55 static double *timem, ps, *psm, ts, *tsm, zs, *zsm, us, *usm, vs, *vsm,
56 ess, *essm, nss, *nssm, shf, *shfm, lsm, *lsmm, sst, *sstm, pbl, *pblm,
57 pt, *ptm, t, *pm, *tm, u, *um, v, *vm, w, *wm, h2o, *h2om, h2ot, *h2otm,
58 o3, *o3m, *hno3m, *ohm, *h2o2m, *ho2m, *o1dm, *tdewm, *ticem, *tnatm,
59 lwc, *lwcm, rwc, *rwcm, iwc, *iwcm, swc, *swcm, cc, *ccm, z, *zm,
60 pv, *pvm, zt, *ztm, tt, *ttm, pct, *pctm, pcb, *pcbm, cl, *clm,
61 plcl, *plclm, plfc, *plfcm, pel, *pelm, cape, *capem, cin, *cinm,
62 o3c, *o3cm, *rhm, *rhicem, ptop, pbot, t0, lon, lons[
NX], lat, lats[
NY];
64 static int *np, *npc, *npt, nx, ny;
166 ALLOC(rhicem,
double,
177 ERRMSG(
"Give parameters: <ctl> <map.tab> <met0> [ <met1> ... ]");
181 double p0 =
P(
scan_ctl(argv[1], argc, argv,
"MAP_Z0", -1,
"10", NULL));
182 double lon0 =
scan_ctl(argv[1], argc, argv,
"MAP_LON0", -1,
"-180", NULL);
183 double lon1 =
scan_ctl(argv[1], argc, argv,
"MAP_LON1", -1,
"180", NULL);
184 double dlon =
scan_ctl(argv[1], argc, argv,
"MAP_DLON", -1,
"-999", NULL);
185 double lat0 =
scan_ctl(argv[1], argc, argv,
"MAP_LAT0", -1,
"-90", NULL);
186 double lat1 =
scan_ctl(argv[1], argc, argv,
"MAP_LAT1", -1,
"90", NULL);
187 double dlat =
scan_ctl(argv[1], argc, argv,
"MAP_DLAT", -1,
"-999", NULL);
188 double theta =
scan_ctl(argv[1], argc, argv,
"MAP_THETA", -1,
"-999", NULL);
194 for (
int i = 3; i < argc; i++) {
202 dlon = fabs(met->
lon[1] - met->
lon[0]);
204 dlat = fabs(met->
lat[1] - met->
lat[0]);
205 if (lon0 < -360 && lon1 > 360) {
206 lon0 = gsl_stats_min(met->
lon, 1, (
size_t) met->
nx);
207 lon1 = gsl_stats_max(met->
lon, 1, (
size_t) met->
nx);
210 for (lon = lon0; lon <= lon1 + 0.001; lon += dlon) {
211 lons[nx] = round(lon * 1e3) / 1e3;
213 ERRMSG(
"Too many longitudes!");
215 if (lat0 < -90 && lat1 > 90) {
216 lat0 = gsl_stats_min(met->
lat, 1, (
size_t) met->
ny);
217 lat1 = gsl_stats_max(met->
lat, 1, (
size_t) met->
ny);
219 for (lat = lat0; lat <= lat1 + 0.001; lat += dlat) {
220 lats[ny] = round(lat * 1e3) / 1e3;
222 ERRMSG(
"Too many latitudes!");
226 for (
int ix = 0; ix < nx; ix++)
227 for (
int iy = 0; iy < ny; iy++) {
232 ptop = met->
p[met->
np - 1];
235 p0 = 0.5 * (ptop + pbot);
238 if (
THETA(p0, t0) > theta)
242 }
while (fabs(ptop - pbot) > 1e-5);
249 timem[iy * nx + ix] += met->
time;
250 zm[iy * nx + ix] += z;
251 pm[iy * nx + ix] += p0;
252 tm[iy * nx + ix] += t;
253 um[iy * nx + ix] += u;
254 vm[iy * nx + ix] += v;
255 wm[iy * nx + ix] += w;
256 pvm[iy * nx + ix] += pv;
257 h2om[iy * nx + ix] += h2o;
258 o3m[iy * nx + ix] += o3;
259 lwcm[iy * nx + ix] += lwc;
260 rwcm[iy * nx + ix] += rwc;
261 iwcm[iy * nx + ix] += iwc;
262 swcm[iy * nx + ix] += swc;
263 ccm[iy * nx + ix] += cc;
264 psm[iy * nx + ix] += ps;
265 tsm[iy * nx + ix] += ts;
266 zsm[iy * nx + ix] += zs;
267 usm[iy * nx + ix] += us;
268 vsm[iy * nx + ix] += vs;
269 essm[iy * nx + ix] += ess;
270 nssm[iy * nx + ix] += nss;
271 shfm[iy * nx + ix] += shf;
272 lsmm[iy * nx + ix] += lsm;
273 sstm[iy * nx + ix] += sst;
274 pblm[iy * nx + ix] += pbl;
275 pctm[iy * nx + ix] += pct;
276 pcbm[iy * nx + ix] += pcb;
277 clm[iy * nx + ix] += cl;
278 if (isfinite(plfc) && isfinite(pel) && cape >= ctl.
conv_cape
280 plclm[iy * nx + ix] += plcl;
281 plfcm[iy * nx + ix] += plfc;
282 pelm[iy * nx + ix] += pel;
283 capem[iy * nx + ix] += cape;
284 cinm[iy * nx + ix] += cin;
288 ptm[iy * nx + ix] += pt;
289 ztm[iy * nx + ix] += zt;
290 ttm[iy * nx + ix] += tt;
291 h2otm[iy * nx + ix] += h2ot;
294 o3cm[iy * nx + ix] += o3c;
296 tnatm[iy * nx + ix] +=
300 clim_oh(&ctl, clim, met->
time, lons[ix], lats[iy], p0);
302 ho2m[iy * nx + ix] +=
clim_zm(&clim->
ho2, met->
time, lats[iy], p0);
303 o1dm[iy * nx + ix] +=
clim_zm(&clim->
o1d, met->
time, lats[iy], p0);
304 rhm[iy * nx + ix] +=
RH(p0, t, h2o);
305 rhicem[iy * nx + ix] +=
RHICE(p0, t, h2o);
306 tdewm[iy * nx + ix] +=
TDEW(p0, h2o);
307 ticem[iy * nx + ix] +=
TICE(p0, h2o);
313 LOG(1,
"Write meteorological data file: %s", argv[2]);
314 if (!(out = fopen(argv[2],
"w")))
315 ERRMSG(
"Cannot create file!");
321 for (
int iy = 0; iy < ny; iy++) {
323 for (
int ix = 0; ix < nx; ix++)
325 "%.2f %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g"
326 " %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g"
327 " %g %g %g %g %g %g %g %g %g %g %g %g %g %g %d %d %d\n",
328 timem[iy * nx + ix] / np[iy * nx + ix],
329 Z(pm[iy * nx + ix] / np[iy * nx + ix]), lons[ix], lats[iy],
330 pm[iy * nx + ix] / np[iy * nx + ix],
331 tm[iy * nx + ix] / np[iy * nx + ix],
332 um[iy * nx + ix] / np[iy * nx + ix],
333 vm[iy * nx + ix] / np[iy * nx + ix],
334 wm[iy * nx + ix] / np[iy * nx + ix],
335 h2om[iy * nx + ix] / np[iy * nx + ix],
336 o3m[iy * nx + ix] / np[iy * nx + ix],
337 zm[iy * nx + ix] / np[iy * nx + ix],
338 pvm[iy * nx + ix] / np[iy * nx + ix],
339 psm[iy * nx + ix] / np[iy * nx + ix],
340 tsm[iy * nx + ix] / np[iy * nx + ix],
341 zsm[iy * nx + ix] / np[iy * nx + ix],
342 usm[iy * nx + ix] / np[iy * nx + ix],
343 vsm[iy * nx + ix] / np[iy * nx + ix],
344 essm[iy * nx + ix] / np[iy * nx + ix],
345 nssm[iy * nx + ix] / np[iy * nx + ix],
346 shfm[iy * nx + ix] / np[iy * nx + ix],
347 lsmm[iy * nx + ix] / np[iy * nx + ix],
348 sstm[iy * nx + ix] / np[iy * nx + ix],
349 ptm[iy * nx + ix] / npt[iy * nx + ix],
350 ztm[iy * nx + ix] / npt[iy * nx + ix],
351 ttm[iy * nx + ix] / npt[iy * nx + ix],
352 h2otm[iy * nx + ix] / npt[iy * nx + ix],
353 lwcm[iy * nx + ix] / np[iy * nx + ix],
354 rwcm[iy * nx + ix] / np[iy * nx + ix],
355 iwcm[iy * nx + ix] / np[iy * nx + ix],
356 swcm[iy * nx + ix] / np[iy * nx + ix],
357 ccm[iy * nx + ix] / np[iy * nx + ix],
358 clm[iy * nx + ix] / np[iy * nx + ix],
359 pctm[iy * nx + ix] / np[iy * nx + ix],
360 pcbm[iy * nx + ix] / np[iy * nx + ix],
361 plclm[iy * nx + ix] / npc[iy * nx + ix],
362 plfcm[iy * nx + ix] / npc[iy * nx + ix],
363 pelm[iy * nx + ix] / npc[iy * nx + ix],
364 capem[iy * nx + ix] / npc[iy * nx + ix],
365 cinm[iy * nx + ix] / npc[iy * nx + ix],
366 rhm[iy * nx + ix] / np[iy * nx + ix],
367 rhicem[iy * nx + ix] / np[iy * nx + ix],
368 tdewm[iy * nx + ix] / np[iy * nx + ix],
369 ticem[iy * nx + ix] / np[iy * nx + ix],
370 tnatm[iy * nx + ix] / np[iy * nx + ix],
371 hno3m[iy * nx + ix] / np[iy * nx + ix],
372 ohm[iy * nx + ix] / np[iy * nx + ix],
373 h2o2m[iy * nx + ix] / np[iy * nx + ix],
374 ho2m[iy * nx + ix] / np[iy * nx + ix],
375 o1dm[iy * nx + ix] / np[iy * nx + ix],
376 pblm[iy * nx + ix] / np[iy * nx + ix],
377 o3cm[iy * nx + ix] / np[iy * nx + ix], np[iy * nx + ix],
378 npt[iy * nx + ix], npc[iy * nx + ix]);
int main(int argc, char *argv[])
#define NX
Maximum number of longitudes.
#define NY
Maximum number of latitudes.
double clim_zm(const clim_zm_t *zm, const double t, const double lat, const double p)
Interpolates monthly mean zonal mean climatological variables.
double nat_temperature(const double p, const double h2o, const double hno3)
Calculates the nitric acid trihydrate (NAT) temperature.
void intpol_met_space_3d(const met_t *met, float array[EX][EY][EP], const double p, const double lon, const double lat, double *var, int *ci, double *cw, const int init)
Interpolates meteorological variables in 3D space.
double scan_ctl(const char *filename, int argc, char *argv[], const char *varname, const int arridx, const char *defvalue, char *value)
Scans a control file or command-line arguments for a specified variable.
void mptrac_read_clim(const ctl_t *ctl, clim_t *clim)
Reads various climatological data and populates the given climatology structure.
double clim_oh(const ctl_t *ctl, const clim_t *clim, const double t, const double lon, const double lat, const double p)
Calculates the hydroxyl radical (OH) concentration from climatology data, with an optional diurnal co...
int mptrac_read_met(const char *filename, const ctl_t *ctl, const clim_t *clim, met_t *met, dd_t *dd)
Reads meteorological data from a file, supporting multiple formats and MPI broadcasting.
void mptrac_read_ctl(const char *filename, int argc, char *argv[], ctl_t *ctl)
Reads control parameters from a configuration file and populates the given structure.
MPTRAC library declarations.
#define INTPOL_SPACE_ALL(p, lon, lat)
Interpolate multiple meteorological variables in space.
#define INTPOL_INIT
Initialize arrays for interpolation.
#define ERRMSG(...)
Print an error message with contextual information and terminate the program.
#define Z(p)
Convert pressure to altitude.
#define P(z)
Compute pressure at given altitude.
#define THETA(p, t)
Compute potential temperature.
#define MET_HEADER
Write header for meteorological data file.
#define TICE(p, h2o)
Calculate frost point temperature (WMO, 2018).
#define RHICE(p, t, h2o)
Compute relative humidity over ice.
#define ALLOC(ptr, type, n)
Allocate memory for a pointer with error handling.
#define RH(p, t, h2o)
Compute relative humidity over water.
#define LOG(level,...)
Print a log message with a specified logging level.
#define TDEW(p, h2o)
Calculate dew point temperature.
clim_zm_t ho2
HO2 zonal means.
clim_zm_t hno3
HNO3 zonal means.
clim_zm_t o1d
O(1D) zonal means.
clim_zm_t h2o2
H2O2 zonal means.
double conv_cape
CAPE threshold for convection module [J/kg].
double conv_cin
CIN threshold for convection module [J/kg].
Domain decomposition data structure.
int nx
Number of longitudes.
int ny
Number of latitudes.
int np
Number of pressure levels.
float t[EX][EY][EP]
Temperature [K].
double lon[EX]
Longitudes [deg].
double lat[EY]
Latitudes [deg].
double p[EP]
Pressure levels [hPa].