58 static double p2[1000], t[1000], t2[1000], z[1000], z2[1000], lat_mean,
61 static int hist_max[1000], hist_min[1000], hist_mean[1000], hist_sig[1000],
62 nhist_max, nhist_min, nhist_mean, nhist_sig, np;
71 ERRMSG(
"Give parameters: <ctl> <lapse.tab> <met0> [ <met1> ... ]");
76 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_DZ", -1,
"20", NULL);
78 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_LAT0", -1,
"-90", NULL);
80 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_LAT1", -1,
"90", NULL);
82 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_Z0", -1,
"0", NULL);
84 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_Z1", -1,
"100", NULL);
86 (int)
scan_ctl(argv[1], argc, argv,
"LAPSE_INTPOL", -1,
"1", NULL);
92 for (
int i = 3; i < argc; i++) {
99 for (
int iz = 0; iz < met->
np; iz++)
100 z[iz] =
Z(met->
p[iz]);
101 for (
int iz = 0; iz <= 250; iz++) {
102 z2[iz] = 0.0 + 0.1 * iz;
107 for (
int ix = 0; ix < met->
nx; ix++)
108 for (
int iy = 0; iy < met->
ny; iy++) {
111 if (met->
lat[iy] < lat0 || met->
lat[iy] > lat1)
115 for (
int iz = 0; iz < met->
np; iz++)
116 t[iz] = met->
t[ix][iy][iz];
120 for (
int iz = 0; iz <= 250; iz++) {
122 t2[iz] =
LIN(z[idx], t[idx], z[idx + 1], t[idx + 1], z2[iz]);
126 for (
int iz = 0; iz <= 250; iz++) {
129 if (z2[iz] < z0 || z2[iz] > z1)
133 if (p2[iz] > met->
ps[ix][iy])
137 lat_mean += met->
lat[iy];
143 double lapse_max = -1e99, lapse_min = 1e99, lapse_mean =
145 for (
int iz2 = iz + 1; iz2 <= iz + dz; iz2++) {
147 MAX(
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]), lapse_max);
149 MIN(
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]), lapse_min);
150 lapse_mean +=
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]);
151 lapse_sig +=
SQR(
LAPSE(p2[iz], t2[iz], p2[iz2], t2[iz2]));
154 lapse_mean /= nlapse;
155 lapse_sig = sqrt(
MAX(lapse_sig / nlapse -
SQR(lapse_mean), 0));
159 if (idx >= 0 && idx <
IDXMAX) {
165 if (idx >= 0 && idx <
IDXMAX) {
171 if (idx >= 0 && idx <
IDXMAX) {
177 if (idx >= 0 && idx <
IDXMAX) {
186 LOG(1,
"Write lapse rate data: %s", argv[2]);
187 if (!(out = fopen(argv[2],
"w")))
188 ERRMSG(
"Cannot create file!");
192 "# $1 = mean altitude [km]\n"
193 "# $2 = mean latitude [deg]\n"
194 "# $3 = lapse rate [K/km]\n"
195 "# $4 = counts of maxima per bin\n"
196 "# $5 = total number of maxima\n"
197 "# $6 = normalized frequency of maxima\n"
198 "# $7 = counts of minima per bin\n"
199 "# $8 = total number of minima\n"
200 "# $9 = normalized frequency of minima\n"
201 "# $10 = counts of means per bin\n"
202 "# $11 = total number of means\n"
203 "# $12 = normalized frequency of means\n"
204 "# $13 = counts of sigmas per bin\n"
205 "# $14 = total number of sigmas\n"
206 "# $15 = normalized frequency of sigmas\n\n");
209 double nmax_max = 0, nmax_min = 0, nmax_mean = 0, nmax_sig = 0;
210 for (
int idx = 0; idx <
IDXMAX; idx++) {
211 nmax_max =
MAX(hist_max[idx], nmax_max);
212 nmax_min =
MAX(hist_min[idx], nmax_min);
213 nmax_mean =
MAX(hist_mean[idx], nmax_mean);
214 nmax_sig =
MAX(hist_sig[idx], nmax_sig);
216 for (
int idx = 0; idx <
IDXMAX; idx++)
218 "%g %g %g %d %d %g %d %d %g %d %d %g %d %d %g\n",
220 hist_max[idx], nhist_max,
221 (
double) hist_max[idx] / (
double) nmax_max, hist_min[idx],
222 nhist_min, (
double) hist_min[idx] / (
double) nmax_min,
223 hist_mean[idx], nhist_mean,
224 (
double) hist_mean[idx] / (
double) nmax_mean, hist_sig[idx],
225 nhist_sig, (
double) hist_sig[idx] / (
double) nmax_sig);
int main(int argc, char *argv[])
#define LAPSEMIN
Lapse rate minimum [K/km.
#define IDXMAX
Maximum number of histogram bins.
#define DLAPSE
Lapse rate bin size [K/km].
int locate_irr(const double *xx, const int n, const double x)
Locate the index of the interval containing a given value in a sorted array.
void spline(const double *x, const double *y, const int n, const double *x2, double *y2, const int n2, const int method)
Performs spline interpolation or linear interpolation.
double scan_ctl(const char *filename, int argc, char *argv[], const char *varname, const int arridx, const char *defvalue, char *value)
Scans a control file or command-line arguments for a specified variable.
void mptrac_read_clim(const ctl_t *ctl, clim_t *clim)
Reads various climatological data and populates the given climatology structure.
int mptrac_read_met(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met, dd_t *dd)
Reads meteorological data from a file, supporting multiple formats and MPI broadcasting.
void mptrac_read_ctl(const char *filename, int argc, char *argv[], ctl_t *ctl)
Reads control parameters from a configuration file and populates the given structure.
MPTRAC library declarations.
#define LAPSE(p1, t1, p2, t2)
Calculate lapse rate.
#define MIN(a, b)
Macro to determine the minimum of two values.
#define ERRMSG(...)
Print an error message with contextual information and terminate the program.
#define Z(p)
Convert pressure to altitude.
#define P(z)
Compute pressure at given altitude.
#define ALLOC(ptr, type, n)
Allocate memory for a pointer with error handling.
#define SQR(x)
Compute the square of a value.
#define LOG(level,...)
Print a log message with a specified logging level.
#define LIN(x0, y0, x1, y1, x)
Linear interpolation.
#define MAX(a, b)
Macro to determine the maximum of two values.
int met_tropo_spline
Tropopause interpolation method (0=linear, 1=spline).
Domain decomposition data structure.
int nx
Number of longitudes.
int ny
Number of latitudes.
float ps[EX][EY]
Surface pressure [hPa].
int np
Number of pressure levels.
float t[EX][EY][EP]
Temperature [K].
double lat[EY]
Latitudes [deg].
double p[EP]
Pressure levels [hPa].