 NC(nc_enddef(ncid));
9476 for (
int iq = 0; iq < ctl->
nq; iq++)
9486 const char *dirname,
9492 static size_t out_cnt = 0;
9494 double r, r_start, r_stop;
9495 int year, mon, day, hour, min, sec;
9496 int year_start, mon_start, day_start, hour_start, min_start, sec_start;
9497 int year_stop, mon_stop, day_stop, hour_stop, min_stop, sec_stop;
9498 char filename_out[2 *
LEN] =
"traj_fix_3d_YYYYMMDDHH_YYYYMMDDHH.nc";
9500 int ncid, varid, tid, pid, cid;
9508 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
9510 &min_start, &sec_start, &r_start);
9512 &min_stop, &sec_stop, &r_stop);
9514 sprintf(filename_out,
"%s/traj_fix_3d_%02d%02d%02d%02d_%02d%02d%02d%02d.nc",
9516 year_start % 100, mon_start, day_start, hour_start,
9517 year_stop % 100, mon_stop, day_stop, hour_stop);
9518 LOG(1,
"Write traj file: %s", filename_out);
9524 count[1] = (size_t) atm->
np;
9530 nc_create(filename_out, NC_NETCDF4, &ncid);
9533 NC(nc_def_dim(ncid,
"time", NC_UNLIMITED, &tid));
9534 NC(nc_def_dim(ncid,
"NPARTS", (
size_t) atm->
np, &pid));
9535 NC(nc_def_dim(ncid,
"TMDT", 7, &cid));
9540 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &tid,
"Time",
9541 "seconds since 2000-01-01 00:00:00 UTC", ctl->
atm_nc_level, 0);
9542 NC_DEF_VAR(
"LAT", NC_DOUBLE, 2, dim_ids,
"Latitude",
"deg",
9544 NC_DEF_VAR(
"LON", NC_DOUBLE, 2, dim_ids,
"Longitude",
"deg",
9546 NC_DEF_VAR(
"PRESS", NC_DOUBLE, 2, dim_ids,
"Pressure",
"hPa",
9548 NC_DEF_VAR(
"ZETA", NC_DOUBLE, 2, dim_ids,
"Zeta",
"K",
9550 for (
int iq = 0; iq < ctl->
nq; iq++)
9560 NC(nc_enddef(ncid));
9568 NC(nc_open(filename_out, NC_WRITE, &ncid));
9580 for (
int iq = 0; iq < ctl->
nq; iq++)
9587 if ((year == year_stop) && (mon == mon_stop)
9588 && (day == day_stop) && (hour == hour_stop)) {
9591 char filename_init[2 *
LEN] =
"./init_fix_YYYYMMDDHH.nc";
9592 sprintf(filename_init,
"%s/init_fix_%02d%02d%02d%02d.nc",
9593 dirname, year_stop % 100, mon_stop, day_stop, hour_stop);
9594 LOG(1,
"Write init file: %s", filename_init);
9597 nc_create(filename_init, NC_NETCDF4, &ncid);
9600 NC(nc_def_dim(ncid,
"time", 1, &tid));
9601 NC(nc_def_dim(ncid,
"NPARTS", (
size_t) atm->
np, &pid));
9606 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &tid,
"Time",
9607 "seconds since 2000-01-01 00:00:00 UTC", ctl->
atm_nc_level, 0);
9608 NC_DEF_VAR(
"LAT", NC_DOUBLE, 1, &pid,
"Latitude",
"deg",
9610 NC_DEF_VAR(
"LON", NC_DOUBLE, 1, &pid,
"Longitude",
"deg",
9612 NC_DEF_VAR(
"PRESS", NC_DOUBLE, 1, &pid,
"Pressure",
"hPa",
9615 for (
int iq = 0; iq < ctl->
nq; iq++)
9625 NC(nc_enddef(ncid));
9633 for (
int iq = 0; iq < ctl->
nq; iq++)
9644 const char *filename,
9648 int ncid, obsid, varid;
9650 size_t start[2], count[2];
9653 NC(nc_create(filename, NC_NETCDF4, &ncid));
9656 NC(nc_def_dim(ncid,
"obs", (
size_t) atm->
np, &obsid));
9659 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &obsid,
"time",
9660 "seconds since 2000-01-01 00:00:00 UTC", ctl->
atm_nc_level, 0);
9661 NC_DEF_VAR(
"press", NC_DOUBLE, 1, &obsid,
"pressure",
"hPa",
9663 NC_DEF_VAR(
"lon", NC_DOUBLE, 1, &obsid,
"longitude",
"degrees_east",
9665 NC_DEF_VAR(
"lat", NC_DOUBLE, 1, &obsid,
"latitude",
"degrees_north",
9667 for (
int iq = 0; iq < ctl->
nq; iq++)
9676 NC(nc_enddef(ncid));
9683 for (
int iq = 0; iq < ctl->
nq; iq++)
9693 const char *filename,
9700 static double *modmean, *obsmean, *obsstd, *rt, *rz, *rlon, *rlat, *robs,
9703 static int *obscount, ct, cx, cy, cz, ip, ix, iy, iz, n, nobs, nk;
9713 ERRMSG(
"Need quantity mass!");
9737 LOG(1,
"Write CSI data: %s", filename);
9738 if (!(out = fopen(filename,
"w")))
9739 ERRMSG(
"Cannot create file!");
9744 "# $2 = number of hits (cx)\n"
9745 "# $3 = number of misses (cy)\n"
9746 "# $4 = number of false alarms (cz)\n"
9747 "# $5 = number of observations (cx + cy)\n"
9748 "# $6 = number of forecasts (cx + cz)\n"
9749 "# $7 = bias (ratio of forecasts and observations) [%%]\n"
9750 "# $8 = probability of detection (POD) [%%]\n"
9751 "# $9 = false alarm rate (FAR) [%%]\n"
9752 "# $10 = critical success index (CSI) [%%]\n");
9754 "# $11 = hits associated with random chance\n"
9755 "# $12 = equitable threat score (ETS) [%%]\n"
9756 "# $13 = Pearson linear correlation coefficient\n"
9757 "# $14 = Spearman rank-order correlation coefficient\n"
9758 "# $15 = column density mean error (F - O) [kg/m^2]\n"
9759 "# $16 = column density root mean square error (RMSE) [kg/m^2]\n"
9760 "# $17 = column density mean absolute error [kg/m^2]\n"
9761 "# $18 = log-likelihood function\n"
9762 "# $19 = number of data points\n\n");
9770 for (iy = 0; iy < ctl->
csi_ny; iy++) {
9771 const double lat = ctl->
csi_lat0 + dlat * (iy + 0.5);
9772 area[iy] = dlat * dlon *
SQR(
RE * M_PI / 180.) * cos(
DEG2RAD(lat));
9777 const double t0 = t - 0.5 * ctl->
dt_mod;
9778 const double t1 = t + 0.5 * ctl->
dt_mod;
9781 ALLOC(modmean,
double,
9783 ALLOC(obsmean,
double,
9785 ALLOC(obscount,
int,
9787 ALLOC(obsstd,
double,
9791 for (
int i = 0; i < nobs; i++) {
9796 else if (rt[i] >= t1)
9800 if (!isfinite(robs[i]))
9804 ix = (int) ((rlon[i] - ctl->
csi_lon0) / dlon);
9805 iy = (int) ((rlat[i] - ctl->
csi_lat0) / dlat);
9806 iz = (int) ((rz[i] - ctl->
csi_z0) / dz);
9809 if (ix < 0 || ix >= ctl->
csi_nx ||
9810 iy < 0 || iy >= ctl->
csi_ny || iz < 0 || iz >= ctl->
csi_nz)
9815 obsmean[idx] += robs[i];
9816 obsstd[idx] +=
SQR(robs[i]);
9821 for (ip = 0; ip < atm->
np; ip++) {
9824 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
9828 ix = (int) ((atm->
lon[ip] - ctl->
csi_lon0) / dlon);
9829 iy = (int) ((atm->
lat[ip] - ctl->
csi_lat0) / dlat);
9830 iz = (int) ((
Z(atm->
p[ip]) - ctl->
csi_z0) / dz);
9833 if (ix < 0 || ix >= ctl->
csi_nx ||
9834 iy < 0 || iy >= ctl->
csi_ny || iz < 0 || iz >= ctl->
csi_nz)
9840 * atm->
q[ctl->
qnt_m][ip];
9844 for (ix = 0; ix < ctl->
csi_nx; ix++)
9845 for (iy = 0; iy < ctl->
csi_ny; iy++)
9846 for (iz = 0; iz < ctl->
csi_nz; iz++) {
9850 if (obscount[idx] > 0) {
9851 obsmean[idx] /= obscount[idx];
9852 obsstd[idx] -=
SQR(obsmean[idx]);
9853 obsstd[idx] = sqrt(obsstd[idx]);
9857 if (modmean[idx] > 0)
9858 modmean[idx] /= (1e6 * area[iy]);
9861 if (obscount[idx] > 0) {
9875 if (obscount[idx] > 0
9878 x[n] = modmean[idx];
9879 y[n] = obsmean[idx];
9881 obsstdn[n] = obsstd[idx];
9883 ERRMSG(
"Too many data points to calculate statistics!");
9892 static double work[2 *
NCSI], work2[2 *
NCSI];;
9893 const int n_obs = cx + cy;
9894 const int n_for = cx + cz;
9895 const double bias = (n_obs > 0) ? 100. * n_for / n_obs : NAN;
9896 const double pod = (n_obs > 0) ? (100. * cx) / n_obs : NAN;
9897 const double far = (n_for > 0) ? (100. * cz) / n_for : NAN;
9899 (cx + cy + cz > 0) ? (100. * cx) / (cx + cy + cz) : NAN;
9900 const double cx_rd = (ct > 0) ? (1. * n_obs * n_for) / ct : NAN;
9901 const double ets = (cx + cy + cz - cx_rd > 0) ?
9902 (100. * (cx - cx_rd)) / (cx + cy + cz - cx_rd) : NAN;
9903 const double rho_p =
9904 (n > 0) ? gsl_stats_correlation(x, 1, y, 1, (
size_t) n) : NAN;
9905 const double rho_s =
9906 (n > 0) ? gsl_stats_spearman(x, 1, y, 1, (
size_t) n, work) : NAN;
9907 for (
int i = 0; i < n; i++) {
9908 work[i] = x[i] - y[i];
9909 work2[i] = (obsstdn[i] != 0) ? (x[i] - y[i]) / obsstdn[i] : 0;
9911 const double mean = (n > 0) ? gsl_stats_mean(work, 1, (
size_t) n) : NAN;
9913 (n > 0) ? gsl_stats_sd_with_fixed_mean(work, 1, (
size_t) n,
9915 const double absdev =
9916 (n > 0) ? gsl_stats_absdev_m(work, 1, (
size_t) n, 0.0) : NAN;
9917 const double loglikelihood =
9918 (n > 0) ? gsl_stats_tss(work2, 1, (
size_t) n) * (-0.5) : GSL_NAN;
9922 "%.2f %d %d %d %d %d %g %g %g %g %g %g %g %g %g %g %g %g %d\n", t,
9923 cx, cy, cz, n_obs, n_for, bias, pod, far, csi, cx_rd, ets, rho_p,
9924 rho_s, mean, rmse, absdev, loglikelihood, n);
9927 n = ct = cx = cy = cz = 0;
9955 const char *filename,
9972 ERRMSG(
"Missing ensemble IDs!");
9975 const double t0 = t - 0.5 * ctl->
dt_mod;
9976 const double t1 = t + 0.5 * ctl->
dt_mod;
9979 for (
int i = 0; i <
NENS; i++) {
9980 for (
int iq = 0; iq < ctl->
nq; iq++)
9981 qm[iq][i] = qs[iq][i] = 0;
9982 xm[i][0] = xm[i][1] = xm[i][2] = zm[i] = 0;
9987 for (
int ip = 0; ip < atm->
np; ip++) {
9990 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
9995 ERRMSG(
"Ensemble ID is out of range!");
9999 for (
int iq = 0; iq < ctl->
nq; iq++) {
10000 qm[iq][ctl->
qnt_ens] += atm->
q[iq][ip];
10011 LOG(1,
"Write ensemble data: %s", filename);
10012 if (!(out = fopen(filename,
"w")))
10013 ERRMSG(
"Cannot create file!");
10017 "# $1 = time [s]\n"
10018 "# $2 = altitude [km]\n"
10019 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
10020 for (
int iq = 0; iq < ctl->
nq; iq++)
10021 fprintf(out,
"# $%d = %s (mean) [%s]\n", 5 + iq,
10023 for (
int iq = 0; iq < ctl->
nq; iq++)
10024 fprintf(out,
"# $%d = %s (sigma) [%s]\n", 5 + ctl->
nq + iq,
10026 fprintf(out,
"# $%d = number of members\n\n", 5 + 2 * ctl->
nq);
10029 for (
int i = 0; i <
NENS; i++)
10031 cart2geo(xm[i], &dummy, &lon, &lat);
10032 fprintf(out,
"%.2f %g %g %g", t, zm[i] / n[i], lon, lat);
10033 for (
int iq = 0; iq < ctl->
nq; iq++) {
10035 fprintf(out, ctl->
qnt_format[iq], qm[iq][i] / n[i]);
10037 for (
int iq = 0; iq < ctl->
nq; iq++) {
10039 double var = qs[iq][i] / n[i] -
SQR(qm[iq][i] / n[i]);
10040 fprintf(out, ctl->
qnt_format[iq], (var > 0 ? sqrt(var) : 0));
10042 fprintf(out,
" %d\n", n[i]);
10052 const char *filename,
10059 static double kz[
EP], kw[
EP];
10063 double *cd, *mean[
NQ], *sigma[
NQ], *vmr_impl, *z, *lon, *lat, *area, *press;
10065 int *ixs, *iys, *izs, *np;
10071 LOG(1,
"Write grid data: %s", filename);
10084 for (
int iq = 0; iq < ctl->
nq; iq++) {
10085 ALLOC(mean[iq],
double,
10087 ALLOC(sigma[iq],
double,
10090 ALLOC(vmr_impl,
double,
10098 ALLOC(area,
double,
10100 ALLOC(press,
double,
10117#pragma omp parallel
for default(shared)
10118 for (
int iz = 0; iz < ctl->
grid_nz; iz++) {
10119 z[iz] = ctl->
grid_z0 + dz * (iz + 0.5);
10120 press[iz] =
P(z[iz]);
10124 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10125 lon[ix] = ctl->
grid_lon0 + dlon * (ix + 0.5);
10126#pragma omp parallel for default(shared)
10127 for (
int iy = 0; iy < ctl->
grid_ny; iy++) {
10128 lat[iy] = ctl->
grid_lat0 + dlat * (iy + 0.5);
10129 area[iy] = dlat * dlon *
SQR(
RE * M_PI / 180.) * cos(
DEG2RAD(lat[iy]));
10133 const double t0 = t - 0.5 * ctl->
dt_mod;
10134 const double t1 = t + 0.5 * ctl->
dt_mod;
10137#pragma omp parallel for default(shared)
10138 for (
int ip = 0; ip < atm->
np; ip++) {
10139 ixs[ip] = (int) ((atm->
lon[ip] - ctl->
grid_lon0) / dlon);
10140 iys[ip] = (int) ((atm->
lat[ip] - ctl->
grid_lat0) / dlat);
10141 izs[ip] = (int) ((
Z(atm->
p[ip]) - ctl->
grid_z0) / dz);
10142 if (atm->
time[ip] < t0 || atm->
time[ip] > t1
10143 || ixs[ip] < 0 || ixs[ip] >= ctl->
grid_nx
10144 || iys[ip] < 0 || iys[ip] >= ctl->
grid_ny
10145 || izs[ip] < 0 || izs[ip] >= ctl->
grid_nz)
10150 for (
int ip = 0; ip < atm->
np; ip++)
10151 if (izs[ip] >= 0) {
10156 for (
int iq = 0; iq < ctl->
nq; iq++) {
10157 mean[iq][idx] += kernel * atm->
q[iq][ip];
10158 sigma[iq][idx] +=
SQR(kernel * atm->
q[iq][ip]);
10163#pragma omp parallel for default(shared)
10164 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10165 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10166 for (
int iz = 0; iz < ctl->
grid_nz; iz++) {
10173 if (ctl->
qnt_m >= 0)
10174 cd[idx] = mean[ctl->
qnt_m][idx] / (1e6 * area[iy]);
10177 vmr_impl[idx] = NAN;
10178 if (ctl->
qnt_m >= 0 && ctl->
molmass > 0 && met0 != NULL
10181 if (mean[ctl->
qnt_m][idx] > 0) {
10187 lon[ix], lat[iy], &temp, ci, cw, 1);
10191 MA / ctl->
molmass * cd[idx] / (
RHO(press[iz], temp) * dz * 1e3);
10197 for (
int iq = 0; iq < ctl->
nq; iq++) {
10198 mean[iq][idx] /= np[idx];
10199 double var = sigma[iq][idx] / np[idx] -
SQR(mean[iq][idx]);
10200 sigma[iq][idx] = (var > 0 ? sqrt(var) : 0);
10202 for (
int iq = 0; iq < ctl->
nq; iq++) {
10203 mean[iq][idx] = NAN;
10204 sigma[iq][idx] = NAN;
10211 t, z, lon, lat, area, dz, np);
10216 t, z, lon, lat, area, dz, np);
10220 ERRMSG(
"Grid data format GRID_TYPE unknown!");
10224 for (
int iq = 0; iq < ctl->
nq; iq++) {
10243 const char *filename,
10248 const double *vmr_impl,
10253 const double *area,
10263 if (!(out = popen(
"gnuplot",
"w")))
10264 ERRMSG(
"Cannot create pipe to gnuplot!");
10267 fprintf(out,
"set out \"%s.png\"\n", filename);
10271 int year, mon, day, hour, min, sec;
10272 jsec2time(t, &year, &mon, &day, &hour, &min, &sec, &r);
10273 fprintf(out,
"timestr=\"%d-%02d-%02d, %02d:%02d UTC\"\n",
10274 year, mon, day, hour, min);
10280 ERRMSG(
"Cannot open file!");
10281 while (fgets(line,
LEN, in))
10282 fprintf(out,
"%s", line);
10289 if (!(out = fopen(filename,
"w")))
10290 ERRMSG(
"Cannot create file!");
10295 "# $1 = time [s]\n"
10296 "# $2 = altitude [km]\n"
10297 "# $3 = longitude [deg]\n"
10298 "# $4 = latitude [deg]\n"
10299 "# $5 = surface area [km^2]\n"
10300 "# $6 = layer depth [km]\n"
10301 "# $7 = column density (implicit) [kg/m^2]\n"
10302 "# $8 = volume mixing ratio (implicit) [ppv]\n"
10303 "# $9 = number of particles [1]\n");
10304 for (
int iq = 0; iq < ctl->
nq; iq++)
10305 fprintf(out,
"# $%i = %s (mean) [%s]\n", 10 + iq, ctl->
qnt_name[iq],
10308 for (
int iq = 0; iq < ctl->
nq; iq++)
10309 fprintf(out,
"# $%i = %s (stddev) [%s]\n", 10 + ctl->
nq + iq,
10311 fprintf(out,
"\n");
10314 for (
int ix = 0; ix < ctl->
grid_nx; ix++) {
10316 fprintf(out,
"\n");
10317 for (
int iy = 0; iy < ctl->
grid_ny; iy++) {
10319 fprintf(out,
"\n");
10320 for (
int iz = 0; iz < ctl->
grid_nz; iz++) {
10323 fprintf(out,
"%.2f %g %g %g %g %g %g %g %d", t, z[iz], lon[ix],
10324 lat[iy], area[iy], dz, cd[idx], vmr_impl[idx], np[idx]);
10325 for (
int iq = 0; iq < ctl->
nq; iq++) {
10327 fprintf(out, ctl->
qnt_format[iq], mean[iq][idx]);
10330 for (
int iq = 0; iq < ctl->
nq; iq++) {
10332 fprintf(out, ctl->
qnt_format[iq], sigma[iq][idx]);
10334 fprintf(out,
"\n");
10347 const char *filename,
10352 const double *vmr_impl,
10357 const double *area,
10361 char longname[2 *
LEN], varname[2 *
LEN];
10365 int *help2, ncid, dimid[10], varid;
10367 size_t start[2], count[2];
10370 ALLOC(help,
double,
10376 NC(nc_create(filename, NC_NETCDF4, &ncid));
10379 NC(nc_def_dim(ncid,
"time", 1, &dimid[0]));
10380 NC(nc_def_dim(ncid,
"z", (
size_t) ctl->
grid_nz, &dimid[1]));
10381 NC(nc_def_dim(ncid,
"lat", (
size_t) ctl->
grid_ny, &dimid[2]));
10382 NC(nc_def_dim(ncid,
"lon", (
size_t) ctl->
grid_nx, &dimid[3]));
10383 NC(nc_def_dim(ncid,
"dz", 1, &dimid[4]));
10386 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &dimid[0],
"time",
10387 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
10388 NC_DEF_VAR(
"z", NC_DOUBLE, 1, &dimid[1],
"altitude",
"km", 0, 0);
10389 NC_DEF_VAR(
"lat", NC_DOUBLE, 1, &dimid[2],
"latitude",
"degrees_north", 0,
10391 NC_DEF_VAR(
"lon", NC_DOUBLE, 1, &dimid[3],
"longitude",
"degrees_east", 0,
10393 NC_DEF_VAR(
"dz", NC_DOUBLE, 1, &dimid[1],
"layer depth",
"km", 0, 0);
10394 NC_DEF_VAR(
"area", NC_DOUBLE, 1, &dimid[2],
"surface area",
"km**2", 0, 0);
10396 NC_DEF_VAR(
"cd", NC_FLOAT, 4, dimid,
"column density",
"kg m**-2",
10398 NC_DEF_VAR(
"vmr_impl", NC_FLOAT, 4, dimid,
"volume mixing ratio (implicit)",
10400 NC_DEF_VAR(
"np", NC_INT, 4, dimid,
"number of particles",
"1", 0, 0);
10401 for (
int iq = 0; iq < ctl->
nq; iq++) {
10402 sprintf(varname,
"%s_mean", ctl->
qnt_name[iq]);
10403 sprintf(longname,
"%s (mean)", ctl->
qnt_longname[iq]);
10407 sprintf(varname,
"%s_stddev", ctl->
qnt_name[iq]);
10408 sprintf(longname,
"%s (stddev)", ctl->
qnt_longname[iq]);
10414 NC(nc_enddef(ncid));
10424 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10425 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10426 for (
int iz = 0; iz < ctl->
grid_nz; iz++)
10431 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10432 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10433 for (
int iz = 0; iz < ctl->
grid_nz; iz++)
10438 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10439 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10440 for (
int iz = 0; iz < ctl->
grid_nz; iz++)
10445 for (
int iq = 0; iq < ctl->
nq; iq++) {
10446 sprintf(varname,
"%s_mean", ctl->
qnt_name[iq]);
10447 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10448 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10449 for (
int iz = 0; iz < ctl->
grid_nz; iz++)
10456 for (
int iq = 0; iq < ctl->
nq; iq++) {
10457 sprintf(varname,
"%s_stddev", ctl->
qnt_name[iq]);
10458 for (
int ix = 0; ix < ctl->
grid_nx; ix++)
10459 for (
int iy = 0; iy < ctl->
grid_ny; iy++)
10460 for (
int iz = 0; iz < ctl->
grid_nz; iz++)
10467 NC(nc_close(ncid));
10477 const char *filename,
10483 if (!(out = fopen(filename,
"w")))
10484 ERRMSG(
"Cannot create file!");
10581 const char *varname) {
10590 for (
int ix = 0; ix < met->
nx; ix++)
10591 for (
int iy = 0; iy < met->
ny; iy++)
10592 help[
ARRAY_2D(ix, iy, met->
ny)] = var[ix][iy];
10595 LOG(2,
"Write 2-D variable: %s (uncompressed)", varname);
10597 (
size_t) (met->
nx * met->
ny),
10611 const char *varname,
10612 const int precision,
10613 const double tolerance) {
10622#pragma omp parallel for default(shared) collapse(2)
10623 for (
int ix = 0; ix < met->
nx; ix++)
10624 for (
int iy = 0; iy < met->
ny; iy++)
10625 for (
int ip = 0; ip < met->
np; ip++)
10626 help[
ARRAY_3D(ix, iy, met->
ny, ip, met->
np)] = var[ix][iy][ip];
10630 LOG(2,
"Write 3-D variable: %s (uncompressed)", varname);
10632 (
size_t) (met->
nx * met->
ny * met->
np),
10639 (
size_t) met->
np, 0, out);
10647 FWRITE(&tolerance,
double,
10651 tolerance, 0, out);
10666 (
size_t) met->
np, 0, out);
10672 ERRMSG(
"MET_TYPE not supported!");
10673 LOG(3,
"%d %g", precision, tolerance);
10683 const char *filename,
10689 size_t start[4], count[4];
10690 nc_create(filename, NC_NETCDF4, &ncid);
10693 int tid, lonid, latid, levid;
10694 NC(nc_def_dim(ncid,
"time", 1, &tid));
10695 NC(nc_def_dim(ncid,
"lon", (
size_t) met->
nx, &lonid));
10696 NC(nc_def_dim(ncid,
"lat", (
size_t) met->
ny, &latid));
10697 NC(nc_def_dim(ncid,
"lev", (
size_t) met->
np, &levid));
10700 NC_DEF_VAR(
"time", NC_DOUBLE, 1, &tid,
"time",
10701 "seconds since 2000-01-01 00:00:00 UTC", 0, 0);
10702 NC_DEF_VAR(
"lon", NC_DOUBLE, 1, &lonid,
"longitude",
"degrees_east", 0, 0);
10703 NC_DEF_VAR(
"lat", NC_DOUBLE, 1, &latid,
"latitude",
"degrees_north", 0, 0);
10704 NC_DEF_VAR(
"lev", NC_DOUBLE, 1, &levid,
"pressure",
"Pa", 0, 0);
10707 int dimid2[2] = { latid, lonid };
10708 NC_DEF_VAR(
"sp", NC_FLOAT, 2, dimid2,
"Surface pressure",
"Pa",
10710 NC_DEF_VAR(
"z", NC_FLOAT, 2, dimid2,
"Geopotential",
"m**2 s**-2",
10712 NC_DEF_VAR(
"t2m", NC_FLOAT, 2, dimid2,
"2 metre temperature",
"K",
10714 NC_DEF_VAR(
"u10m", NC_FLOAT, 2, dimid2,
"10 metre U wind component",
10716 NC_DEF_VAR(
"v10m", NC_FLOAT, 2, dimid2,
"10 metre V wind component",
10719 "Instantaneous eastward turbulent surface stress",
"N m**-2",
10722 "Instantaneous northward turbulent surface stress",
"N m**-2",
10725 "Instantaneous surface sensible heat flux",
"W m**-1",
10727 NC_DEF_VAR(
"lsm", NC_FLOAT, 2, dimid2,
"Land/sea mask",
"-",
10729 NC_DEF_VAR(
"sstk", NC_FLOAT, 2, dimid2,
"Sea surface temperature",
"K",
10731 NC_DEF_VAR(
"blp", NC_FLOAT, 2, dimid2,
"Boundary layer pressure",
"Pa",
10733 NC_DEF_VAR(
"pt", NC_FLOAT, 2, dimid2,
"Tropopause pressure",
"Pa",
10735 NC_DEF_VAR(
"tt", NC_FLOAT, 2, dimid2,
"Tropopause temperature",
"K",
10737 NC_DEF_VAR(
"zt", NC_FLOAT, 2, dimid2,
"Tropopause height",
"m",
10739 NC_DEF_VAR(
"h2ot", NC_FLOAT, 2, dimid2,
"Tropopause water vapor",
"ppv",
10741 NC_DEF_VAR(
"pct", NC_FLOAT, 2, dimid2,
"Cloud top pressure",
"Pa",
10743 NC_DEF_VAR(
"pcb", NC_FLOAT, 2, dimid2,
"Cloud bottom pressure",
"Pa",
10745 NC_DEF_VAR(
"cl", NC_FLOAT, 2, dimid2,
"Total column cloud water",
"kg m**2",
10748 "Pressure at lifted condensation level (LCL)",
"Pa",
10751 "Pressure at level of free convection (LFC)",
"Pa",
10753 NC_DEF_VAR(
"pel", NC_FLOAT, 2, dimid2,
"Pressure at equilibrium level (EL)",
10756 "Convective available potential energy",
"J kg**-1",
10758 NC_DEF_VAR(
"cin", NC_FLOAT, 2, dimid2,
"Convective inhibition",
"J kg**-1",
10760 NC_DEF_VAR(
"o3c", NC_FLOAT, 2, dimid2,
"Total column ozone",
"DU",
10764 int dimid3[3] = { levid, latid, lonid };
10765 NC_DEF_VAR(
"t", NC_FLOAT, 3, dimid3,
"Temperature",
"K",
10767 NC_DEF_VAR(
"u", NC_FLOAT, 3, dimid3,
"U velocity",
"m s**-1",
10769 NC_DEF_VAR(
"v", NC_FLOAT, 3, dimid3,
"V velocity",
"m s**-1",
10771 NC_DEF_VAR(
"w", NC_FLOAT, 3, dimid3,
"Vertical velocity",
"Pa s**-1",
10773 NC_DEF_VAR(
"q", NC_FLOAT, 3, dimid3,
"Specific humidity",
"kg kg**-1",
10775 NC_DEF_VAR(
"o3", NC_FLOAT, 3, dimid3,
"Ozone mass mixing ratio",
10777 NC_DEF_VAR(
"clwc", NC_FLOAT, 3, dimid3,
"Cloud liquid water content",
10779 NC_DEF_VAR(
"crwc", NC_FLOAT, 3, dimid3,
"Cloud rain water content",
10781 NC_DEF_VAR(
"ciwc", NC_FLOAT, 3, dimid3,
"Cloud ice water content",
10783 NC_DEF_VAR(
"cswc", NC_FLOAT, 3, dimid3,
"Cloud snow water content",
10785 NC_DEF_VAR(
"cc", NC_FLOAT, 3, dimid3,
"Cloud cover",
"-",
10789 NC(nc_enddef(ncid));
10796 for (
int ip = 0; ip < met->
np; ip++)
10797 phelp[ip] = 100. * met->
p[ip];
10840 NC(nc_close(ncid));
10847 const char *varname,
10853 size_t start[4], count[4];
10861 for (
int ix = 0; ix < met->
nx; ix++)
10862 for (
int iy = 0; iy < met->
ny; iy++)
10863 help[
ARRAY_2D(iy, ix, met->
nx)] = scl * var[ix][iy];
10876 const char *varname,
10882 size_t start[4], count[4];
10890 for (
int ix = 0; ix < met->
nx; ix++)
10891 for (
int iy = 0; iy < met->
ny; iy++)
10892 for (
int ip = 0; ip < met->
np; ip++)
10893 help[
ARRAY_3D(ip, iy, met->
ny, ix, met->
nx)] = scl * var[ix][iy][ip];
10905 const char *filename,
10914 static double *mass, *obsmean, *rt, *rz, *rlon, *rlat, *robs, *area,
10915 dz, dlon, dlat, *lon, *lat, *z, *press, temp, vmr, h2o, o3;
10917 static int nobs, *obscount, ip, okay;
10926 if (ctl->
qnt_m < 0)
10927 ERRMSG(
"Need quantity mass!");
10931 ERRMSG(
"Specify molar mass!");
10938 ALLOC(area,
double,
10942 ALLOC(press,
double,
10948 ALLOC(rlon,
double,
10950 ALLOC(rlat,
double,
10952 ALLOC(robs,
double,
10959 LOG(1,
"Write profile data: %s", filename);
10960 if (!(out = fopen(filename,
"w")))
10961 ERRMSG(
"Cannot create file!");
10965 "# $1 = time [s]\n"
10966 "# $2 = altitude [km]\n"
10967 "# $3 = longitude [deg]\n"
10968 "# $4 = latitude [deg]\n"
10969 "# $5 = pressure [hPa]\n"
10970 "# $6 = temperature [K]\n"
10971 "# $7 = volume mixing ratio [ppv]\n"
10972 "# $8 = H2O volume mixing ratio [ppv]\n"
10973 "# $9 = O3 volume mixing ratio [ppv]\n"
10974 "# $10 = observed BT index [K]\n"
10975 "# $11 = number of observations\n");
10983 for (
int iz = 0; iz < ctl->
prof_nz; iz++) {
10984 z[iz] = ctl->
prof_z0 + dz * (iz + 0.5);
10985 press[iz] =
P(z[iz]);
10989 for (
int ix = 0; ix < ctl->
prof_nx; ix++)
10990 lon[ix] = ctl->
prof_lon0 + dlon * (ix + 0.5);
10991 for (
int iy = 0; iy < ctl->
prof_ny; iy++) {
10992 lat[iy] = ctl->
prof_lat0 + dlat * (iy + 0.5);
10993 area[iy] = dlat * dlon *
SQR(
RE * M_PI / 180.) * cos(
DEG2RAD(lat[iy]));
10998 const double t0 = t - 0.5 * ctl->
dt_mod;
10999 const double t1 = t + 0.5 * ctl->
dt_mod;
11002 ALLOC(mass,
double,
11004 ALLOC(obsmean,
double,
11006 ALLOC(obscount,
int,
11010 for (
int i = 0; i < nobs; i++) {
11015 else if (rt[i] >= t1)
11019 if (!isfinite(robs[i]))
11023 int ix = (int) ((rlon[i] - ctl->
prof_lon0) / dlon);
11024 int iy = (int) ((rlat[i] - ctl->
prof_lat0) / dlat);
11027 if (ix < 0 || ix >= ctl->
prof_nx || iy < 0 || iy >= ctl->
prof_ny)
11032 obsmean[idx] += robs[i];
11037 for (ip = 0; ip < atm->
np; ip++) {
11040 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11044 int ix = (int) ((atm->
lon[ip] - ctl->
prof_lon0) / dlon);
11045 int iy = (int) ((atm->
lat[ip] - ctl->
prof_lat0) / dlat);
11046 int iz = (int) ((
Z(atm->
p[ip]) - ctl->
prof_z0) / dz);
11049 if (ix < 0 || ix >= ctl->
prof_nx ||
11055 mass[idx] += atm->
q[ctl->
qnt_m][ip];
11059 for (
int ix = 0; ix < ctl->
prof_nx; ix++)
11060 for (
int iy = 0; iy < ctl->
prof_ny; iy++) {
11062 if (obscount[idx2] > 0) {
11066 for (
int iz = 0; iz < ctl->
prof_nz; iz++) {
11068 if (mass[idx3] > 0) {
11077 fprintf(out,
"\n");
11080 for (
int iz = 0; iz < ctl->
prof_nz; iz++) {
11085 lon[ix], lat[iy], &temp, ci, cw, 1);
11087 lon[ix], lat[iy], &h2o, ci, cw, 0);
11089 lon[ix], lat[iy], &o3, ci, cw, 0);
11094 / (
RHO(press[iz], temp) * area[iy] * dz * 1e9);
11097 fprintf(out,
"%.2f %g %g %g %g %g %g %g %g %g %d\n",
11098 t, z[iz], lon[ix], lat[iy], press[iz], temp, vmr, h2o, o3,
11099 obsmean[idx2] / obscount[idx2], obscount[idx2]);
11132 const char *filename,
11141 static double area, dlat, rmax2, *rt, *rz, *rlon, *rlat, *robs, kz[
EP],
11144 static int nobs, nk;
11157 ALLOC(rlon,
double,
11159 ALLOC(rlat,
double,
11161 ALLOC(robs,
double,
11172 LOG(1,
"Write sample data: %s", filename);
11173 if (!(out = fopen(filename,
"w")))
11174 ERRMSG(
"Cannot create file!");
11178 "# $1 = time [s]\n"
11179 "# $2 = altitude [km]\n"
11180 "# $3 = longitude [deg]\n"
11181 "# $4 = latitude [deg]\n"
11182 "# $5 = surface area [km^2]\n"
11183 "# $6 = layer depth [km]\n"
11184 "# $7 = number of particles [1]\n"
11185 "# $8 = column density [kg/m^2]\n"
11186 "# $9 = volume mixing ratio [ppv]\n"
11187 "# $10 = observed BT index [K]\n\n");
11192 area = M_PI * rmax2;
11196 const double t0 = t - 0.5 * ctl->
dt_mod;
11197 const double t1 = t + 0.5 * ctl->
dt_mod;
11200 for (
int i = 0; i < nobs; i++) {
11205 else if (rt[i] >= t1)
11210 geo2cart(0, rlon[i], rlat[i], x0);
11213 const double rp =
P(rz[i]);
11214 const double ptop =
P(rz[i] + ctl->
sample_dz);
11215 const double pbot =
P(rz[i] - ctl->
sample_dz);
11223 for (
int ip = 0; ip < atm->
np; ip++) {
11226 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11230 if (fabs(rlat[i] - atm->
lat[ip]) > dlat)
11236 if (
DIST2(x0, x1) > rmax2)
11241 if (atm->
p[ip] > pbot || atm->
p[ip] < ptop)
11245 if (ctl->
qnt_m >= 0)
11252 const double cd = mass / (1e6 * area);
11263 rlon[i], rlat[i], &temp, ci, cw, 1);
11272 fprintf(out,
"%.2f %g %g %g %g %g %d %g %g %g\n", rt[i], rz[i],
11273 rlon[i], rlat[i], area, ctl->
sample_dz, np, cd, vmr, robs[i]);
11294 const char *filename,
11301 static double rmax2, x0[3], x1[3];
11310 LOG(1,
"Write station data: %s", filename);
11313 if (!(out = fopen(filename,
"w")))
11314 ERRMSG(
"Cannot create file!");
11318 "# $1 = time [s]\n"
11319 "# $2 = altitude [km]\n"
11320 "# $3 = longitude [deg]\n" "# $4 = latitude [deg]\n");
11321 for (
int iq = 0; iq < ctl->
nq; iq++)
11322 fprintf(out,
"# $%i = %s [%s]\n", (iq + 5),
11324 fprintf(out,
"\n");
11332 const double t0 = t - 0.5 * ctl->
dt_mod;
11333 const double t1 = t + 0.5 * ctl->
dt_mod;
11336 for (
int ip = 0; ip < atm->
np; ip++) {
11339 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11355 if (
DIST2(x0, x1) > rmax2)
11363 fprintf(out,
"%.2f %g %g %g",
11364 atm->
time[ip],
Z(atm->
p[ip]), atm->
lon[ip], atm->
lat[ip]);
11365 for (
int iq = 0; iq < ctl->
nq; iq++) {
11367 fprintf(out, ctl->
qnt_format[iq], atm->
q[iq][ip]);
11369 fprintf(out,
"\n");
11380 const char *filename,
11391 LOG(1,
"Write VTK data: %s", filename);
11394 const double t0 = t - 0.5 * ctl->
dt_mod;
11395 const double t1 = t + 0.5 * ctl->
dt_mod;
11398 if (!(out = fopen(filename,
"w")))
11399 ERRMSG(
"Cannot create file!");
11403 for (
int ip = 0; ip < atm->
np; ip += ctl->
vtk_stride) {
11404 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11411 "# vtk DataFile Version 3.0\n"
11412 "vtk output\n" "ASCII\n" "DATASET POLYDATA\n");
11415 fprintf(out,
"POINTS %d float\n", np);
11417 for (
int ip = 0; ip < atm->
np; ip += ctl->
vtk_stride) {
11418 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11422 const double coslat = cos(
DEG2RAD(atm->
lat[ip]));
11423 const double x = radius * coslat * cos(
DEG2RAD(atm->
lon[ip]));
11424 const double y = radius * coslat * sin(
DEG2RAD(atm->
lon[ip]));
11425 const double z = radius * sin(
DEG2RAD(atm->
lat[ip]));
11426 fprintf(out,
"%g %g %g\n", x, y, z);
11429 for (
int ip = 0; ip < atm->
np; ip += ctl->
vtk_stride) {
11430 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11432 fprintf(out,
"%g %g %g\n", atm->
lon[ip], atm->
lat[ip],
11437 fprintf(out,
"POINT_DATA %d\n", np);
11438 for (
int iq = 0; iq < ctl->
nq; iq++) {
11439 fprintf(out,
"SCALARS %s float 1\n" "LOOKUP_TABLE default\n",
11441 for (
int ip = 0; ip < atm->
np; ip += ctl->
vtk_stride) {
11442 if (atm->
time[ip] < t0 || atm->
time[ip] > t1)
11444 fprintf(out,
"%g\n", atm->
q[iq][ip]);
void read_met_geopot(const ctl_t *ctl, met_t *met)
Calculates geopotential heights from meteorological data.
void mptrac_write_atm(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to a file in various formats.
void day2doy(const int year, const int mon, const int day, int *doy)
Get day of year from date.
void read_met_extrapolate(met_t *met)
Extrapolates meteorological data.
void read_met_levels(const int ncid, const ctl_t *ctl, met_t *met)
Reads meteorological variables at different vertical levels from a NetCDF file.
int read_met_nc(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met)
Reads meteorological data from a NetCDF file and processes it.
void write_atm_clams_traj(const char *dirname, const ctl_t *ctl, const atm_t *atm, const double t)
Writes CLaMS trajectory data to a NetCDF file.
void write_met_nc_2d(const int ncid, const char *varname, met_t *met, float var[EX][EY], const float scl)
Writes a 2D meteorological variable to a NetCDF file.
void mptrac_alloc(ctl_t **ctl, cache_t **cache, clim_t **clim, met_t **met0, met_t **met1, atm_t **atm)
Allocates and initializes memory resources for MPTRAC.
void read_met_sample(const ctl_t *ctl, met_t *met)
Downsamples meteorological data based on specified parameters.
void write_met_bin_3d(FILE *out, const ctl_t *ctl, met_t *met, float var[EX][EY][EP], const char *varname, const int precision, const double tolerance)
Writes a 3-dimensional meteorological variable to a binary file.
void read_obs(const char *filename, const ctl_t *ctl, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a file and stores it in arrays.
void module_advect(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Advances particle positions using different advection schemes.
void module_timesteps(const ctl_t *ctl, cache_t *cache, met_t *met0, atm_t *atm, const double t)
Calculate time steps for air parcels based on specified conditions.
int mptrac_read_met(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met)
Reads meteorological data from a file, supporting multiple formats and MPI broadcasting.
void module_meteo(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Update atmospheric properties using meteorological data.
void read_clim_photo(const char *filename, clim_photo_t *photo)
Reads photolysis rates from a NetCDF file and populates the given photolysis structure.
void read_met_cloud(met_t *met)
Calculates cloud-related variables for each grid point.
void module_decay(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, atm_t *atm)
Simulate exponential decay processes for atmospheric particles.
double sedi(const double p, const double T, const double rp, const double rhop)
Calculates the sedimentation velocity of a particle in air.
void intpol_met_space_2d(const met_t *met, float array[EX][EY], const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 2D space.
int read_atm_nc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a generic netCDF file and populates the given atmospheric structure.
void read_met_pbl(const ctl_t *ctl, met_t *met)
Computes the planetary boundary layer (PBL) pressure based on meteorological data.
void read_met_detrend(const ctl_t *ctl, met_t *met)
Detrends meteorological data.
int read_met_nc_2d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const char *varname5, const char *varname6, const ctl_t *ctl, const met_t *met, float dest[EX][EY], const float scl, const int init)
Reads a 2-dimensional meteorological variable from a NetCDF file.
void read_met_tropo(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates the tropopause and related meteorological variables based on various methods and stores th...
void read_obs_asc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from an ASCII file.
void module_chem_init(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Initializes the chemistry modules by setting atmospheric composition.
int locate_reg(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a regular grid.
void get_tropo(const int met_tropo, ctl_t *ctl, clim_t *clim, met_t *met, const double *lons, const int nx, const double *lats, const int ny, double *pt, double *zt, double *tt, double *qt, double *o3t, double *ps, double *zs)
Calculate tropopause data.
void mptrac_get_met(ctl_t *ctl, clim_t *clim, const double t, met_t **met0, met_t **met1)
Retrieves meteorological data for the specified time.
void read_met_monotonize(const ctl_t *ctl, met_t *met)
Makes zeta and pressure profiles monotone.
int read_clim_ts(const char *filename, clim_ts_t *ts)
Reads a climatological time series from a file and populates the given time series structure.
void read_met_periodic(met_t *met)
Applies periodic boundary conditions to meteorological data along longitudinal axis.
void module_timesteps_init(ctl_t *ctl, const atm_t *atm)
Initialize start time and time interval for time-stepping.
void write_ens(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes ensemble data to a file.
void module_mixing(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const double t)
Update atmospheric properties through interparcel mixing.
double clim_zm(const clim_zm_t *zm, const double t, const double lat, const double p)
Interpolates monthly mean zonal mean climatological variables.
void read_clim_photo_help(const int ncid, const char *varname, const clim_photo_t *photo, double var[CP][CSZA][CO3])
Reads a 3D climatological photochemistry variable from a NetCDF file.
void read_met_ml2pl(const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname)
Interpolates meteorological data to specified pressure levels.
double clim_tropo(const clim_t *clim, const double t, const double lat)
Calculates the tropopause pressure based on climatological data.
void read_obs_nc(const char *filename, double *rt, double *rz, double *rlon, double *rlat, double *robs, int *nobs)
Reads observation data from a NetCDF file.
void read_met_grid(const char *filename, const int ncid, const ctl_t *ctl, met_t *met)
Reads meteorological grid information from a NetCDF file.
void read_met_bin_2d(FILE *in, const met_t *met, float var[EX][EY], const char *varname)
Reads a 2-dimensional meteorological variable from a binary file and stores it in the provided array.
int locate_irr(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a sorted array.
void module_isosurf_init(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initialize the isosurface module based on atmospheric data.
void level_definitions(ctl_t *ctl)
Defines pressure levels for meteorological data.
void intpol_met_4d_coord(const met_t *met0, float heights0[EX][EY][EP], float array0[EX][EY][EP], const met_t *met1, float heights1[EX][EY][EP], float array1[EX][EY][EP], const double ts, const double height, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables to a given position and time.
void write_grid_asc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to an ASCII file.
void mptrac_update_device(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates device memory for specified data structures.
void time2jsec(const int year, const int mon, const int day, const int hour, const int min, const int sec, const double remain, double *jsec)
Converts time components to seconds since January 1, 2000, 12:00:00 UTC.
void mptrac_init(ctl_t *ctl, cache_t *cache, clim_t *clim, atm_t *atm, const int ntask)
Initializes the MPTRAC model and its associated components.
void intpol_met_time_3d(const met_t *met0, float array0[EX][EY][EP], const met_t *met1, float array1[EX][EY][EP], const double ts, const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 3D space and time.
void intpol_met_space_3d_ml(const met_t *met, float zs[EX][EY][EP], float array[EX][EY][EP], const double z, const double lon, const double lat, double *var)
Interpolates meteorological data in 3D space.
void fft_help(double *fcReal, double *fcImag, const int n)
Computes the Fast Fourier Transform (FFT) of a complex sequence.
void module_wet_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Perform wet deposition calculations for air parcels.
void compress_pck(const char *varname, float *array, const size_t nxy, const size_t nz, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats.
double nat_temperature(const double p, const double h2o, const double hno3)
Calculates the nitric acid trihydrate (NAT) temperature.
void spline(const double *x, const double *y, const int n, const double *x2, double *y2, const int n2, const int method)
Performs spline interpolation or linear interpolation.
void module_chem_grid(const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double tt)
Calculate grid data for chemistry modules.
double clim_photo(const double rate[CP][CSZA][CO3], const clim_photo_t *photo, const double p, const double sza, const double o3c)
Calculates the photolysis rate for a given set of atmospheric conditions.
void read_clim_zm(const char *filename, const char *varname, clim_zm_t *zm)
Reads zonally averaged climatological data from a netCDF file and populates the given structure.
void module_sedi(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate sedimentation of particles in the atmosphere.
void timer(const char *name, const char *group, const int output)
Measures and reports elapsed time for named and grouped timers.
void write_atm_asc(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes air parcel data to an ASCII file or gnuplot.
void intpol_met_space_3d(const met_t *met, float array[EX][EY][EP], const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 3D space.
void read_met_surface(const int ncid, const ctl_t *ctl, met_t *met)
Reads surface meteorological data from a netCDF file and stores it in the meteorological data structu...
void intpol_met_time_3d_ml(const met_t *met0, float zs0[EX][EY][EP], float array0[EX][EY][EP], const met_t *met1, float zs1[EX][EY][EP], float array1[EX][EY][EP], const double ts, const double p, const double lon, const double lat, double *var)
Interpolates meteorological data in both space and time.
void module_convection(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Performs convective mixing of atmospheric particles.
void read_kernel(const char *filename, double kz[EP], double kw[EP], int *nk)
Reads kernel function data from a file and populates the provided arrays.
void module_bound_cond(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Apply boundary conditions to particles based on meteorological and climatological data.
double scan_ctl(const char *filename, int argc, char *argv[], const char *varname, const int arridx, const char *defvalue, char *value)
Scans a control file or command-line arguments for a specified variable.
void module_advect_init(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Initializes the advection module by setting up pressure fields.
void module_sort_help(double *a, const int *p, const int np)
Reorder an array based on a given permutation.
float stddev(const float *data, const int n)
Calculates the standard deviation of a set of data.
void intpol_tropo_3d(const double time0, float array0[EX][EY], const double time1, float array1[EX][EY], const double lons[EX], const double lats[EY], const int nlon, const int nlat, const double time, const double lon, const double lat, const int method, double *var, double *sigma)
Interpolates tropopause data in 3D (latitude, longitude, and time).
int read_met_nc_3d(const int ncid, const char *varname, const char *varname2, const char *varname3, const char *varname4, const ctl_t *ctl, const met_t *met, float dest[EX][EY][EP], const float scl)
Reads a 3-dimensional meteorological variable from a NetCDF file.
void read_met_bin_3d(FILE *in, const ctl_t *ctl, const met_t *met, float var[EX][EY][EP], const char *varname, const float bound_min, const float bound_max)
Reads 3D meteorological data from a binary file, potentially using different compression methods.
int locate_irr_float(const float *xx, const int n, const double x, const int ig)
Locate the index of the interval containing a given value in an irregularly spaced array.
double time_from_filename(const char *filename, const int offset)
Extracts and converts a timestamp from a filename to Julian seconds.
void write_prof(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes profile data to a specified file.
void mptrac_read_clim(const ctl_t *ctl, clim_t *clim)
Reads various climatological data and populates the given climatology structure.
double tropo_weight(const clim_t *clim, const atm_t *atm, const int ip)
Computes a weighting factor based on tropopause pressure.
void write_met_nc(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a NetCDF file.
void module_rng_init(const int ntask)
Initialize random number generators for parallel tasks.
int mptrac_read_atm(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a specified file into the given atmospheric structure.
void mptrac_update_host(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t **met0, met_t **met1, const atm_t *atm)
Updates host memory for specified data structures.
void mptrac_write_output(const char *dirname, const ctl_t *ctl, met_t *met0, met_t *met1, atm_t *atm, const double t)
Writes various types of output data to files in a specified directory.
double clim_oh(const ctl_t *ctl, const clim_t *clim, const double t, const double lon, const double lat, const double p)
Calculates the hydroxyl radical (OH) concentration from climatology data, with an optional diurnal co...
void read_met_ozone(met_t *met)
Calculates the total column ozone from meteorological ozone data.
void mptrac_free(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Frees memory resources allocated for MPTRAC.
void clim_tropo_init(clim_t *clim)
Initializes the tropopause data in the climatology structure.
void module_rng(const ctl_t *ctl, double *rs, const size_t n, const int method)
Generate random numbers using various methods and distributions.
void get_met_help(const ctl_t *ctl, const double t, const int direct, const char *metbase, const double dt_met, char *filename)
Generates a formatted filename for meteorological data files based on the input parameters.
void write_station(const char *filename, const ctl_t *ctl, atm_t *atm, const double t)
Writes station data to a specified file.
void cart2geo(const double *x, double *z, double *lon, double *lat)
State variables of cuRAND random number generator.
double sza_calc(const double sec, const double lon, const double lat)
Calculates the solar zenith angle.
void module_mixing_help(const ctl_t *ctl, const clim_t *clim, atm_t *atm, const int *ixs, const int *iys, const int *izs, const int qnt_idx)
Perform interparcel mixing for a specific quantity.
void doy2day(const int year, const int doy, int *mon, int *day)
Converts a given day of the year (DOY) to a date (month and day).
void intpol_met_time_2d(const met_t *met0, float array0[EX][EY], const met_t *met1, float array1[EX][EY], const double ts, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological data in 2D space and time.
void module_position(const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Update the positions and pressure levels of atmospheric particles.
void clim_oh_diurnal_correction(const ctl_t *ctl, clim_t *clim)
Applies a diurnal correction to the hydroxyl radical (OH) concentration in climatology data.
void locate_vert(float profiles[EX][EY][EP], const int np, const int lon_ap_ind, const int lat_ap_ind, const double height_ap, int *ind)
Locate the four vertical indizes of a box for a given height value.
void write_met_bin_2d(FILE *out, met_t *met, float var[EX][EY], const char *varname)
Writes a 2-dimensional meteorological variable to a binary file.
void read_met_pv(met_t *met)
Calculates potential vorticity (PV) from meteorological data.
int read_atm_bin(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from a binary file and populates the given atmospheric structure.
void get_met_replace(char *orig, char *search, char *repl)
Replaces occurrences of a substring in a string with another substring.
void module_diff_meso(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate mesoscale diffusion for atmospheric particles.
void module_sort(const ctl_t *ctl, met_t *met0, atm_t *atm)
Sort particles according to box index.
double clim_ts(const clim_ts_t *ts, const double t)
Interpolates a time series of climatological variables.
void jsec2time(const double jsec, int *year, int *mon, int *day, int *hour, int *min, int *sec, double *remain)
Converts Julian seconds to calendar date and time components.
int read_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Reads meteorological data from a binary file.
void mptrac_run_timestep(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t **met0, met_t **met1, atm_t *atm, double t)
Executes a single timestep of the MPTRAC model simulation.
void write_atm_clams(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file in the CLaMS format.
void module_diff_turb(const ctl_t *ctl, cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Applies turbulent diffusion processes to atmospheric particles.
int read_atm_clams(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads atmospheric data from a CLAMS NetCDF file.
void write_vtk(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes VTK (Visualization Toolkit) data to a specified file.
void module_tracer_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Simulate chemical reactions involving long-lived atmospheric tracers.
void mptrac_read_ctl(const char *filename, int argc, char *argv[], ctl_t *ctl)
Reads control parameters from a configuration file and populates the given structure.
void read_met_polar_winds(met_t *met)
Applies a fix for polar winds in meteorological data.
void module_h2o2_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform chemical reactions involving H2O2 within cloud particles.
void write_grid_nc(const char *filename, const ctl_t *ctl, const double *cd, double *mean[NQ], double *sigma[NQ], const double *vmr_impl, const double t, const double *z, const double *lon, const double *lat, const double *area, const double dz, const int *np)
Writes grid data to a NetCDF file.
double pbl_weight(const ctl_t *ctl, const atm_t *atm, const int ip, const double pbl, const double ps)
Computes a weighting factor based on planetary boundary layer pressure.
void module_diff_pbl(const ctl_t *ctl, cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Computes particle diffusion within the planetary boundary layer (PBL).
void write_met_nc_3d(const int ncid, const char *varname, met_t *met, float var[EX][EY][EP], const float scl)
Writes a 3D meteorological variable to a NetCDF file.
void module_isosurf(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Apply the isosurface module to adjust atmospheric properties.
void module_oh_chem(const ctl_t *ctl, const cache_t *cache, const clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
Perform hydroxyl chemistry calculations for atmospheric particles.
void geo2cart(const double z, const double lon, const double lat, double *x)
Converts geographic coordinates (longitude, latitude, altitude) to Cartesian coordinates.
double kernel_weight(const double kz[EP], const double kw[EP], const int nk, const double p)
Calculates the kernel weight based on altitude and given kernel data.
int read_atm_asc(const char *filename, const ctl_t *ctl, atm_t *atm)
Reads air parcel data from an ASCII file and populates the given atmospheric structure.
void intpol_check_lon_lat(const double *lons, const int nlon, const double *lats, const int nlat, const double lon, const double lat, double *lon2, double *lat2)
Adjusts longitude and latitude to ensure they fall within valid bounds.
void write_sample(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes sample data to a specified file.
void write_grid(const char *filename, const ctl_t *ctl, met_t *met0, met_t *met1, const atm_t *atm, const double t)
Writes grid data to a file in ASCII or netCDF format.
void module_dry_depo(const ctl_t *ctl, const cache_t *cache, met_t *met0, met_t *met1, atm_t *atm)
Simulate dry deposition of atmospheric particles.
void write_met_bin(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data in binary format to a specified file.
void write_atm_bin(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a binary file.
void read_met_cape(const ctl_t *ctl, const clim_t *clim, met_t *met)
Calculates Convective Available Potential Energy (CAPE) for each grid point.
void mptrac_write_met(const char *filename, const ctl_t *ctl, met_t *met)
Writes meteorological data to a file, supporting multiple formats and compression options.
double lapse_rate(const double t, const double h2o)
Calculates the moist adiabatic lapse rate in Kelvin per kilometer.
void write_csi(const char *filename, const ctl_t *ctl, const atm_t *atm, const double t)
Writes Critical Success Index (CSI) data to a file.
void write_atm_nc(const char *filename, const ctl_t *ctl, const atm_t *atm)
Writes air parcel data to a NetCDF file.
MPTRAC library declarations.
#define NN(x0, y0, x1, y1, x)
Perform nearest-neighbor interpolation.
#define LEN
Maximum length of ASCII data lines.
#define RE
Mean radius of Earth [km].
#define TVIRT(t, h2o)
Compute virtual temperature.
#define ARRAY_3D(ix, iy, ny, iz, nz)
Compute the linear index of a 3D array element.
#define PARTICLE_LOOP(ip0, ip1, check_dt,...)
Loop over particle indices with OpenACC acceleration.
#define MA
Molar mass of dry air [g/mol].
#define AVO
Avogadro constant [1/mol].
#define KB
Boltzmann constant [kg m^2/(K s^2)].
#define MH2O
Molar mass of water vapor [g/mol].
#define NENS
Maximum number of data points for ensemble analysis.
#define FWRITE(ptr, type, size, out)
Write data from memory to a file stream.
#define PW(p, h2o)
Calculate partial water vapor pressure.
#define H0
Scale height [km].
#define NC_PUT_ATT_GLOBAL(attname, text)
Add a global text attribute to a NetCDF file.
#define MOLEC_DENS(p, t)
Calculate the density of a gas molecule.
#define LAPSE(p1, t1, p2, t2)
Calculate lapse rate.
#define NC(cmd)
Execute a NetCDF command and check for errors.
#define RA
Specific gas constant of dry air [J/(kg K)].
#define KARMAN
Karman's constant.
#define INTPOL_INIT
Initialize arrays for interpolation.
#define MIN(a, b)
Macro to determine the minimum of two values.
#define ERRMSG(...)
Print an error message with contextual information and terminate the program.
#define NC_PUT_INT(varname, ptr, hyperslab)
Write integer data to a NetCDF variable.
void compress_cms(const ctl_t *ctl, const char *varname, float *array, const size_t nx, const size_t ny, const size_t np, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using a custom multiscale compression algorithm.
void compress_zfp(const char *varname, float *array, const int nx, const int ny, const int nz, const int precision, const double tolerance, const int decompress, FILE *inout)
Compresses or decompresses a 3D array of floats using the ZFP library.
#define EY
Maximum number of latitudes for meteo data.
#define SH(h2o)
Compute specific humidity from water vapor volume mixing ratio.
#define INTPOL_3D(var, init)
Perform 3D interpolation for a meteorological variable.
#define NOBS
Maximum number of observation data points.
#define NTHREADS
Maximum number of OpenMP threads.
#define ARRAY_2D(ix, iy, ny)
Macro for computing the linear index of a 2D array element.
#define Z(p)
Convert pressure to altitude.
#define P(z)
Compute pressure at given altitude.
#define LV
Latent heat of vaporization of water [J/kg].
#define G0
Standard gravity [m/s^2].
#define CP
Maximum number of pressure levels for climatological data.
#define NQ
Maximum number of quantities per data point.
#define FREAD(ptr, type, size, in)
Read data from a file stream and store it in memory.
#define DX2DEG(dx, lat)
Convert a distance in kilometers to degrees longitude at a given latitude.
#define DEG2DY(dlat)
Convert a latitude difference to a distance in the y-direction (north-south).
#define EX
Maximum number of longitudes for meteo data.
#define EPS
Ratio of the specific gas constant of dry air and water vapor [1].
#define PSICE(t)
Compute saturation pressure over ice (WMO, 2018).
#define THETA(p, t)
Compute potential temperature.
#define RI
Ideal gas constant [J/(mol K)].
#define NORM(a)
Compute the norm (magnitude) of a vector.
#define SET_QNT(qnt, name, longname, unit)
Set atmospheric quantity index.
#define TICE(p, h2o)
Calculate frost point temperature (WMO, 2018).
#define TOK(line, tok, format, var)
Get string tokens.
#define ZDIFF(lnp0, t0, h2o0, lnp1, t1, h2o1)
Calculate geopotential height difference.
#define THETAVIRT(p, t, h2o)
Compute virtual potential temperature.
#define DZ2DP(dz, p)
Convert a change in altitude to a change in pressure.
#define WARN(...)
Print a warning message with contextual information.
#define ZETA(ps, p, t)
Computes the value of the zeta vertical coordinate.
#define RHICE(p, t, h2o)
Compute relative humidity over ice.
#define INTPOL_TIME_ALL(time, p, lon, lat)
Interpolate multiple meteorological variables in time.
#define ALLOC(ptr, type, n)
Allocate memory for a pointer with error handling.
#define SET_ATM(qnt, val)
Set atmospheric quantity value.
#define CTS
Maximum number of data points of climatological time series.
#define DEG2RAD(deg)
Converts degrees to radians.
void broadcast_large_data(void *data, size_t N)
Broadcasts large data across all processes in an MPI communicator.
#define MO3
Molar mass of ozone [g/mol].
#define SQR(x)
Compute the square of a value.
#define RAD2DEG(rad)
Converts radians to degrees.
#define NC_INQ_DIM(dimname, ptr, min, max)
Inquire the length of a dimension in a NetCDF file.
#define NP
Maximum number of atmospheric data points.
#define NTIMER
Maximum number of timers.
#define SELECT_TIMER(id, group, color)
Select and start a timer with specific attributes.
#define INTPOL_2D(var, init)
Perform 2D interpolation for a meteorological variable.
#define RH(p, t, h2o)
Compute relative humidity over water.
#define NC_PUT_FLOAT(varname, ptr, hyperslab)
Write a float array to a NetCDF file.
#define CY
Maximum number of latitudes for climatological data.
#define LOG(level,...)
Print a log message with a specified logging level.
void thrustSortWrapper(double *__restrict__ c, int n, int *__restrict__ index)
Wrapper to Thrust sorting function.
#define NC_DEF_VAR(varname, type, ndims, dims, long_name, units, level, quant)
Define a NetCDF variable with attributes.
#define TDEW(p, h2o)
Calculate dew point temperature.
#define ARRHENIUS(a, b, t)
Calculate the Arrhenius rate constant.
#define NCSI
Maximum number of data points for CSI calculation.
#define NC_GET_DOUBLE(varname, ptr, force)
Retrieve a double-precision variable from a NetCDF file.
#define EP
Maximum number of pressure levels for meteo data.
#define PSAT(t)
Compute saturation pressure over water.
void compress_zstd(const char *varname, float *array, const size_t n, const int decompress, FILE *inout)
Compresses or decompresses an array of floats using the Zstandard (ZSTD) library.
#define RHO(p, t)
Compute density of air.
void module_kpp_chem(ctl_t *ctl, cache_t *cache, clim_t *clim, met_t *met0, met_t *met1, atm_t *atm)
KPP chemistry module.
#define CO3
Maximum number of total column ozone data for climatological data.
#define NC_PUT_DOUBLE(varname, ptr, hyperslab)
Write double precision data to a NetCDF variable.
#define LIN(x0, y0, x1, y1, x)
Linear interpolation.
#define DIST2(a, b)
Calculate the squared Euclidean distance between two points in Cartesian coordinates.
#define DEG2DX(dlon, lat)
Convert a longitude difference to a distance in the x-direction (east-west) at a specific latitude.
#define CPD
Specific heat of dry air at constant pressure [J/(kg K)].
#define CSZA
Maximum number of solar zenith angles for climatological data.
#define DY2DEG(dy)
Convert a distance in kilometers to degrees latitude.
#define MAX(a, b)
Macro to determine the maximum of two values.
#define FMOD(x, y)
Calculate the floating-point remainder of dividing x by y.
double lat[NP]
Latitude [deg].
double lon[NP]
Longitude [deg].
int np
Number of air parcels.
double q[NQ][NP]
Quantity data (for various, user-defined attributes).
double p[NP]
Pressure [hPa].
double dt[NP]
Timesteps [s].
double iso_ts[NP]
Isosurface balloon time [s].
int iso_n
Isosurface balloon number of data points.
double iso_ps[NP]
Isosurface balloon pressure [hPa].
double rs[3 *NP+1]
Random numbers.
float uvwp[NP][3]
Wind perturbations [m/s].
double iso_var[NP]
Isosurface variables.
Climatological data in the form of photolysis rates.
int nsza
Number of solar zenith angles.
double sza[CSZA]
Solar zenith angle [rad].
double o3_1[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O1d + O2) [1/s].
double p[CP]
Pressure [hPa].
double ccl2f2[CP][CSZA][CO3]
CCl2F2 photolysis rate [1/s].
double o2[CP][CSZA][CO3]
O2 photolysis rate [1/s].
double ccl3f[CP][CSZA][CO3]
CCl3F photolysis rate [1/s].
double n2o[CP][CSZA][CO3]
N2O photolysis rate [1/s].
double h2o2[CP][CSZA][CO3]
H2O2 photolysis rate [1/s].
double h2o[CP][CSZA][CO3]
H2O photolysis rate [1/s].
double ccl4[CP][CSZA][CO3]
CCl4 photolysis rate [1/s].
double o3_2[CP][CSZA][CO3]
O3 photolysis rate (O3 + hv = O3p + O2) [1/s].
double o3c[CO3]
Total column ozone [DU].
int np
Number of pressure levels.
int no3c
Number of total ozone columns.
clim_ts_t ccl2f2
CFC-12 time series.
clim_photo_t photo
Photolysis rates.
clim_zm_t ho2
HO2 zonal means.
clim_zm_t hno3
HNO3 zonal means.
int tropo_ntime
Number of tropopause timesteps.
clim_ts_t sf6
SF6 time series.
clim_ts_t ccl4
CFC-10 time series.
clim_ts_t ccl3f
CFC-11 time series.
clim_zm_t o1d
O(1D) zonal means.
double tropo_lat[73]
Tropopause latitudes [deg].
clim_zm_t h2o2
H2O2 zonal means.
int tropo_nlat
Number of tropopause latitudes.
clim_zm_t oh
OH zonal means.
double tropo[12][73]
Tropopause pressure values [hPa].
double tropo_time[12]
Tropopause time steps [s].
clim_ts_t n2o
N2O time series.
Climatological data in the form of time series.
double vmr[CTS]
Volume mixing ratio [ppv].
double time[CTS]
Time [s].
int ntime
Number of timesteps.
Climatological data in the form of zonal means.
int np
Number of pressure levels.
double p[CP]
Pressure [hPa].
double vmr[CT][CP][CY]
Volume mixing ratio [ppv].
int ntime
Number of timesteps.
int nlat
Number of latitudes.
double lat[CY]
Latitude [deg].
double grid_z0
Lower altitude of gridded data [km].
int qnt_o3
Quantity array index for ozone volume mixing ratio.
double csi_lat1
Upper latitude of gridded CSI data [deg].
char csi_obsfile[LEN]
Observation data file for CSI analysis.
int qnt_Coh
Quantity array index for OH volume mixing ratio (chemistry code).
double wet_depo_ic_a
Coefficient A for wet deposition in cloud (exponential form).
int met_nc_scale
Check netCDF scaling factors (0=no, 1=yes).
int qnt_pel
Quantity array index for pressure at equilibrium level (EL).
int csi_nz
Number of altitudes of gridded CSI data.
double molmass
Molar mass [g/mol].
int qnt_p
Quantity array index for pressure.
int qnt_Cccl2f2
Quantity array index for CFC-12 volume mixing ratio (chemistry code).
char atm_gpfile[LEN]
Gnuplot file for atmospheric data.
int mixing_nx
Number of longitudes of mixing grid.
double chemgrid_z1
Upper altitude of chemistry grid [km].
char qnt_format[NQ][LEN]
Quantity output format.
int qnt_m
Quantity array index for mass.
int qnt_aoa
Quantity array index for age of air.
int qnt_rhop
Quantity array index for particle density.
int qnt_swc
Quantity array index for cloud snow water content.
double csi_obsmin
Minimum observation index to trigger detection.
int qnt_pcb
Quantity array index for cloud bottom pressure.
char clim_n2o_timeseries[LEN]
Filename of N2O time series.
double bound_dzs
Boundary conditions surface layer depth [km].
double csi_lon1
Upper longitude of gridded CSI data [deg].
int qnt_u
Quantity array index for zonal wind.
double stat_lon
Longitude of station [deg].
double mixing_trop
Interparcel exchange parameter for mixing in the troposphere.
double sort_dt
Time step for sorting of particle data [s].
double mixing_z1
Upper altitude of mixing grid [km].
double stat_r
Search radius around station [km].
double wet_depo_bc_a
Coefficient A for wet deposition below cloud (exponential form).
int csi_ny
Number of latitudes of gridded CSI data.
int vtk_sphere
Spherical projection for VTK data (0=no, 1=yes).
double chemgrid_z0
Lower altitude of chemistry grid [km].
double met_pbl_min
Minimum depth of planetary boundary layer [km].
int qnt_iwc
Quantity array index for cloud ice water content.
double chemgrid_lat0
Lower latitude of chemistry grid [deg].
double conv_cape
CAPE threshold for convection module [J/kg].
int qnt_Co1d
Quantity array index for O(1D) volume mixing ratio (chemistry code).
double met_cms_eps_pv
cmultiscale compression epsilon for potential vorticity.
int qnt_pw
Quantity array index for partial water vapor pressure.
char prof_basename[LEN]
Basename for profile output file.
double grid_z1
Upper altitude of gridded data [km].
int direction
Direction flag (1=forward calculation, -1=backward calculation).
char balloon[LEN]
Balloon position filename.
int qnt_Cccl4
Quantity array index for CFC-10 volume mixing ratio (chemistry code).
int met_dp
Stride for pressure levels.
double met_dt_out
Time step for sampling of meteo data along trajectories [s].
int qnt_h2o2
Quantity array index for H2O2 volume mixing ratio (climatology).
int qnt_vh
Quantity array index for horizontal wind.
char species[LEN]
Species.
int csi_nx
Number of longitudes of gridded CSI data.
double csi_lat0
Lower latitude of gridded CSI data [deg].
double turb_dz_trop
Vertical turbulent diffusion coefficient (troposphere) [m^2/s].
int met_pbl
Planetary boundary layer data (0=file, 1=z2p, 2=Richardson, 3=theta).
int qnt_lwc
Quantity array index for cloud liquid water content.
double turb_mesoz
Vertical scaling factor for mesoscale wind fluctuations.
int grid_nc_level
zlib compression level of netCDF grid data files (0=off).
int grid_nx
Number of longitudes of gridded data.
int atm_type
Type of atmospheric data files (0=ASCII, 1=binary, 2=netCDF, 3=CLaMS_traj, 4=CLaMS_pos).
double bound_mass
Boundary conditions mass per particle [kg].
double grid_lat0
Lower latitude of gridded data [deg].
int qnt_ts
Quantity array index for surface temperature.
int qnt_loss_rate
Quantity array index for total loss rate.
double met_cms_eps_h2o
cmultiscale compression epsilon for water vapor.
int qnt_plfc
Quantity array index for pressure at level of free convection (LCF).
double grid_lon0
Lower longitude of gridded data [deg].
int qnt_o1d
Quantity array index for O(1D) volume mixing ratio (climatology).
int met_tropo_spline
Tropopause interpolation method (0=linear, 1=spline).
char sample_kernel[LEN]
Kernel data file for sample output.
int qnt_tvirt
Quantity array index for virtual temperature.
double dt_met
Time step of meteo data [s].
char clim_ho2_filename[LEN]
Filename of HO2 climatology.
double chemgrid_lat1
Upper latitude of chemistry grid [deg].
int met_geopot_sy
Latitudinal smoothing of geopotential heights.
char grid_gpfile[LEN]
Gnuplot file for gridded data.
double met_cms_eps_u
cmultiscale compression epsilon for zonal wind.
double turb_dx_strat
Horizontal turbulent diffusion coefficient (stratosphere) [m^2/s].
int qnt_vmr
Quantity array index for volume mixing ratio.
int qnt_lsm
Quantity array index for land-sea mask.
int qnt_theta
Quantity array index for potential temperature.
double bound_lat1
Boundary conditions maximum longitude [deg].
double stat_t1
Stop time for station output [s].
char csi_kernel[LEN]
Kernel data file for CSI output.
double turb_dx_trop
Horizontal turbulent diffusion coefficient (troposphere) [m^2/s].
int grid_type
Type of grid data files (0=ASCII, 1=netCDF).
double csi_lon0
Lower longitude of gridded CSI data [deg].
int qnt_pbl
Quantity array index for boundary layer pressure.
double oh_chem[4]
Coefficients for OH reaction rate (A, E/R or k0, n, kinf, m).
int grid_stddev
Include standard deviations in grid output (0=no, 1=yes).
int qnt_psice
Quantity array index for saturation pressure over ice.
double chemgrid_lon0
Lower longitude of chemistry grid [deg].
int bound_pbl
Boundary conditions planetary boundary layer (0=no, 1=yes).
int qnt_mloss_wet
Quantity array index for total mass loss due to wet deposition.
int met_geopot_sx
Longitudinal smoothing of geopotential heights.
int met_sy
Smoothing for latitudes.
int qnt_ps
Quantity array index for surface pressure.
int rng_type
Random number generator (0=GSL, 1=Squares, 2=cuRAND).
char prof_obsfile[LEN]
Observation data file for profile output.
int isosurf
Isosurface parameter (0=none, 1=pressure, 2=density, 3=theta, 4=balloon).
double bound_p1
Boundary conditions top pressure [hPa].
int qnt_zs
Quantity array index for surface geopotential height.
int prof_nz
Number of altitudes of gridded profile data.
double csi_dt_out
Time step for CSI output [s].
int met_cape
Convective available potential energy data (0=file, 1=calculate).
double csi_modmin
Minimum column density to trigger detection [kg/m^2].
int met_sx
Smoothing for longitudes.
double chemgrid_lon1
Upper longitude of chemistry grid [deg].
double turb_mesox
Horizontal scaling factor for mesoscale wind fluctuations.
double met_cms_eps_iwc
cmultiscale compression epsilon for cloud ice water content.
double met_cms_eps_swc
cmultiscale compression epsilon for cloud snow water content.
char grid_kernel[LEN]
Kernel data file for grid output.
int met_zfp_prec
ZFP compression precision for all variables, except z and T.
double met_cms_eps_v
cmultiscale compression epsilon for meridional wind.
double prof_z0
Lower altitude of gridded profile data [km].
int qnt_w
Quantity array index for vertical velocity.
double bound_vmr
Boundary conditions volume mixing ratio [ppv].
double met_tropo_pv
Dynamical tropopause potential vorticity threshold [PVU].
int prof_nx
Number of longitudes of gridded profile data.
int qnt_stat
Quantity array index for station flag.
int met_tropo
Tropopause definition (0=none, 1=clim, 2=cold point, 3=WMO_1st, 4=WMO_2nd, 5=dynamical).
int qnt_rp
Quantity array index for particle radius.
int met_mpi_share
Use MPI to share meteo (0=no, 1=yes).
double mixing_strat
Interparcel exchange parameter for mixing in the stratosphere.
int qnt_vz
Quantity array index for vertical velocity.
int qnt_ho2
Quantity array index for HO2 volume mixing ratio (climatology).
double csi_z1
Upper altitude of gridded CSI data [km].
double stat_t0
Start time for station output [s].
double oh_chem_beta
Beta parameter for diurnal variablity of OH.
char clim_o1d_filename[LEN]
Filename of O(1D) climatology.
char clim_photo[LEN]
Filename of photolysis rates climatology.
double wet_depo_so2_ph
pH value used to calculate effective Henry constant of SO2.
double mixing_z0
Lower altitude of mixing grid [km].
int qnt_mloss_decay
Quantity array index for total mass loss due to exponential decay.
int atm_type_out
Type of atmospheric data files for output (-1=same as ATM_TYPE, 0=ASCII, 1=binary,...
int met_nlev
Number of meteo data model levels.
double dt_kpp
Time step for KPP chemistry [s].
char csi_basename[LEN]
Basename of CSI data files.
double dry_depo_dp
Dry deposition surface layer [hPa].
int qnt_shf
Quantity array index for surface sensible heat flux.
int qnt_vs
Quantity array index for surface meridional wind.
int qnt_Cco
Quantity array index for CO volume mixing ratio (chemistry code).
double vtk_dt_out
Time step for VTK data output [s].
double t_stop
Stop time of simulation [s].
double conv_dt
Time interval for convection module [s].
char sample_obsfile[LEN]
Observation data file for sample output.
int qnt_hno3
Quantity array index for HNO3 volume mixing ratio (climatology).
char grid_basename[LEN]
Basename of grid data files.
int met_clams
Read MPTRAC or CLaMS meteo data (0=MPTRAC, 1=CLaMS).
int qnt_h2ot
Quantity array index for tropopause water vapor volume mixing ratio.
int qnt_rh
Quantity array index for relative humidity over water.
double met_cms_eps_cc
cmultiscale compression epsilon for cloud cover.
double bound_lat0
Boundary conditions minimum longitude [deg].
double met_pbl_max
Maximum depth of planetary boundary layer [km].
int met_dx
Stride for longitudes.
int mixing_ny
Number of latitudes of mixing grid.
int met_convention
Meteo data layout (0=[lev, lat, lon], 1=[lon, lat, lev]).
int qnt_zeta_d
Quantity array index for diagnosed zeta vertical coordinate.
char clim_h2o2_filename[LEN]
Filename of H2O2 climatology.
int tracer_chem
Switch for first order tracer chemistry module (0=off, 1=on).
double dt_mod
Time step of simulation [s].
int diffusion
Diffusion scheme (0=off, 1=fixed-K, 2=PBL).
int qnt_tnat
Quantity array index for T_NAT.
int qnt_tice
Quantity array index for T_ice.
int qnt_zg
Quantity array index for geopotential height.
double vtk_offset
Vertical offset for VTK data [km].
int qnt_v
Quantity array index for meridional wind.
int qnt_mloss_dry
Quantity array index for total mass loss due to dry deposition.
double bound_vmr_trend
Boundary conditions volume mixing ratio trend [ppv/s].
int met_cache
Preload meteo data into disk cache (0=no, 1=yes).
int qnt_oh
Quantity array index for OH volume mixing ratio (climatology).
char qnt_unit[NQ][LEN]
Quantity units.
int qnt_Ch
Quantity array index for H volume mixing ratio (chemistry code).
int met_press_level_def
Use predefined pressure levels or not.
int oh_chem_reaction
Reaction type for OH chemistry (0=none, 2=bimolecular, 3=termolecular).
int qnt_h2o
Quantity array index for water vapor volume mixing ratio.
int prof_ny
Number of latitudes of gridded profile data.
int qnt_rhice
Quantity array index for relative humidity over ice.
int qnt_rho
Quantity array index for density of air.
double sample_dz
Layer depth for sample output [km].
double tdec_strat
Life time of particles in the stratosphere [s].
int obs_type
Type of observation data files (0=ASCII, 1=netCDF).
int grid_nc_quant[NQ]
Number of digits for quantization of netCDF grid data files (0=off).
double met_cms_eps_lwc
cmultiscale compression epsilon for cloud liquid water content.
int qnt_us
Quantity array index for surface zonal wind.
double met_cms_eps_z
cmultiscale compression epsilon for geopotential height.
double grid_lon1
Upper longitude of gridded data [deg].
int qnt_Cn2o
Quantity array index for N2O volume mixing ratio (chemistry code).
int qnt_Cccl3f
Quantity array index for CFC-11 volume mixing ratio (chemistry code).
char qnt_name[NQ][LEN]
Quantity names.
char atm_basename[LEN]
Basename of atmospheric data files.
double mixing_lat0
Lower latitude of mixing grid [deg].
int qnt_pt
Quantity array index for tropopause pressure.
int qnt_cl
Quantity array index for total column cloud water.
int advect
Advection scheme (0=off, 1=Euler, 2=midpoint, 4=Runge-Kutta).
double prof_z1
Upper altitude of gridded profile data [km].
double met_lev_hyam[EP]
Meteo data model level a coefficients.
int qnt_t
Quantity array index for temperature.
int atm_filter
Time filter for atmospheric data output (0=none, 1=missval, 2=remove).
int kpp_chem
Switch for KPP chemistry module (0=off, 1=on).
int qnt_zeta
Quantity array index for zeta vertical coordinate.
double conv_pbl_trans
Depth of PBL transition layer (fraction of PBL depth).
char ens_basename[LEN]
Basename of ensemble data file.
double wet_depo_pre[2]
Coefficients for precipitation calculation.
int met_vert_coord
Vertical coordinate of input meteo data (0=plev, 1=mlev_p_file, 2=mlev_ab_file, 3=mlev_ab_full,...
double csi_z0
Lower altitude of gridded CSI data [km].
int qnt_lapse
Quantity array index for lapse rate.
double stat_lat
Latitude of station [deg].
int qnt_Cho2
Quantity array index for HO2 volume mixing ratio (chemistry code).
double wet_depo_bc_h[2]
Coefficients for wet deposition below cloud (Henry's law: Hb, Cb).
int grid_ny
Number of latitudes of gridded data.
int qnt_Csf6
Quantity array index for SF6 volume mixing ratio (chemistry code).
int qnt_Ch2o
Quantity array index for H2O volume mixing ratio (chemistry code).
double met_detrend
FWHM of horizontal Gaussian used for detrending [km].
int conv_mix_pbl
Vertical mixing in the PBL (0=off, 1=on).
char metbase[LEN]
Basename for meteo data.
double bound_dps
Boundary conditions surface layer depth [hPa].
double met_cms_eps_t
cmultiscale compression epsilon for temperature.
int chemgrid_nz
Number of altitudes of chemistry grid.
int qnt_cape
Quantity array index for convective available potential energy (CAPE).
double bound_mass_trend
Boundary conditions mass per particle trend [kg/s].
int mixing_nz
Number of altitudes of mixing grid.
int qnt_o3c
Quantity array index for total column ozone.
double bound_p0
Boundary conditions bottom pressure [hPa].
double mixing_lon0
Lower longitude of mixing grid [deg].
char clim_ccl4_timeseries[LEN]
Filename of CFC-10 time series.
int qnt_Co3
Quantity array index for O3 volume mixing ratio (chemistry code).
int qnt_tsts
Quantity array index for T_STS.
int grid_nz
Number of altitudes of gridded data.
char clim_oh_filename[LEN]
Filename of OH climatology.
int qnt_nss
Quantity array index for northward turbulent surface stress.
double ens_dt_out
Time step for ensemble output [s].
char sample_basename[LEN]
Basename of sample data file.
int atm_stride
Particle index stride for atmospheric data files.
int met_relhum
Try to read relative humidity (0=no, 1=yes).
double mixing_lat1
Upper latitude of mixing grid [deg].
double atm_dt_out
Time step for atmospheric data output [s].
char clim_sf6_timeseries[LEN]
Filename of SF6 time series.
double prof_lat1
Upper latitude of gridded profile data [deg].
int met_cms_batch
cmultiscale batch size.
double psc_h2o
H2O volume mixing ratio for PSC analysis.
int met_sp
Smoothing for pressure levels.
double prof_lon0
Lower longitude of gridded profile data [deg].
int chemgrid_nx
Number of longitudes of chemistry grid.
int qnt_pct
Quantity array index for cloud top pressure.
int qnt_mloss_kpp
Quantity array index for total mass loss due to KPP chemistry.
int qnt_psat
Quantity array index for saturation pressure over water.
double met_lev_hybm[EP]
Meteo data model level b coefficients.
double prof_lat0
Lower latitude of gridded profile data [deg].
int qnt_cin
Quantity array index for convective inhibition (CIN).
double psc_hno3
HNO3 volume mixing ratio for PSC analysis.
double prof_lon1
Upper longitude of gridded profile data [deg].
double met_cms_eps_rwc
cmultiscale compression epsilon for cloud rain water content.
int met_nc_quant
Number of digits for quantization of netCDF meteo files (0=off).
int h2o2_chem_reaction
Reaction type for H2O2 chemistry (0=none, 1=SO2).
int qnt_Co3p
Quantity array index for O(3P) volume mixing ratio (chemistry code).
int atm_nc_quant[NQ]
Number of digits for quantization of netCDF atmospheric data files (0=off).
double wet_depo_bc_ret_ratio
Coefficients for wet deposition below cloud: retention ratio.
int chemgrid_ny
Number of latitudes of chemistry grid.
char clim_ccl3f_timeseries[LEN]
Filename of CFC-11 time series.
double met_cms_eps_o3
cmultiscale compression epsilon for ozone.
int met_cms_zstd
cmultiscale zstd compression (0=off, 1=on).
int grid_sparse
Sparse output in grid data files (0=no, 1=yes).
char vtk_basename[LEN]
Basename of VTK data files.
double dry_depo_vdep
Dry deposition velocity [m/s].
int qnt_tt
Quantity array index for tropopause temperature.
int met_np
Number of target pressure levels.
int qnt_ens
Quantity array index for ensemble IDs.
int met_nc_level
zlib compression level of netCDF meteo files (0=off).
double met_zfp_tol_t
ZFP compression tolerance for temperature.
double mixing_dt
Time interval for mixing [s].
int qnt_mloss_h2o2
Quantity array index for total mass loss due to H2O2 chemistry.
double met_zfp_tol_z
ZFP compression tolerance for geopotential height.
double vtk_scale
Vertical scaling factor for VTK data.
char clim_ccl2f2_timeseries[LEN]
Filename of CFC-12 time series.
double met_cms_eps_w
cmultiscale compression epsilon for vertical velocity.
double wet_depo_ic_h[2]
Coefficients for wet deposition in cloud (Henry's law: Hb, Cb).
double turb_dx_pbl
Horizontal turbulent diffusion coefficient (PBL) [m^2/s].
double conv_cin
CIN threshold for convection module [J/kg].
int qnt_pv
Quantity array index for potential vorticity.
int advect_vert_coord
Vertical velocity of air parcels (0=omega_on_plev, 1=zetadot_on_mlev, 2=omega_on_mlev).
int qnt_mloss_oh
Quantity array index for total mass loss due to OH chemistry.
int qnt_Ch2o2
Quantity array index for H2O2 volume mixing ratio (chemistry code).
int qnt_sst
Quantity array index for sea surface temperature.
double mixing_lon1
Upper longitude of mixing grid [deg].
int atm_nc_level
zlib compression level of netCDF atmospheric data files (0=off).
char clim_hno3_filename[LEN]
Filename of HNO3 climatology.
int met_cms_heur
cmultiscale coarsening heuristics (0=default, 1=mean diff, 2=median diff, 3=max diff).
double wet_depo_ic_ret_ratio
Coefficients for wet deposition in cloud: retention ratio.
int qnt_sh
Quantity array index for specific humidity.
int qnt_ess
Quantity array index for eastward turbulent surface stress.
double wet_depo_ic_b
Coefficient B for wet deposition in cloud (exponential form).
double wet_depo_bc_b
Coefficient B for wet deposition below cloud (exponential form).
int met_dy
Stride for latitudes.
int qnt_Cx
Quantity array index for trace species x volume mixing ratio (chemistry code).
double turb_dz_strat
Vertical turbulent diffusion coefficient (stratosphere) [m^2/s].
double bound_zetas
Boundary conditions surface layer zeta [K].
int qnt_idx
Quantity array index for air parcel IDs.
double met_tropo_theta
Dynamical tropopause potential temperature threshold [K].
int qnt_rwc
Quantity array index for cloud rain water content.
double t_start
Start time of simulation [s].
char qnt_longname[NQ][LEN]
Quantity long names.
double met_p[EP]
Target pressure levels [hPa].
int nq
Number of quantities.
double tdec_trop
Life time of particles in the troposphere [s].
double sample_dx
Horizontal radius for sample output [km].
int vtk_stride
Particle index stride for VTK data.
char stat_basename[LEN]
Basename of station data file.
double turb_dz_pbl
Vertical turbulent diffusion coefficient (PBL) [m^2/s].
double grid_lat1
Upper latitude of gridded data [deg].
int qnt_zt
Quantity array index for tropopause geopotential height.
int met_type
Type of meteo data files (0=netCDF, 1=binary, 2=pck, 3=zfp, 4=zstd, 5=cms).
int qnt_cc
Quantity array index for cloud cover.
int qnt_plcl
Quantity array index for pressure at lifted condensation level (LCL).
double grid_dt_out
Time step for gridded data output [s].
int qnt_tdew
Quantity array index for dew point temperature.
float zt[EX][EY]
Tropopause geopotential height [km].
float sst[EX][EY]
Sea surface temperature [K].
float rwc[EX][EY][EP]
Cloud rain water content [kg/kg].
float o3c[EX][EY]
Total column ozone [DU].
float zeta_dotl[EX][EY][EP]
Vertical velocity on model levels [K/s].
float h2o[EX][EY][EP]
Water vapor volume mixing ratio [1].
float cape[EX][EY]
Convective available potential energy [J/kg].
float w[EX][EY][EP]
Vertical velocity [hPa/s].
float pct[EX][EY]
Cloud top pressure [hPa].
double hybrid[EP]
Model hybrid levels.
int nx
Number of longitudes.
int ny
Number of latitudes.
float shf[EX][EY]
Surface sensible heat flux [W/m^2].
float ps[EX][EY]
Surface pressure [hPa].
float lwc[EX][EY][EP]
Cloud liquid water content [kg/kg].
float us[EX][EY]
Surface zonal wind [m/s].
float wl[EX][EY][EP]
Vertical velocity on model levels [hPa/s].
float vl[EX][EY][EP]
Meridional wind on model levels [m/s].
float zs[EX][EY]
Surface geopotential height [km].
float o3[EX][EY][EP]
Ozone volume mixing ratio [1].
float cc[EX][EY][EP]
Cloud cover [1].
int np
Number of pressure levels.
float t[EX][EY][EP]
Temperature [K].
float ts[EX][EY]
Surface temperature [K].
float u[EX][EY][EP]
Zonal wind [m/s].
float ess[EX][EY]
Eastward turbulent surface stress [N/m^2].
float ul[EX][EY][EP]
Zonal wind on model levels [m/s].
float pcb[EX][EY]
Cloud bottom pressure [hPa].
float pel[EX][EY]
Pressure at equilibrium level (EL) [hPa].
float cin[EX][EY]
Convective inhibition [J/kg].
float plcl[EX][EY]
Pressure at lifted condensation level (LCL) [hPa].
double lon[EX]
Longitude [deg].
float pt[EX][EY]
Tropopause pressure [hPa].
float tt[EX][EY]
Tropopause temperature [K].
float pbl[EX][EY]
Boundary layer pressure [hPa].
float vs[EX][EY]
Surface meridional wind [m/s].
float z[EX][EY][EP]
Geopotential height [km].
float v[EX][EY][EP]
Meridional wind [m/s].
int npl
Number of model levels.
float lsm[EX][EY]
Land-sea mask [1].
float iwc[EX][EY][EP]
Cloud ice water content [kg/kg].
float h2ot[EX][EY]
Tropopause water vapor volume mixing ratio [ppv].
float pv[EX][EY][EP]
Potential vorticity [PVU].
float cl[EX][EY]
Total column cloud water [kg/m^2].
float nss[EX][EY]
Northward turbulent surface stress [N/m^2].
float pl[EX][EY][EP]
Pressure on model levels [hPa].
float plfc[EX][EY]
Pressure at level of free convection (LFC) [hPa].
double lat[EY]
Latitude [deg].
float swc[EX][EY][EP]
Cloud snow water content [kg/kg].
float zetal[EX][EY][EP]
Zeta on model levels [K].
double p[EP]
Pressure levels [hPa].